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CORES OF ARIKI-KOIKE ALGEBRAS

NICOLAS JACON AND CEDRIC LECOUVEY

ABsTrRACT. We study a natural generalization of the notion of cores for l-partitions attached with a multi-
charge s € Z!: the (e,s)-cores. We rely them both to the combinatorics and the notion of weight defined by
Fayers. Next we study applications in the context of the block theory for Ariki-Koike algebras.

1. INTRODUCTION

Let F be a field of characteristic p. Let | and n be positive integers and s := (sq,...,5) € Z!. Fix
n € F*. The Ariki-Koike algebra FHS (n) associated with this datum is the unital associative F-algebra with
a presentation by:

e generators: 1y, 11,..., Th—1,
e relations:

ToThToTy = ThToT1 To,

T.T1T, =T TiTitr (i =1,...,n —2),
TT; =T;T; (|j — i > 1),

(To —n** )(To —n**)...(To — n™) =0,
(T, =) (T;+1)=0(i=1,...,n—1).

Let e > 2 be minimal such that 14+ 7+ ...+ 771 =0 in F so that e € {2,3,...} U{cc} and e = p if and
only if n = 1.

The Ariki-Koike algebra , also called Hecke algebra of the complex reflection group G(I,1,n), has been
intensively studied during the last past decades. It is in relation with various important objects (e.g. rational
Cherednik algebras, quantum groups, finite reductive groups etc.) and has a deep representation theory.
Recently, the interest on these algebras have even grew up thanks to the introduction of the quiver Hecke
algebras which has strengthened their relations with the theory of quantum groups and has allowed the study
of their graded representation theory.

When | = 1, the Ariki-Koike algebra is nothing but the Hecke algebra of the symmetric group. Whenn =1
(and thus e = p), it is the group algebra of the symmetric group over F. More generally, in the case where
e is a prime number (and even in the case where p = 0), the representation theory of this algebra presents
strong analogies with the modular representation theory of the symmetric groups (in characteristic e): both
structures admit a class of remarkable finite dimensional modules indexed by the set of partitions of n: the
Specht modules. The simple modules are indexed by the set of e-regular partitions and the decomposition
matrices, which control their representation theories, can be connected using an adjustment matrix. Using
these decomposition matrices, one can obtain a natural partition of the set of Specht modules into smaller
subsets called blocks. To each block, one can also associate another notion: the weight. Roughly speaking,
this positive integer measures how “complicated” this block is. Remarkably, one can describe the blocks and
the weights quite easily using well known combinatorial notions. In particular, the most “simple” blocks, the
blocks with weight 0, can be described explicitly: they are singleton consisting of a unique Specht module
labeled by an e-core partition. Moreover, any block with a given weight w may be obtained from this simple
blocks by adding w times e-hooks to the given e-core partition. Importantly, all these properties still make
sense when e is an arbitrary postive integer (strictly greater than 1) on the side of the Hecke algebra.
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When [ > 1, one can also define analogues of Specht modules. They are now indexed by the set of
[-partitions of n. The simple modules are then naturally indexed by certains generalizations of e-regular
partitions which depend on s: the Uglov [-partitions. A notion of weight has also been provided by Fayers
in [1] which generalizes the case [ = 1. Thanks to this definition, many properties known in the case [ = 1
have been extended to the general case [ € N. In particular in [8], Lyle and Mathas have given a necessary
and sufficient condition for two Specht modules for being in the same block. However, the generalization of
e-core partitions and a generalization of the above process of adding e-hooks were missing in this picture
(even if, as explained in §4.1, a non explicit definition of core multipartitions has nevertheless been given by
Fayers in [3]).

The aim of this paper is to study in details the (e,s)-core [-partitions, as introduced in a recent paper
by the authors [5]. We show that this notion gives the right generalization of the e-core partitions: they
correspond to the elements with weight 0 (with respect to Fayers definition of weight), and all I-partitions
with a given weight may be obtained from them by adding analogues of e-hooks. As a consequence, we obtain
a direct and simple generalization of what happen in the case | = 1. The only difference with this latter
case is that, in our definition, the core of an [-partition associated with a multicharge is also a multipartition
associated with a multicharge but, this last multicharge may be different from the initial one. To do this,
the strategy is to show that essentially all the theory can be derived from the case [ = 1 by introducing a
weight-preserving map, inspired by the work of Uglov, from the set of (e, s)-core I-partitions to the set of
e-core partitions.

The paper will be organized as follows. We first recall the definition of our main object of study: the
(e,s)-cores and provide some of their combinatorial properties. The third part studies the weights of the
[-partitions as defined by Fayers. We show how this notion can be interpreted in the theory of Fock spaces
and computed via a combinatorial procedure detailled in our last section. This section will also explore some
consequences of our results and will explain how our approach can simplify the block theory for Ariki-Koike
algebras.

2. GENERALIZED CORES AND ABACI

In this section, after recalling certain classical combinatorial definitions regarding the partitions, we in-
troduce the notion of (e, s)-core multipartition. Then we use abaci to associate to each (e, s)-core a certain
core partition. This section will be purely combinatorial.

2.1. Partitions and multipartitions. A partition is a nonincreasing sequence A = (A1, -+, Ap,) of non-
negative integers. One can assume this sequence is infinite by adding parts equal to zero. The rank of the
partition is by definition the number [A] = >, .., Ai. We say that X is a partition of n. By convention,
the unique partition of 0 is the empty partition 0.

More generally, for | € Z~q, an [-partition X of n is a sequence of I partitions (A!,..., A!) such that the
sum of the ranks of the A/ is n. The number n is then called the rank of X and it is denoted by |A|. The set
of l-partitions is denoted by II'. The nodes of A are by definition the elements of the Young diagram of X:

A= {(a,be) |a>1, ce{l,... .0}, 1<b< A} C Zogx Zog x {1,...,1}

(in the case of partition, the third coordinate which is always equal to 1 will be sometimes omitted.) Each
l-partition will be identified with its Young diagram. We say that a node of X is removable when one can
remove it from the Young diagram of A and still get the Young diagram of an [-partition p. In this case,
this node is called an addable node for p.

