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Piecewise Affine System identification: A least harmonic mean approach

Laurent Bako1, Olfa Yahya2

Abstract— In this paper we consider the problem of iden-
tifying piecewise affine approximations of nonlinear dynamic
systems directly from input-output measurements. This requires
estimating a partition of the regression space and an associated
set of affine time-invariant models. By relying on a generic
Voronoi type of partition, the proposed approach treats these
two tasks jointly via the minimization of an appropriate
objective function formed as a weighted sum of errors related
to all submodels. We minimize this objective function with
respect to both the weights and the parameters (describing
the partition and the affine submodels) under some heuristic
constraint on the weights. It is later observed that the proposed
method attempts indeed to optimize a sum (over the available
dataset) of harmonic means. The final estimation algorithm
consists in solving iteratively a sequence of convex optimization
problems. Numerical experiments tend to suggest that the new
method exhibits some nice properties: regular convergence and
good estimation performance.

Keywords. system identification, piecewise affine systems,
nonsmooth optimization.

I. INTRODUCTION

A piecewise affine (PWA) model of a dynamic nonlinear
system consists of a partition of the state-input space of the
system into local disjoint regions, each of which is associated
with an affine (or linear) time-invariant model. Such models
are very convenient for representing nonlinear functions
(dynamic systems) for example from the perspective of non-
linear control design. In effect, PWA models arise naturally
from a basic intuition of control engineering practitioners,
the notion of operating point. They are therefore more easily
amenable to interpretation and analysis by judiciously using
the available knowledge on linear systems. PWA models can
be viewed as a means to extend somehow generically linear
design and analysis methods to nonlinear dynamic systems
[17], [16]. This is probably one of the reason why there
has been recently an increase of interest in piecewise affine
models identification from input-output data. Beyond being a
modeling abstraction of nonlinear systems as argued above,
we can conceive the existence of strictly PWA systems,
which forms a class of hybrid systems with a state-dependent
switching signal (e.g. linear dynamic systems interconnected
with static nonlinearities such as deadzones or saturated
actuators, . . . ).

There is indeed a rich literature on PWA system identi-
fication. The large diversity of existing methods illustrates
a clear surge of interest in these models in the recent
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years. Examples of methods include multiple local esti-
mation and clustering through K-means [7] or recursive
bayesian/incremental learning [9], [2], [6], Minimum par-
tition into feasible sets (MIN PFS) [4]; optimization via
mixed integer programming approach [15], sparsity-inducing
optimization techniques [11]. The reader is referred to the
survey papers [13], [8] for an overview of theory and
application of hybrid systems identification.

In this paper we present an estimation framework which
applies to both switched and PWA systems. In the PWA case,
a distinguishing feature of the new method with respect to
the conventional scheme, is that the partition and the corre-
sponding affine submodels are estimated simultaneously. To
achieve this, the identification problem is primarily formu-
lated as an optimization problem through the introduction
of two main ingredients: (i) a nonsmooth loss function on
a generalized error accounting (locally) for the structural
properties of the PWA model ; for each submodel, there is
one such error associated to it ; (ii) an objective function
formed as a sum, over the available samples, of the minimum
error on the set of submodels. This is a hard nonconvex
problem. Our approach towards a solution is then to consider
a weighted objective function involving adjustable weighting
functions of the data samples. Finally, an iterative procedure
is proposed which alternates between adjusting the weights
and updating the parameters. The iteration principle of the
final computational algorithm is as follows: Starting from
some initial distinct weights values (obtainable for example
from a random sampling), the parameters of the partition and
those of the affine submodels are jointly computed by solving
a convex nonsmooth optimization problem. Given the new
estimates of the parameters, the weights are subsequently
updated by minimizing again the same objective function but
this time, with respect to the weights, under some heuristic
constraint. The algorithm keeps iterating this way until some
convergence condition is satisfied.
A closer look at the method reveals that it attempts indeed
to minimize the sum, over the available samples, of the
harmonic means of the generalized errors related to each
submodel. This observation turns out to be quite consistent
with the fact that the harmonic mean is the closest (among
all standard means) to the min-error function.

