DE LA RECHERCHE À L'INDUSTRIE

ALGORITHMS FOR ATOM PROBE

TOMOGRAPHY CHARACTERISATIONS

OPTIMIZATION OF RPV STEELS

A. LOPEZ, E. RAOULT

OCTOBER 16th- 20th 2017

www.cea.fr

Nota :This work profited from a French government grant managed by the National Agency of Research under the program "Investments for the future" (ref. ANR-11-EQPX-0020

DE LA RECHERCHE À L'INDUSTRIE

CONTEXT

Anticipate and predict ageing (effects of irradiation) and potential degradation of essential structures (RPV and internals) in PWRs.

Possible evaporation due to the existence of an intense electric field coupled with short pulses

APT DATA - 2ND INFORMATION : ATOM POSITION

Ion impact in the detection system \rightarrow Coordinates (X,Y)

DLD : Delay line detector (grid made from two windings of copper lines) DE LA RECHERCHE À L'INDUSTRI

APPLICATIONS

Spatial resolution : 0,4 nm laterally <0,2 nm en depth Sensibility : < 5 ppm

Thermally aged model alloy : Cu/Ni/Si/Mn segregation (right) and Cu clusters (left)

SEGREGATION

- Manganèse
- Cuivre
- Nickel
- Silicium

CLUSTERING

Proton irradiated internal steels : Cu clusters

PRECIPITATION

Aluminum alloy 6061-T6 : MgSi precipitates

APT CHARACTERISATIONS OF SOLUTE CLUSTERING : MSM

One of the most common method applied to APT data to identify and analyse solute clusters : Maximum Separation Method (MSM)

But the results depend strongly on the choice of these parameters !!!

Benchmark on RPV material results: strong influence of identification parameters

	Oder	d _{max} (nm)	N _{min}	L (nm)	d _{erosion} (nm)	Core atoms
1	4	0.9	8	0.7	0.7	Cu
2 (*)	1	0.5	15		-	Cu, Mn, Si, Ni, P
4	4	0.8	6	0.8	0.8	Cu
5	2	0.7	5	0.6	0.6	Cu

Courtesy B. Radiguet and al. – APT benchmark on RPV Material

Courtesy B. Radiguet and al. - APT benchmark on RPV Material

To confort and/or help on our identification parameters choice → algorithms

Optimization of the order
Sensibility analysis
Local concentration method

Goal: draw the nearest neighboring solute atoms at different orders in the same g

Allows to choose the most appropriate order more easily and quickly !

Goal : compare the number of solute clusters found regarding the values of identification parameters d_{max} and Nmin for a fixed order

Sensitivity analysis that should strengthen the choice of identification parameters !

ALGORITHM 3 : LOCAL CONCENTRATION METHOD

- Goal : analyze the local solute concentration to increase contrast between features and matrix
- Method to apply to data with big concentration matrix (high background) before MSM method
- Useless with weakly concentrated elements

Infos			
	Choix de l'espèce :		
Charger le .CSV		⊚ н	© Co
		🔘 Fe	🔘 Zn
Nombre d'ions: 9319138		🔘 Cu	🔘 Na
		🔘 Mn	🔘 Cr
Charger le .Rng		🔘 Ni	
		Si	
		© c	
Nombre minimun d'atomes par voxel : 74		🔘 Mg	
		AI	
Concentration dans la matrice de		© P	
l'élément : 1.371%		© 0	
Nombre d'atomes par voxel : 10	• 00	🔘 Cr	
		ΟV	
Appliquer			

DE LA RECHERCHE À L'INDUSTRIE

Cea ALGORITHM 3 : LOCAL CONCENTRATION METHOD

A => 0 à 2%

B => 2 à 4%

120

100

80

→ Increase the contrast between features 120 and matrix ! Then the MSM method can be 100 applied in the filtered data to better results 80

Segregation on dislocation loop

4∩

PAGE 11

40

Thanks

Nota :This work profited from a French government grant managed by the National Agency of Research under the program "Investments for the future" (ref. ANR-11-EQPX-0020

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Paris - Saclay | 91191 Gif-sur-Yvette Cedex

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019