Example 2.1. For [ = 2, the 2-partition ((4), (2,1)) of 7 is identified with its Young diagram:

o)

Now let us come back to the case I = 1 (we refer to [9] for details). Let e € Nsq. A rim e-hook (or simply
an e-hook) of a partition A is a connected subset of the rim of A with exactly e nodes and which can be
removed from A to obtain another partition y as in the following example.
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Example 2.2. Let A := (5,4,2,1,1) and e = 3. The Young diagram of X is:

x [ x]

‘XXX

Starting from above, we can successively remove three rim 3-hooks (indicated with the symbol x above)

By definition an e-core is a partition which does not admit any rim e-hook. The set of e-core partitions is
denoted by €(e). If X is an arbitrary partition, the e-weight we(A) of X is the number of consecutive e-hooks
which can be removed from A before obtaining an e-core, which is then denoted by Core.(A). These notions
are well-defined since both we(A) and Core.(\) do not depend on the order in which the rim e-hooks are
removed from A.

Example 2.3. Keeping the above example, we obtain w3(A) = 3 and Cores(A\) = (3,1).

Let s = (s1,...,5/) € Z'. This is called a multicharge (a charge if [ = 1). For an [-partition A =
(AL, ..., Al), one can associate to each node (a, b, c) of the Young diagram its residue b—a + s. + €Z € Z/eZ.
Such a residue will be identified with its representant in {0,...,e — 1}. If i € Z/eZ, we denote by ¢;*(X)
the number of nodes with residue 7 in the I-partition. We moreover denote Ce s(A) := (co(A), ..., ce—1(N)).

Example 2.4. For | = 2, s = (0,1) and e = 3 the residues of the nodes of the 2-partition ((4),(2,1)) of 7
are given as follows:

1]2
(O )

Here we have Ces((4), (2,1)) = (3,2,2).

2.2. Abaci. The notion of abacus is convenient to read the weight of a partition and to obtain its e-core.
Let s € Z. An abacus is a subset A of Z such that —i € A and 7 ¢ A for all 7 large enough. In a less formal
way, each ¢ € A corresponds to the position of a black bead on the horizontal abacus which is full of black
beads on the left and empty on the right. One can associate to A and s € Z an abacus Lg()\) such that
k € A if and only if there exists j € N such that k = A; — j + s (Note that A is assumed to have an infinite
number of zero parts). Given an abacus L, one can easily find the unique partition A and the integer s € Z
such that Ls(\) = L. Indeed, each part corresponds to a black bead of the abacus with length given by the
number of empty position at its left, the integer s is equal to 4+ 1 where x is the position of the rightmost
black bead in the abacus obtained after sliding all the black beads as much as possible at the right in L.

Example 2.5. Let us take the partition X := (5,4,2,1,1) and s = 0. The associated abacus Lo(\) may be
represented as follows, where the positions at the right of the dashed vertical line are labelled by the non
negative integers:

......O..O.iO0.0.00000

To Ls(\), one can associate an e-tuple of abacus £¢(\) := (LY,...,L¢"!). This is done as follows: for
each black bead in position k in Ls()), we write k = g.e + r where ¢ € Z and r € {0,...,e — 1} and we set
a black bead in position ¢ of the abacus L,. To picture this, write first the abacus Ly, then immediately
above the abacus Ly and so on, so that all the beads associated with the entry 0 of each abacus appear in
the same vertical line.

Example 2.6. For the partition (5.4.2.1.1) and e = 3, we get the following:

..........i.OOOOOOOOOO
0000000000 0O0000ODODODOOOO
00000000000 0CO0OOOLOOOLOOO
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For each runner, sliding one black bead from right to left is equivalent to remove an e-rim hook in the
associated partition. As a consequence, after performing this procedure as much as possible, we obtain an
e-abacus which can be transformed (by reversing the previous procedure) into an abacus representing the
e-core of A\. The number of moves of the black beads gives the e-weight of A.

Example 2.7. If we do the above procedure for our example, we obtain:

..........i.OOOOOOOOOO
0000000000 00O00ODODODOOOO
00000000000 0CO0OOOLOOOLOOO

The associated abacus is

.........O.iO0.0000000

whose associated partition is (3,1) and we have w3(\) = 3 as in Example 2.3.

Last, we will need an additional notation. For two abaci L and L', we write L C L’ if we have the following
property: for each black bead in position 7 of the abacus L, there is a black bead in position 7 in L’.

Let now consider s € Z! and consider an [-tuple of abaci (Ls,,...,Ls,). This l-abacus is, as above,
conveniently pictured as follow: take first the abacus Ls, and then juste above the abacus L, and so on, so
that all the beads in position 0 of each abacus appear in the same vertical line.

Definition 2.8. Under the above notations, we say that the I-tuple of abaci (Ls,, ..., Lg,) is (e, s)-complete
if:
(1) I=1and Lg, (') C Ls, ye(\Y),
(2) orl>1and
Loy (AY) C Ley(N?) C ... C Ly, (N € Ly, 1e(A).
To amulticharge s € Z! and an [-partition ], is associated its I-abacus defined as the I-tuple (Ls, (A!), ..., L, (A))).

It can be pictured exactly as above and will be called the (e, s)-abacus of A. In fact, it does not depends on
e but we have chosen here a notation similar to that for the (e,s)-core below.

Example 2.9. Let s = (0,3) and e = 4. We consider the 2-partition ((4,1,1),(1,1)). Its associated
(e,s)-abacus (Lg(4.1.1), L1(1.1)) can be represented as follows:

000000000000 000000000
00000000 0000 0OOOMOOOLOOO

2.3. The notion of (e,s)-cores. The notion of (e, s)-core has been introduced in [5, Def. 5.7] (the definition
below is slightly different but it is an easy exercice to show the equivalence). This is a generalization of the
notion of e-core partitions in the context of [-partitions associated with a multicharge. First let us introduce
the notion of reduced (e, s)-core:

Definition 2.10. Assume that s € Z' then we say that the [-partition X is a reduced (e, s)-core if is (e, s)-
abacus (Lg, (M), ..., Ls,(\)) is (e, s)-complete.