Outline. The rest of the paper is organized as follows. In
Section II, we discuss how a PWA model can be derived
naturally from a linearization at multiple operating points.
This discussion yields a PWA model which is defined on
Voronoi-type of polyhedral partition of the regression space
which can be obtained either from the equations of the



nonlinear system, when available, or directly from input-
output data generated by the nonlinear system. In Section III,
we formulate the estimation problem for the PWA model. An
optimization framework is therefore presented as a possible
solution to that problem. In section IV we discuss the algo-
rithmic steps for solving numerically the problem and obtain
a PWA model. Section V shows some numerical illustrations
concerning the performance of the identification method.
Lastly Section VI presents some concluding remarks.

Notations. R is the set of real numbers while R+ stands for
the set of nonnegative real numbers. ‖·‖p refers to standard
vector p-norm. If v ∈ Rn is a vector then diag(v) refers to
the diagonal matrix in Rn×n having the entries of v on its
diagonal.

II. PWA APPROXIMATION OF NONLINEAR FUNCTIONS

A. The nonlinear data-generating system

Consider a dynamic system described by a Nonlinear
AutoRegressive eXogenous (NARX) model in the form

yt = f(xt) + et (1)

where yt ∈ R is the output of the system, et is accounting for
potential noise and xt ∈ Rn is the regressor vector defined
by

xt =
[
yt−1 · · · yt−na

u>t · · · u>t−nb

]>
(2)

with ut ∈ Rnu denoting the input (vector of nu entries) of
the system at time t. na and nb are known integers called
orders of the model, and n = na+(nb+1)nu. In case na =
0, the regressor becomes just xt = [u>t · · · u>t−nb

]>;
the model (1) is then called a Nonlinear Finite Impulse
Response (NFIR) model. We will assume that the regressors
xt generated by the system live in a bounded subset X of
Rn, called the regression space; f : X → R is an unknown
nonlinear function which we will assume, for convenience,
to be smooth (at least continuously differentiable).

B. The PWA approximation

As discussed in the introduction, we are interested here in
finding a PWA model of the nonlinear system (1) directly
from a set {(xt, yt)}Nt=1 of experimental data generated
by the nonlinear system (1). For this purpose, we will
consider the particular class of PWA functions defined on
a Voronoi-type partition of X . Such a class of PWA models
is described and motivated in [2]. Indeed if f is continuously
differentiable as assumed above, then by selecting appropri-
ately a finite number s of points ci in X , we can reasonably
approximate f by a PWA map fPWA : X → R defined by

fPWA(x) =


a>1 x+ b1 if x ∈X1

...
...

a>s x+ bs if x ∈Xs

(3)

where (ai, bi) ∈ Rn × R, i = 1, . . . , s, are defined by

ai = ∇f(ci), bi = f(ci)− c>i ∇f(ci) (4)

with the notation ∇f referring to the gradient of f with
respect to x, and the sets Xi are given by

Xi =
{
x ∈X : ‖x− ci‖2 ≤ ‖x− cj‖2,∀j = 1, ..., s

}
.
(5)

For some additional arguments on this particular approxi-
mation strategy, we refer to [2]. The sets {Xi}si=1 defined
in (5) form a partition of the regression space X , that
is, (i) they form a complete cover of the entire domain,
X = ∪si=1Xi and (ii) their interiors are pairwise disjoint,
int(Xi) ∩ int(Xj) = ∅ for all i 6= j with int(·) referring to
the interior. Such a partition which, by Eq. (5), is completely
determined by the points c1, . . . , cs, is known as Voronoi
partition. The regions Xi are then called the Voronoi cells
while the points ci’s are termed the seeds or the generators of
the partition. Note that the definition (5) can be generalized
to some other distances than the Euclidean one (see e.g., [12]
for further details on this matter).
It is not hard to show that each set Xi is a convex polyhe-
dron, that is, a set resulting from the intersection of a finite
number of half-spaces. More precisely, by defining