To give a first study of this notion, let us introduce the following two sets:
A= {(s1,...,8) €ZL VG, 5) €{1,... 1}, i<j, 0<s;—s; <e},
AL = {(s1,...,8) € Z" | V(i,j) € {1,...,1}, i< j, 0 <s;—s; <e}.
Proposition 2.11. Assume that s € Z! then if X is a reduced (e,s)-core, we have s € Zle.

Proof. Assume that (Lg, ('), ..., Ls,(A)) is (e, s)-complete then for each i = 1,...,1—2, we have L, (\') C
LSHl(/\”l) which implies that s;+1 > s;. We also have Ly, C Lg, 4. and this implies that s; < s; +e. This

concludes the proof.
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We now give the definition of our main object of interest. Let s € Z' and e € Nyg, denote by § :=
(sh,...,8)) € {0,...,e — 1}! the multicharge such that s, = s;(mod e). Then we define o5 € &, to be the
unique permutation as follows.

! ! !
Sa’s(l) S 805(2) S e S Sa’s(l)

with the additional property that if s, ;) = 84, (i41) for i € {1,...,1 — 1} then o4(i) < os(i +1). We set:
(1) ’é—’gs = (S;s(l)7 525(2), ey S;s(l))
We then clearly have 575 € AL.

Definition 2.12. Let s € Z' we say that the Il-partition A is a (e,s)-core if the [-partition A7 :=
(A7) A7) is a reduced (e,5%)-core. We denote by €!(e, s) the set of all (e, s)-cores.

As already noted in the previous paragraph, for [ = 1, the (e, s)-core are exactly the e-cores. Thus, the
set €1(e, s) does not depend on s € Z and is exactly given by the set of e-cores €(e). One can also easily see
that if X is a (e, s)-core, each component M\ is an e-core.

Remark 2.13. Assume that s € ﬂi and there exists ¢ € {1,...,] — 1} such that s; = s;41. Thenif Aisa
reduced (e, s)-core we must have \' = X1,

We need to check that the reduced (e,s)-cores are always (e,s)-cores. This is clear if s € AL but
not if s € .7\2 \ AL. So let us assume that s € Zle but s ¢ AL and let A be a reduced (e,s)-core, this

implies that there exists j € {2,...,l} such that s; = s;41 = ... = s; = s1 + e. Then the abacus
(Ls;—e(A1), ..o, Loy—e(A1), Lsy (AY), ..., Ly, (A1) is (e, (sj —€,..., 81 — €,51,...,8j—1))-complete. By the
above remark, we thus obtain M = ... = A = AL, We so conclude that in the case where s € Zle, the

(e,s)-cores are exactly the reduced (e, s)-cores.

Remark 2.14. The above definition can be formulated in terms of S-numbers and symbols (see [5, §5.1]),
which gives an equivalent definition of the set of (e, s)-cores. We get that A is a (e, s)-core if and only if

e forallc=1,...,1—1 and j € Zsy, there exists ¢ € Z~( such that

os(c . os(c+1 .
)\j ()_.]+S:Ts(c):/\z (+)—'L+S:75(c+1)7

e for all j € Z~¢, there exists i € Z~¢ such that

)\a's(l)

J

—J+s, 0= A7 gy s, (1) +e

Remark 2.15. As already noticed, the irreducible representations of the Ariki-Koike algebras associated with
the datum (e, s) are naturally labeled by a distinguished set of I-partitions called Uglov l-partitions. In the
particular case where s € AL, these [-partitions are called FLOTW I-partitions and it is easy to check that
any (e,s)-core is then a FLOTW [-partition in the sense of [4, Th. 5.8.5]. Now for an arbitrary choice of
s, there is an explicit bijection between the set of FLOTW partitions associated with (e,§7¢) and the set
of Uglov [-partitions associated with (e,s) (this bijection is described in [6]). It is easy to see that this

bijection restricted to the set of (e, s)-cores sends A to A% ", This implies that (e, s)-cores are always Uglov
l-partitions. This fact has a representation theoretic meaning as we will see in the following.

Example 2.16. Let [ = 2, e = 3 and s = (0, 1). Consider the 2-partition ((1,1),(3,1,1)). With the above
notation, we have o = Id and s’ = s = ss. The associated 2-abacus is

.........OOEOO0.000000
000000000 00O OOOOOOOLOO

and we see that we here have a (e, s)-core. As a consequence, taking s = (10,0), we have that the 2-partition
((3,1,1),(1,1)) is a (e, s)-core.
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2.4. Uglov map. Let s € ﬁi We now show how to associate to a reduced (e,s)-core A a certain e-core
partition that we denote by 7. s(X) and conversely. This construction uses a map defined by Uglov [10, §4.1]
(see also [11, §3.1] ) which associates to any [-partition associated to a multicharge, a certain partition. We
will be interested in the restriction of this map to the set of reduced (e, s)-cores.

Let A be an [-partition. We consider the l-abacus (L, (A\!), ..., L, (A\!)). Then we construct an associated
1-abacus as follows. For each ¢ =1,...,[ and for each black bead in position &k of the abacus Ls,, we write

k=qge+r

with ¢ € Z and r € {0,...,e —1}. Then we set a black bead in our new abacus in position (I — ¢)e + gel +r.
We then define 7. () to be the partition associated with this resulting abacus. We obtain a map

Tes ! mt — 1t

which will be called the Uglov map. Let us illustrate the computation of the Uglov map by two following
examples.

Example 2.17. We resume the example 2.9. The above procedure gives the following abacus:

....O..i.O..OO0.000000
We thus get 7. s(A) = (5,2,2,1,1,1).