Hi =
[
c1 − ci · · · ci−1 − ci ci+1 − ci · · · cs − ci

]>
hi =

[
β1,i · · · βi−1,i βi+1,i · · · βs,i

]>
,

(6)

we can write Xi = {x ∈X : Hix ≤ hi} where βj,i =
(c>j cj − c>i ci)/2. For illustration purpose, an example of
Voronoi partition in R2 is depicted in Figure 1.
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Fig. 1: Example of Voronoi-type partition of [0 1]× [0 1] ⊂
R2 in 5 polyhedral regions defined by the points ci, i =
1, . . . , 5, as in Eq. (5).

Finally, we note that the PWA representation on Voronoi-
type partition is less general than the usual polyhedral
partition which is used for this purpose [6], [7]. But it
does enjoy some convenient properties: (a) the seeds ci can
be given a quite intuitive interpretation as operating points
of the system; (b) the affine functions associated with the
local regions can be viewed as resulting from linearization
of the nonlinear systems about the operating points; (c) the
estimation task consists simply in identifying the parameters
{(ai, bi, ci)}si=1 from observations. An interesting point is
that, adopting the representation (5) for the regions simplifies
slightly the identification of the switching mechanism which



can then be done simultaneously as the parameters of the
affine submodels. Furthermore, a posteriori data classifica-
tion is no longer necessary.
For convenience, we may write in the sequel

fPWA(x) = x̃>θi if x ∈Xi (7)

with x̃ = [x> 1]> and θi = [a>i bi]
>.

C. A reference PWA model

Let F s
PWA denote the set of all PWA functions fPWA of the

form (3)-(5) defined on a partition of X into s cells. Clearly,
F s

PWA is a subset of the set of all piecewise continuous
functions from the compact set X to R, which we denote
by F (X ,R). Define a particular PWA function foPWA with
Voronoi-type partition by

foPWA ∈ arg min
fPWA∈Fs

PWA

‖f − fPWA‖F (8)

where ‖·‖F is some norm on F (X ,R), for example the
L2 norm. That is, foPWA is the function in F s

PWA which is
closest to f in the sense of the distance induced by the norm
‖·‖F . With reference to (7), finding foPWA is equivalent to
finding the model parameters {(θoi , coi )}

s
i=1. Intuitively, the

approximation error ‖f − foPWA‖F is a nonincreasing function
of the number s of affine subsystems.

To begin with, let us observe that the system equation (1)
can be conveniently rewritten as

yt = foPWA(xt) + vt (9)

with vt = et + ẽt and ẽt = f(xt) − foPWA(xt) denoting the
approximation (mismatch) error. For easier reference in the
following parts of the paper we can put this last equation in
the following equivalent form

yt = x̃>t θ
o
σ(t) + vt, (10)

where x̃t = [x>t 1]> and the subindex σ(t) is called the
discrete state defined by σ(t) = i ∈ {1, . . . , s} if xt ∈ X o

i

with X o
i being the Voronoi cell defined similarly as in (5)

from the parameters co1, . . . , c
o
s. Of course, model (10) can

account for a class of nonlinear systems as discussed above
and also for strictly piecewise affine systems. Because vt
contains both measurement noise and model mismatch we do
not associate any stochastic properties, such as independence
on the input, to it. It is only required to be bounded.
Problem. From now on we view (10) as the PWA data-
generating system. The goal of the estimation task is there-
fore to infer estimates of the parameters {θoi }

s
i=1 and {coi }

s
i=1

from a finite collection of data {(xt, yt)}Nt=1.