Example 2.18. Let s = (0,1,2) and e = 4. We consider the 3-partition ((2), (1), (1,1)), the associated
3-abacus (Lo(2), L1(1), L2(1,1)) can be written as:

000000000 O®OO0O®OOOOOOO
000000000 O®OO®OOOOOOIOO
0000000000000 OOOOOIOO

The above procedure gives the following abacus:

.......OEO..O0.000.000
We thus get 7. s(A) = (7,4,2,2).

The map 7. s is not surjective in general but it is clearly injective.

Proposition 2.19. Lets € ﬁle, then 7.,s(0) is an e-core.

Proof. This is clear by the characterization of e-cores with abaci in the last section.

Proposition 2.20. The map

h {(As)[seA, Aeles) - {(\s)|s€eZ, AeC ()}
(A;8) = (Te,s(N), Zlgigl 5i)

is bijective.

Proof. First, the map is well defined. Indeed, assume that A € ¢!(e,s). From Definition 2.12 (2), we get that
the partition 7. ¢(A) satisfies (1) of Definition 2.8. This implies that it is an e-core as desired. Now let us
prove that the map is bijective. Let s € Z and X € €1(e). Then we have an associated (e, s)-abacus associated
with this datum and by construction, there exists a unique A € II' and s € ﬁle such that 7. s(A) = A and
> 1<i<1 8i = s. It thus suffices to prove that A € ¢!(e,s). But it follows from the fact that its (e,s)-abacus

is complete. Indeed, we obtain that X is a reduced (e, s)-core and thus a (e, s)-core.
O

Remark 2.21. If we consider s ¢ Zi and a (e,s)-core A then we have 7. s(A) ¢ €!(e) in general.

We now give two important results showing remarkable links between A and 7. s(X). The first one compare
the number of nodes in the two Young diagrams with a given residue.
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Proposition 2.22. Let A € II' and s € ﬁi Set s = 219'51 si. Forall1=0,1,...,e—1, we have:

e (res(N) = i (e (0)) = ¢75(N) + L5 *(N)

Proof. We will argue by induction on the rank of A. If this rank is 0 then A is the empty l-partition and

the result is trivial. Assume now that X is an [-partition of rank n > 0. Let p be an [-partition of rank

n — 1 which is obtained from A by removing a removable i-node for some i € Z/eZ. Assume first that

i # 0(mod e). Then it is easy to see that 7. s(p) is obtained from 7. s(A) by removing a removable i-node.
(e,s) (e,s)

As a consequence, we have ¢, (7. (X)) = ¢, (Te,s(p)) and ¢;°(X) = ¢;°(p) if 7 is different from 7 modulo

eZ. Thus, we get cl(-e’s)(Te,s()\)) = cge’s) (Te,s(p)) + 1 and (X)) = ¢;*(p) + 1. So the formula is still true by
induction.

Assume now that i = O(mod e). In this case, we still have c¢;°(A) = ¢;%(p) if j # 0 and cg°(A) =
cg®(p) + 1. Now, we need to see how 7. s(A) is obtained from 7. (). The node that we add to p to obtain
A corresponds to a black bead in the abacus of 7. s(A) and to another in the abacus of 7. s(pt). Let us denote
by m the number of black beads between theses two positions (not including these two) in the abacus (the
number is the same in both abaci). Then 7. s(A) is obtained by removing a part of length z > 0 ending by a
node with residue e — 1, adding one node to the m parts above and adding one part of length x +l.e —m+1
which ends with a node with residue 0. This thus consists in « 4+ l.e + 1 consecutive nodes. More precisely,
to obtain 7, s(A) from 7. s(p) we add I 4 1 nodes with residue 0, and [ nodes of residue j for all j # 0. Thus
we obtain

A (e s(N) = € (res () +1
if i £ 0 and
S res(N) = e (res(p) + 141
Now we have by induction for all 7 € {0,...,e —1}:

A (Tes (1)) = €97 (1e,5(0)) = 55 (p) + 1.65° ()

which permits to conclude. O
Recall the notation C. s(A) introduced in Subsection 2.1 for the multiset of residues of a multipartition.

Corollary 2.23. Let A€ II!', p c II' and s € Zle. We have
Ces(Tes(A) = Ces(Tes(p)) = Ces(A) = Ces(pt)

Proof. This directly follows from the previous proposition. O

Last, we will need a useful property which permits to compare the number of removable and addable
i-nodes of A and 7. g(A). To do this, we denote by MZ(A) the number of addable nodes of A minus the
number of removable nodes of A.

Proposition 2.24. For all A€ 1!, s € Zle and i € Z/eZ, we have:

s — M (res(A)) if i #0,
MEA) _{ M (1es(N) +1-1 ifi=0.

Proof. First, consider a partition A and a charge s and write its associated 1-abacus. Let i € Z/eZ. Let
2 € Z be such that z = i(mod e). Note that each black bead in the abacus corresponds to a part A; of the
partition A (the position of this bead being given by A\; — i + s).

e If we have a black bead in position x and a black bead in position x — 1, this does not correspond
to any removable nor addable i-node.
e If we have a black bead in position x and no black bead in position  — 1, this does correspond to
one removable i-node.
e If we have no black bead in position x and a black bead in position z — 1, this does correspond to
one addable i-node.
7



Of course no black bead in position x and no black bead in position z — 1 give no associated addable or
removable i-node.

Let us fix 7 << 0 and let us now consider all the black beads in position greater (or equal) than r.e in the
abacus, for each i € Z/eZ, write BY (A, s) the number of such black beads in position z in the abacus with
2 = i(mod e). This number is finite by assumption. The above discussion shows that:

s()\) = B i (A\,s) = BI(\s) ifi#0
Mim_{ Bl (As)—=BI(As)+1 ifi=0

(the last equality comes from the fact that we have a black bead in position r.e — 1).

Now let (X,s) € II' x Z!. We fix again » << 0, by the discussion above, for each ¢ € {1,...,1} and
i € Z/eZ, we have:
B;ﬁl(Asirs@,s’O_s - BZT()\SQS<c),s;S(C)) ifi#0

Mf;s(c) (AS/US(C)) _ 1 (c)) 3
i B (N7, 50 (o) = BI(A '@, 50 () +1 ifi=0

Now by construction, we obtain for all i € Z/eZ

As in addition, we also have:

MEN) = 3 MO (Ns),
c=1,...,1

we can conclude. [l

Example 2.25. Let us illustrate the proof with the 2-partition ((4,1,1),(1,1)) and the multicharge (0, 3)
of Example 2.17 (here e = 4). The Young diagram with its residues is:

23]
=

We have seen that 7.5((4,1,1),(1,1)) = (5,2,2,1,1,1) with s = 0+ 3 = 3. Thus the associated Young
diagram with residues is:

EEE

0[1]2[3]

w

On the one hand, we have Méo’g)((él, 1,1),(1,1)) = 3 and M3(5,2,2,1,1,1) = 2. On the other hand, we
get M9 ((4,1,1),(1,1)) = M3(5,2,2,1,1,1) = 2, M®P((4,1,1),(1,1)) = M3(5,2,2,1,1,1) = —2 and
MO ((4,1,1),(1,1)) = M3(5,2,2,1,1,1) = —1.

3. CORES AND WEIGHTS FOR ARIKI-KOIKE ALGEBRAS

In this part, we review the notion of weight for Ariki-Koike algebras as introduced by Fayers in [1]. To
avoid a possible confusion with the notion of weight for the type A affine Kac-Moody algebra, Fayers’s
weights will be refeered as core-weights in the sequel. We will notably interpret them in the representation
theory of the type A affine Kac-Moody algebra.
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3.1. Block weights for Ariki-Koike algebras and relations with Fock spaces. The block weight of
an [-partition for a given multicharge is defined in [1] as follows.

Definition 3.1. Let s € Z!, e € Z~q and X € II', then the block (e, s)-weight (or simply block weight) of A
is

PenN = 3 ) -5 3 (@) S )

1<i<l i€Z/ €.
Remark 3.2. From this definition, it is immediate to see that, under the notation of (1), we have for all
Aelll,
P(e,s) ()‘) = p(e,gﬁs)(xgs)

We can thus again restrict ourselves to the case s € AL.

This notion of weight has a natural interpretation in the representation theory of Kac-Moody algebras

that we shall now make explicit. Consider the Kac-Moody algebra g of type Agl_)l. Let b be a Q-vector space
with basis {ho, ..., he—1,D}. Let {Ag,...,Ae—1,0} be the dual basis with respect to the pairing:

<'7->:h* xh—Q
defined by:
<Ai,hj> = 61']‘, <A“D> = <5, hl> = O, <6,D> =1 (O < i,j <e— 1)
The A; with 0 < i < e — 1} are called the fundamental weights. The simple roots c; with 1 <1i < e — 1 are
the elements of h* defined by:
o = =N+ 2N — Ay + 6500
where the subscript have to be understood modulo e. For 0 <4,j < e—1, we denote by a;; the coefficient of
A; in a;. Then the matrix A := (ai;)o<i j<e—1 is the Cartan matriz of 5A[8. As (Ao, ap, ..., e—1) is a basis
of h*, one can define a symmetric non degenerate bilinear form on h* by setting:
(04, 05) = aij, (Mo, 0q) =0;0,(Ao,Ao) =0 (0<14,j <e—1}.

We then derive
(Aiyaj) =0ij5, (0,04) =0 (0<14,j<e—1),
where § = ag + ... + ae—1 is the null root. We have (6,5) =0 and (§,A;) =1forall0 <i<e—1.
Let now consider v an indeterminate and write U, (s?[e) for the quantum affine algebra of type Agl_)l. This

is an algebra over Q(g) with generators e;, fi, t=* (0 <4 < e — 1) and 8, the relations will be omitted (see
[4, Def. 6.1.3]). Fix s € Z! and consider the associated Fock space

Fe= P QA
Aellt

with basis the [-partitions. There is a simple U, (sl.)-action on Fg (depending on s) which endows it with

the structure of an integrable U, (sl.)-module (see [10, Th. 2.1]). In particular, this means that Fs is the
direct sum of its weight subspaces. The elements of the basis A € II' are weight vectors whose weights can
easily be calculated as follows:

a®*(A) = —Asd+ Ag, + ...+ Ay, — Z 5 (N,

K2

where Ag :=Ag, +... + A;, and

1 2 52
b=y 2 (E s - -4).
1<i<l
with s} is the representant modulo e of s; in { .,e—1}. Then we set:

0.1,..
(@5 (0).0550) | (Ae)
9 ’ H S” - 9 ’

A1 =
9



so that 1
||@H(e’s) = 5(‘As5+A57_As5+AS)
= —Adl+ ||As]].

Example 3.3. For [ =1 and s = 0 we have A, = 0 and ||A,|| = 0 so that ||@]|(=? = 0.

There is easy way to calculate ||A||(®). The proof is in fact contained in [12, Lemme 4.13] and is similar
to [7, Prop 8.1]. We give it below for the convenience of the reader.

Proposition 3.4. Let s € Z! and let X € TI'. Assume that p € II' is such that one can add an addable
i-node to p to obtain A. Then we have

)€ = AN = M () -1
where M2 (p) is the number of addable nodes of p minus the number of removable nodes of .

Proof. Under the aboce notations, we have that:
=) = IX[[ @ = (1/2) (a3 (p), a3 (p) = (a3 (p) = i, a®*(p) — i)
(1/2) (2(a*=(p), o) — (0, i)
= (a0~ 1
Now, by the previous definition of the weight a®%, we have a®%(u) = Zogige—l a;N; + dd if and only if

d.p0 =dp and t;pu = v* . As by [10, Th. 2.1], it is known that ¢;u = o™i ) 1y we can conclude. O
It is now easy to compute the block weight p. )
Proposition 3.5. Lets € Z' and let X\ € TI'. We have
I = (18] = pie.g) (N
Proof. We can write:

(@°3(A),a%%(A)) = (“Ad+As— Y PN, A+ A~ D (M)

0<i<e—1 0<i<e—1
= 20 -2 > N As @)+ D NS (N (i)
0<i<e—1 0<i,j<e—1
= 20 =2 ) N+ D (=N (A) 2675 (A = 5 (A ()
1<i<l 0<i,j<e—1
= 200)“Y =2 > TN+ DY (PN = (V)
1<i<l 0<i,j<e—1

= 2[0]¥ = 2p(c6(N).