III. ESTIMATION OF PWA MODELS FROM DATA

A reasonable approach to the estimation problem stated
above would be to solve the optimization problem

min
θ1,...,θs
c1,...,cs

s∑
i=1

∑
xt∈Xi(c1,...,cs)

(
yt − θ>i x̃t

)2
(11)

for {θi}si=1 and {ci}si=1, where Xi(c1, . . . , cs) is defined as
in (5). The purpose of the notation Xi(c1, . . . , cs) is just to

make explicit the dependence of the sets Xi on the seeds
ci’s for more clarity concerning the decision variables.

Estimating simultaneously the partition and the affine
subfunctions as in (11) is a problem which is known to be
very challenging. It is even hopeless to try to find the exact
solution of problem (11) at an affordable computational cost.
Therefore, as in virtually all existing works [6], [7], [9], we
shall be content with a suboptimal solution.

We start by noting that an immediate and simple al-
gorithm for solving (11) would typically consist in alter-
nating between assigning the data (xt, yt) to the regions
Xi(c1, . . . , cs) based on the distances to the ci’s and com-
puting the associated hyperplane parameters θ̃i (analogously
to the principle of the K-means algorithm). This can be
done by sampling some initial estimates of (c1, . . . , cs) at
random from Rn. However the performance of such a basic
algorithm is known to be poor due to the nonconvexity of
the underlying optimization problem.

Hence we need to design a more efficient estimation pro-
cedure. The next discussion is articulated along the following
points:
• Formulate the joint estimation problem (11) for the

partition and the corresponding affine submodels as
a regression-like problem. This is done by means of
an appropriate nonsmooth loss function applying to an
extended error which accounts for the requirement on
the structure of PWA model (see Eq. (12)). We form
the ideal cost function as a sum over time of some min-
functions as in (14).

• Encapsulate the latter cost in a weighted sum (15) of
the sample-losses which is to be minimized with respect
to both the weights and the parameters under some
multiplicative constraints on the weights (see Eq. (16)).

• Derive an algorithm that tries to find the optimum (see
Section IV).

A. The proposed estimation method

In this section, we introduce gradually the idea of our
estimation method. As described above, the first step is to
reformulate the estimation problem in a way that removes
the implicit partition problem in (11). For this purpose, pose
pi = [θ>i c>i ]> and P = [p1 · · · ps]. Introduce also the
notations S = {1, . . . , s} and T = {1, . . . , N} for the index
sets of the submodels and the data samples respectively. For
any sample (xt, yt), t ∈ T, define a loss function

ξt(pi, ε) =

∥∥∥∥Λ

[
yt − θ>i x̃t
xt − ci

]∥∥∥∥
2

+ ε (12)

with ε ≥ 0 being a small number which will, sometimes, be
required to be strictly positive. The goal of ε is essentially
to avoid division by zero whenever calculations may involve
the inverse of ξt(pi, ε). Λ ∈ R(n+1)×(n+1) is some positive-
definite weighting matrix balancing the contribution of the
two terms involved in ξt(pi, ε). A typical choice for Λ can
be of the form

Λ =

[
λ1 0
0 λ2In

]
(13)



with λ1 > 0 and λ2 > 0 and In being the identity matrix
of dimension n. In that case, one would select λ1 and λ2
to balance the contribution of the two terms composing
the generalized error [(yt − θ>i x̃t) (xt − ci)>]>. The loss
ξt(pi, ε) is a convex function of pi which attempts to merge
together both the requirement related to submodel fitting
and the Voronoi type of partition. Different other choices
of loss functions are possible with respect to this purpose.
An important feature however is that a sum-of-norms cost
is likely to produce better results thanks to the robustness-
inducing properties of such costs (see e.g. [3] for some
discusions on this point). Then, ideally, we would like to
search for the parameter matrix P which minimizes

J (P ) =

N∑
t=1

min
i∈S

ξt(pi, 0). (14)

The rationale behind the choice of ξt(pi, ε) as in the form
(12) and the objective function (14) is to drive, for each i,
the fitting errors yt − θ>i x̃t to zero whenever the distance
from xt to ci is small. But at a given time t, we do not want
to minimize all the errors ξt(pi, 0) but only one of them
(namely the smallest), the difficulty being that we do not
know which one in advance. Note that (14) is still hard to
solve as such. Therefore our strategy here is to embed the
objective in (14) into the following one

F (P,W, ε) =

N∑
t=1

s∑
i=1

witξt(pi, ε) (15)

where W , [wit]i,t ∈ Rs×N is a weighting matrix with
positive entries wit, (i, t) ∈ S× T.