Combining these two propositions lead to:

Proposition 3.6. Lets € Z' and A € TI'. Assume that pu € 11! is such that one can add an addable i-node
to p to obtain X. Then we have

Ple,s) (A) — Pe,s) (iu’) = Mzs(iu’) -1
The above proposition will be a crucial ingredient in the proof of one of our main results in the next

section.

3.2. Computation of weights. We here want to prove the following theorem. It mainly asserts that the
block weight for an [-partition associated with a multicharge can always been computed in term of the
usual block weight for a partition. This result uses the map 7. s defined in the previous section only for the

multicharge in Zle (see Proposition 2.20).
Theorem 3.7. Lets € .7\2 and X € ' . We have:
Pe,s) ()‘) = P(e,s) (Te,S(A))

where s =31 ;< i
10



Proof. We argue by induction on the rank n of A. Assume that n = 0. Then p(. ) (A) = 0 and by Prop.
2.19, 7. s(A) is an e-core so its weight is equal to 0. Assume now that n > 0. Let g be an [-partition obtained
from A by deleting a removable i-node for some i € Z/eZ. By Proposition 3.6, we have

Ple,s) (A) — Ple,s) (p’) = Mzs(p’) -1
Now we have two cases to consider.

e Assume that i # 0 then 7. s(p) is also obtained from 7. s(A) by deleting a removable i-node. We
have

P(e,s) (Te,s(A) — p(e,S)(Te,S(N)) = Mis(Te,S(H)) -1

We can thus conclude by induction using Proposition 2.24
e Assume that ¢ = 0 then to simplify the notation write p := 7. s(p) and A := 7. s(A). We assume
that the removable node corresponds to a black bead of the 1-abacus of 7. ¢(A) in position z. By
hypothesis, there is no black bead in position x — (I — 1)e — 1, because 7T, s(A) and 7. s(p) have the
same abacus except that the black beads between position « and = — (I — 1)e — 1 are exchanged (and
so are the empty position in the remaining one). Again, we will consider two cases:
— Assume that there is no black bead in position 2 — (I — 1)e. Then one can consider v the
partition defined by the abacus obtained by moving the bead in position x from the abacus of
A to the position x — (I — 1)e. Its weight p(.s)(v) is equal to pes)(A) — (I — 1) because v is
obtained from A by removing [ — 1 hooks from A. Now we have by Proposition 3.6:

Ple,s) (V) = Pies) (1) = Mg (1) — 1.
We conclude that

Pess)(A) = Pless) (1) = Mg () +1
that is, by Proposition 2.24

Dee,s) ()‘) — P(e,s) (:u') = MS(N) -1

— Assume that there is no black bead in position  — (I — 1)e. Then we proceed in the opposite
way: we define v to be the partition obtained from A\ by moving the bead in position z — (I —1)e
to the position  — (I — 1)e. Then p is obtained from v by moving the bead in position x to the
position z — (I — 1)e (which consists in removing (I — 1) e-hooks). We conclude exactly as in
the previous case.

O

. —l . .
What can we do in the case where s ¢ A_ 7 In fact, one can use the procedure in §2.3 and associate to A
and s a multicharge 7 € AL and a multipartition A?®. It is clear from the definition that:

Pess)(A) = Pesos) (A7)
which thus gives an effective way to compute the weight in all cases.

Remark 3.8. A (maybe more direct) proof might also be obtained using Proposition 2.22 but the above one
has the advantage to avoid cumbersome computations.

4. FURTHER REMARKS AND APPLICATIONS

In this section, we show how our main results simplify the block theory for Ariki-Koike algebras. In
particular we show the relations of our work with some results by Fayers. By the definitions of cores and
block weights, one can assume that s € A, in this section. However, we will try to explain how all our results
can be adapted to the general case s € Z.
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4.1. Cores of multipartitions. Let us start with an easy corollary of Theorem 3.7.

Corollary 4.1. Assume s € Zle Then, the reduced (e,s)-core are exactly the elements of block weight 0.
Proof. Let A € I, by Theorem 3.7, we have:

Ples)(A) =Pe,, ooy 50 (Tes(A))

so A is of block weight 0 if and only if 7. s(A) is of block weight 0. Now, we know that the e-cores are exactly
the partitions with block weight 0 and we can thus conclude thanks to Proposition 2.20. O

If we take s € Z!, then we have already noticed that:

P(e,s) ()‘) = p(e,g”s)(xgs)'
Since in addition A% is a reduced §%s-core if and only if A is a (e, s)-core, we conclude that in the general
case, the (e, s)-cores are exactly the elements of core weight 0.

In [3], Fayers has also introduced a notion of core for an I-partition associated with a multicharge. His
definition is the following one. Let s € A. then an I-partition X is a (e|s)-core if there is no other [-partition p
such that Ce s(A) = Ce s(pt). In fact this coincides with our notion of (e, s)-cores. Indeed, by the results in [1],
the (e|s)-core multipartitions are exactly the elements of weight 0 (see [3, Rem 2.3.1]) which are exactly the
(e,s)-cores by the above corollary. In other words, Definition 2.8 thus reveals the combinatorial structure
of the (e|s)-cores introduced by Fayers. Let us explain the consequences concerning the block theory of
Ariki-Koike algebras and especially, the similarities and the differences with the case I = 1 that is, the case
of the symmetric group.