Clearly, if we could select the weights such that wit =
1 when i ∈ arg minj∈S ξt(pj , 0) and wit = 0 other-
wise, then we would recover F (P,W, ε) = J (P ) for
ε = 0. Hence J (P ) appears to be a particular instance
of F (P,W, ε) provided that the weights are appropriately
selected. But of course the difficulty is that we do not
know arg minj∈S ξt(pj , 0) prior to computing the vectors
pj . Therefore, we will be searching simultaneously for both
the weighting matrix W and the parameter matrix P . More
explicitly, the following optimization problem is considered:

min
P,W

F (P,W, ε) (16)

subject to
s∏
i=1

wit = 1 ∀t ∈ T (17)

wit ≥ 0 ∀(i, t) ∈ S× T (18)

The rationale behind the constraints (17)-(18) on the weights
is to promote the property that for all t, whenever a weight
wiot is relatively large for some io, the other weights wit,
i 6= io, should be made somewhat small. The underlying goal
which is sought through this property is to favor the desirable
scenario that only one subsystem is activated at each time t
as in (14).

The next proposition states that problem (16)-(18) is
equivalent to minimizing the sum over t of the geometric
means of the ξt(pi, ε) taken along i.

Proposition 1: The optimal value of problem (16) is equal
to

min
P

F ∗(P, ε) (19)

where

F ∗(P, ε) = s

N∑
t=1

( s∏
j=1

ξt(pj , ε)
)1/s

. (20)

Proof: According to a general result in optimization
theory [14, p. 28], minimizing jointly with respect to (P,W )
is equivalent to minimizing first with respect to W and then
with respect to P . Hence we can write

inf
P,W

F (P,W, ε) = inf
P
H(P, ε)

where

H(P, ε) = inf
W

{
F (P,W, ε) : subj. to (17)− (18)

}
. (21)

We just need now to show that H = F ∗. For this purpose,
consider a weighting matrix W ∗ defined by

w∗it =

(∏s
j=1 ξt(pj , ε)

)1/s
ξt(pi, ε)

(22)

Then W ∗ satisfies the constraints (17)-(18). By def-
inition of H(P, ε) in (21), it therefore follows that
H(P, ε) ≤ F (P,W ∗, ε). Moreover, it can be checked that
F (P,W ∗, ε) = F ∗(P, ε) and so, H(P, ε) ≤ F ∗(P, ε). On
the other hand, by applying the arithmetic-geometric mean
inequality [5] and invoking the constraints on the weighting
matrix, we can write( s∏

i=1

ξt(pi, ε)
)1/s

=
( s∏
i=1

witξt(pi, ε)
)1/s

≤ 1

s

s∑
i=1

witξt(pi, ε).

It follows, by summing over T, that for any feasible W with
respect to the constraints (17)-(18), it holds that

F ∗(P, ε) ≤ F (P,W, ε),

which implies that F ∗(P, ε) ≤ infW F (P,W, ε) = H(P, ε).
In conclusion F ∗ = H and the result is proved.
What we have shown is that minimizing F (P,W, ε) for
(P,W ) under the constraints (17)-(18) is equivalent to
minimizing F ∗(P, ε) = F (P,W ∗, ε) for P (see Eq. (20)).
For numerical reasons however, we will minimize instead a
modified version F (P, W̃ ∗, ε), where W̃ ∗ is a normalized
version of W ∗ defined by w̃∗it = w∗it/

∑s
j=1 w

∗
jt. We will

formally denote with ρ the normalization operation, W̃ ∗ =
ρ(W ∗). Indeed, simple algebraic calculations show that

F (P, W̃ ∗, ε) =

N∑
t=1

(1

s

s∑
i=1

1

ξt(pi, ε)

)−1
(23)

that is, F (P, W̃ ∗, ε) is the sum over T of the harmonic means
of the {ξt(pi, ε), i = 1, . . . , s}.
As it turns out, the proposed estimation method attempts
to minimize the sum of harmonic means of the errors



calculated over all the set of submodels. This makes
sense since one can view the harmonic mean of the set
of points {ξt(pi, ε), i = 1, . . . , s} as an approximation of
mini∈S ξt(pi, ε). By the Harmonic-Arithmetic-Geometric in-
equality it is even the best approximation of the minimum
among the standard means.

Remark 1: The problem of identifying switched linear
systems can be viewed as a special case of the current frame-
work. In this case, the parameters ci do not exist so that the
vector ξt(pi, 0) in (12) reduces to yt−θ>i x̃t. More precisely,
the last entries of the θi’s and of the x̃t can be dropped
hence leading to ξt(pi, ε) =

∣∣yt − θ>i xt∣∣ + ε. Applying the
current framework to switched linear systems with this cost
function stands as an interesting alternative to the method
developed in [1] where the submodels were extracted one
after another by exploiting the sparsity-inducing properties
of the `1 norm. The framework of this paper exploits the
same robustness properties more efficiently by estimating all
submodels simultaneously.

IV. THE ESTIMATION ALGORITHM

By summarizing the discussion of Section III-A, we can
derive a concrete estimation algorithm for the PWA system
parameters. For this purpose, we introduce the map r :
Rn×s → R+

r(P ) = max
t∈T

min
i∈S

ξt(pi, 0)

with ξt(pi, 0) defined as in (12) with ε = 0.

Algorithm. Let ε0 = 1 and let the weights w0
it be some

distinct positive numbers and set W̃ 0 = ρ(W 0). For all
iteration counter k ≥ 0 generate the sequence of estimates
as follows:
If εk > 0, then

P k+1 ∈ arg min
P∈Rn×s

F (P, W̃ k, εk) (24)

εk+1 = min
(
εk, r(P k+1)

)
(25)

W k+1 ∈ arg min
W∈Rs×N

{
F (P k+1,W, εk+1) :

s∏
i=1

wit = 1 ∀t ∈ T
}

(26)

W̃ k+1 = ρ(W k+1) = W k+1
[

diag((W k+1)>1s)
]−1

(27)

else, if εk = 0, then stop the algorithm, i.e., set

P j = P k ∀ j ≥ k (28)

In (27), the notation 1s refers to a s-dimensional vector filled
with ones. As already discussed earlier in this paper, the
entries of the matrix W k+1 in (26) have the expression given
in (22) with P replaced by P k+1. It follows, through the
normalization ρ, that the entries of W̃ k+1 take the expression

W̃ k+1
it =

1

ξt(p
k+1
i , ε)

( s∑
j=1

1

ξt(p
k+1
j , ε)

)−1
where the pk+1

j refer to the columns of P k+1. Note that
(25)-(27) admit solutions which either come in closed-form

or are easy to compute. Hence the only step of the algorithm
that requires numerical solving is the subproblem (24). It
can however be observed that this last optimization problem
is convex and can therefore be solved efficiently. Overall
the proposed algorithm has a polynomial complexity in the
dimensions of the variables.

V. NUMERICAL EXAMPLE

To illustrate numerically the developments of this paper,
we consider a nonlinear system defined by

yt = sin(ut) + cos(ut−1) + et (29)

where ut ∈ [−π, π]. Hence xt = [ut ut−1]> is defined
on the compact set X = [−π, π]× [−π, π]. {et} represents
a noise sequence. To evaluate the fit between the measured
output and that of the model, we use the measure [10]

FIT =

[
1−

‖ŷ − y‖2
‖y − ȳ1N‖2

]
× 100%

where y is a vector containing the output measurements, ŷ is
a vector containing the model output, ȳ is the average of the
measurements and 1N is an N -dimensional vector of ones.