Let FHS (n) be the Ariki-Koike algebra as defined in the introduction. The representation theory of
FH: () is controlled by its decomposition matrix which we now briefly define. For all I-partition A; one can
define a certain finite dimensional F#$ (n)-module S* called a Specht module. For each M € Irr(FHS (1)),
we have an associated composition factor [S* : M]. The matrix:

- A
D= ([S : M])Aenl(n),MEIrr(]F'Hfz)(n)

is the decomposition matriz. By definition, two [-partitions A and p lie in the same block if there exists a
sequence (Mq, ..., M,) of simple FHS (n)-modules and a sequence of I-partitions (A1, ..., Arp1) with A = A,
Arp1=pand for alli € {1,...,r}, we have [S* : M;] # 0 and [S*i+! : M;] # 0. When [ = 1, we know that
two partitions are in the same block if and only if they have the same e-core and that their common weight
is the number of e-hooks that can be removed to obtain this e-core. For [ > 1, a criterion has been provided
by Lyle and Mathas [8] but it does not consist in any notion of hook or cores. It asserts that A and p are
in the same block of FHS (n) if we have Ce s(A) = Ces(pt).

Let X be an [-partition of rank n. To describe the blocks, one can restrict ourselves to the case s € AL
(as usual the general case is derived by using the transformations in §2.3). We consider the (e, s)-abacus
(Lsyy-.., Lg,) of Ao An elementary operation on this abacus is defined as a move of one black bead from one
runner of the abacus to another satisfying the following rule.

(1) If this black bead is not in the top runner, then we can do such an elementary operation on this
black bead only if there is no black bead immediately above (that is in the same position on the
runner just above). In this case, we slide the black bead from its initial position, in a runner 4, to the
runner ¢ + 1 located above in the same position. The resulting /-abacus corresponds to an [-partition
of rank n — s;41 + s; — 1. Indeed, when we add a black bead in the runner i + 1 the rank becomes
n+ N —s;11 — 1 for a certain integer N and when we remove a black bead from the runner ¢ in the
same position, the rank becomes n + N — s;41 — 1 — (N — s;) that is n — s;41 + s; — 1.

(2) If this black bead is in the top runner in position x, then we can do such an elementary operation
only if there is no black bead in position x — e on the lowest runner. In this case, we slide the
bead to the position x — e of the lowest runner. As above, the rank of the resulting [-partition is
n—(s1—si+e+1)

Note that, after this procedure, the resulting multicharge associated with the [-abacus may not be in A but
this is not a problem: we can still perform it in the resulting abacus. At the end, by construction, we obtain
an [-abacus
(Lyyy -y Luy)
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satisfying:
Ly, CL,, C...C L CLy4e.

This abacus is complete. Thus, by Proposition 2.11, this corresponds to an [-partition p and a multicharge
—1
v € A, such that p is a reduced (e, v)-core.

Definition 4.2. The core of the [-partition A associated with a multicharge s is the pair (u, v) attached to
A and s by the previous procedure.

Doing an elementary operation on the (e, s)-abacus of A as above is equivalent to remove one e-hook on
the Young diagram of 7. s(X). As a consequence, by Theorem 3.7 and by the definition of the Uglov map,
P(e,s)(A) is the number of elementary operations we have made in this process to obtain our final abacus.
The rank of the multipartition can also been computed thanks to the above remarks. The fact that this does
not depend on the order in which the elementary operations are performed follows from the case [ = 1.

Remark 4.3.

(1) Take a black bead in the runner i of the l-abacus of A in position x such that there is no black bead in
position z—e in the same runner. Then one can always perform a series of [ elementary operations (as
defined in the previous procedure) to obtain the same abacus except that the black bead in position
2 moves to the position z —e of the same runner. Indeed, let us denote by b; the bead in position x in
runner ¢, and consider all the beads bo, ..., bx in position x and runner is, ..., i with i <is... < ig.
Consider also the beads bg1, ..., b, in position  — e and runner ig11, ..., i, with ig1q ... <1, <1.
Then we can slide the bead b, in position z — e in runner ¢, and then slide the bead b,_1 to the
position previously occupied by b, and so on. At the end, we obtain the desired abacus and we have
made [ elementary operations to do that. In this case, the rank of resulting [-partition is equal to
TL—(SH_l—Si+1)—(Si+2—(81‘+1+1)+1)—' . '—(81—(Sl+1)+€+1)—' . '—(Si—l—(si_l'i‘l)"f'l), that
is n —e. The [-partition so obtained is just the [-partition A where a rim e-hook has been removed in
M. This is thus consistent with our result. Nevertheless, this shorter hook removal procedure does
not suffice to produce the core of A for it can only yield a sequence of | cores, that is a multicore.

(2) In [1], the notion of multicore is used instead of our notion of core. From an arbitrary [-partition
A, one can indeed associate another [-partition, with a smaller block weight, which may be seen as
an "intermediate" between the given [-partition and its e-core in the sense of Definition 4.2. To do
this, we can simply take the e-core of each partition or apply a sequence of elementary operations as
we have just explained. We have already seen that the (e, s)-cores are multicores but the converse is
not true in general.

Corollary 4.4. Two [-partitions with the same rank have the same core if and only if they belong to the
same block of FHE (n).

Proof. This directly follows from Corollary 2.23 together with the Lyle-Mathas characterization of blocks.
O

Example 4.5. Let us takes = (0, 1, 3) and e = 4. We consider the two 3-partitions A = ((3,2), (1,1),(2,2,1))
and p = ((1), (4,2),(3,2)) with Young diagrams:

310

TLER), (@IEETERD
1]

They are in the same block because Ces(A) = Ces(pt). Now the 3-abacus of A is

0000 00O OCOOO0O OO
000000 OO0O®0OOOOOO
000000 O0CO®OO®OOOOO

To determine its core, we perform the above procedure and we obtain the following 3-abacus:
13



0000000060
00000600060
000000 OO0 O OO

the associated (e, s)-core is the 3-partition ((1),0,0) together with the multicharge (0,2,2) and the weight

is 8 because we perform 8 moves of beads to obtain this core. Now if we consider u whose 3-abacus is
000000000 OCO0OCO®OO
000000 OO0 OO OO
00000 OO 00O OOOOOL

L O OO0O0
L O OO0O0
ONONO)

and apply our procedure, one can check that we obtain the same core.