We apply the estimation method described in the paper
to the identification of a piecewise affine model for the
nonlinear system (29).

A. Approximation capacity of the PWA model

The goal of our first experiment is to test the theoretical
approximation capacity of the PWA model (3) (with Voronoi
type of partition) for nonlinear systems. For this purpose,
we consider a noise-free scenario and apply the algorithm
of Section IV on N = 4000 data points which result from
a random sampling of the input signal. The result depicted
in Figure 2 illustrates graphically the approximation power
of PWA models with Voronoi-type partition. Moreover, as
shown by Figure 3 (noisy case), the approximation error
gets logically smaller when the number of affine submodels
increases. It can be observed that the approximation error
tends to decrease very rapidly when s is small but beyond a
certain threshold, the improvement obtained by adding more
submodels becomes smaller and smaller.

B. Identification from noisy data

Now we illustrate the sensitivity of the estimation method
to measurement noise. The sequence {et} in (29) is taken to
be a zero-mean white Gaussian noise whose relative power
(with respect to the noise-free output) is expressed in terms
of Signal to Noise Ratio (SNR). Five levels of noise are
considered (see Table I). For each level of noise, a Monte-
Carlo simulation of size 100 is carried out. For each of the
100 realizations of input-output data, we estimate a PWA
model with s = 10 submodels. The resulting average FITs
are collected in Table I in function of the relative power
of the noise. What the results reveal is that the proposed
identification method is robust to noise since the quality
of the estimation decreases smoothly in proportion of the
amount of noise. Note however that even in the case where



Fig. 2: Graphical comparison of the true nonlinear function defined
in (29) and its PWA approximation with 20 affine submodels in a
noise-free scenario. The operating points ci’s are materialized by
red dots. The Voronoi-type partition of the regression space is drawn
in blue line on x-y plane. The true nonlinear system is represented
by the red surface while the output of the PWA model is plotted in
blue. Design parameters (see Eqs (12)-(13)): λ1 = 1, λ2 = 0.5.
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Fig. 3: Evolution of the FIT as a function of the number of affine
submodels. Data characteristics: N = 4000, SNR= 30 dB. Design
parameters of the algorithm: λ1 = 1, λ2 = 0.5.

there is almost no noise, the FIT does not go higher than
85%. This is due to the fundamental bias induced by the
approximation of the nonlinear system (29) with a PWA
model containing 10 submodels. To reduce that bias, one
needs to increase the number of submodels (i.e., to enhance
the modeling capacity of the model) as shown in Figure 3
where 40 submodels were used to obtain a FIT of about 92%
in the presence of moderate noise.

VI. CONCLUSION

In this paper we have discussed an estimation framework
for computing PWA models of nonlinear systems. Although
the discussion mostly focuses on PWA models, it applies
straightforwardly to switched systems as well. The pro-

SNR 5 dB 15 dB 20 dB 30 dB 100 dB

FIT (%) 45.38 77.34 82.41 84.99 85.28

TABLE I: Average FITs obtained for different levels of the noise
on a Monte-Carlo simulation of size 100. For each experiment,
N = 2000 input-output data are generated: estimation is done with
60% of the data and the validation FIT is computed on the whole
dataset. Design parameters of the algorithm: λ1 = 1, λ2 = 0.5.

posed framework relies on the optimization of a sum-of-
norms based objective function which is parameterized by
adjustable weighting functions. Optimizing this cost under
some constraints on the weights yields in fact the sum of the
harmonic means of the errors related to each region of the
partition and its associated affine submodel. The simulation
results show a good capacity of the algorithm to estimate
efficiently PWA models with a large number of submodels
and good robustness properties to noise. Future work will
include further evaluation of the performance of the proposed
method through e.g., convergence analysis and a thorough
comparison with other methods.
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