Remark 4.6. When [=1 and given an e-core A, one can obtain directly all the partitions in a fixed block
with a given core weight w by adding w hooks to A while we stay in the set of partitions. This process is
less direct if [ > 1. Let A be a (e,s)-core. We can assume that s € A.. Then if we perform w “inverse”
elementary moves on its [-abacus, we obtain an [-partition p associated with a multicharge s’ and the core
of p in FHS (1) is (A, s). Now, still starting from the e-core, if we do w other “inverse” elementary moves on
its l-abacus, one may obtain another [-partition v but also another multicharge s”. Thus p and v will be in
the same block of FH¢®(n) if and only if s’ = s”. This means, one can obtain all the [-partitions in a fixed
block of IF’HZ/ (n) as in level 1 except we have to keep only those with associated multicharge s'.

4.2. Multipartitions of small (block) weights. As already noted in [1], in level I > 1, each block of
block weight 0 contains exactly a (e, s)-core and thus is a simple block, as in the case | = 1. This implies in
particular that the Specht modules labeled by these [-partitions are irreducible and that they coincide with
their projective cover. This shows that the (e, s)-cores are always Uglov [-partitions. This is consistent with
remark 2.15.

In [1, Th. 4.4], Fayers has given a description of the blocks of block weight 1. Using our approach, we here
give an explicit characterization of these blocks. When [ = 1, such bocks always contain exactly e partitions.
We will see that when I > 1, this will depend on the multicharge we choose. Let v € Z! and consider an
l[-partition p with block weight 1. The core af p is the same as the core of the [-partition p?v associated
with the multicharge v°v € AL. This means that we can in fact assume that v € AL.

Now the l-abacus of a [-partition p with block weight 1 for the multicharge v can be derived from a

reduced (e, s)-core XA where s € Zle by performing one inverse elementary operation on the abacus of A (that
is by inversing the procedure described in §4.1). This consists in moving a black bead in position 2 from a
runner ¢ € {2,...,1} to the position x of the runner ¢ — 1, or from the runner 1 in position z to the runner [
in position = + e, if possible.

All the [-partitions p of weight 1 are then obtained as follows:

e Foralli e {1,...,1—1},if s:= (v1,...,v,-1—1,v;+1,...,v;) is such that s € Zi, they are obtained
from a (e,s)-core A by doing one inverse elementary operation in its abacus from the runner i to
the runner ¢ — 1. By definition of our notion of core, we can exactly do v; + 1 — (v;—1 — 1) inverse
elementary operations between the runner ¢ — 1 and the runner 7. Thus, we have exactly v; —v; 1 +2
multipartitions obtained from a given such core and they are all of the same rank |A| + v;41 —v; + 1.

o If s := (v1 +1,...,uy — 1) is such that s € .712, they are obtained from a (e, s)-core A by doing
one inverse elementary operation in its abacus from the runner 1 to the runner /. We have exactly
v1 — v; + 2 4+ e multipartitions obtained from a given such core and they are all of the same rank
IA[ +vi —v +e+ 1

Remark 4.7. By [8], the procedure describes in this paper also gives the description of the blocks for affine
Hecke algebras of type A.

Remark 4.8. 1t is likely that the results of this paper may be used to study the block theory for the cyclotomic
Hecke algebras of type G(r,p,n). Besides, Theorem 3.7 gives a correspondance between (e, s)-core and e-
cores which could induce similarities between blocks of Ariki-Koike algebras and blocks of Hecke algebras of
type A. We will come back to these questions in future works.
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4.3. Examples. We end this section with an example of computation of block weights and cores. We here
take n =4, e =4 and s = (0,1). Here is a table giving the block weight and the core of each 2-partition.

2-partition core block weight 2-partition core block weight
((4),0) (0;(0,1)) 2 ((1,1),(2)) (0;(0,1)) 2
(3), (1) | ((0,(1,1));(0,3)) 1 (1), (2,1)) | ((1),(2,1));(0,1)) 0
©,4) (0:;(0,1)) 2 (1, 1), (1, 1) | (((2),0); (0,3)) 1
((3,1),0) (0;(0,1)) 2 @,(3,1)) (0;(0,1)) 2
((2),(2)) ((0,1.1); (0,3)) 1 ((1,1,1), (1)) (0;(0,1)) 2
(1), 3)) (0;(0,1)) 2 @,(2,2) | ((©.(1,1));(0,3)) 1
((272)7@) (((2)7@);(073)) 1 ((1717171)70) (07 (071)) 2
((2,1),1) | (((2,1),1);(0,1)) 0 @,(2,1,1)) (0;(0,1)) 2
((2,1,1),0) (;(0,1)) 2 (1), (1,1,1)) (((2),0); (0,3 1
((2), (1, 1) | (((2),(1,1)); (0, 1)) 0 @ (1,1,1,1)) (0;(0,1)) 2

Note that the core of the blocks of block weight 1 are always associated with the same multicharge, which
is v = (0, 3) and there is two different cores which gives 3 = vy —v; elements in the same block in both cases.
The rank of this core is the n — (s2 — s1 + 1) = 2. This is consistent with the results of the previous section.

Let us consider now the multicharge s := (0, 1,3) with e = 4 and n = 4. Then

e we have seven (e,s)-cores: (0,(3,1), (0,(1),(1,1,1)), ((1),(2,1),0), ((2),(1,1),0), (0,(2),(1,1)),
((1,1),0,(2)), ((1).0, (2. 1)).

e We have three blocks of clock weight 1 which are:
- {((2,1),0,(1)),((1,1), (1), (1)), (0, (1,1,1), (1))} with ((
= {((3),(1),0),((1,1),(1), (1)), (9,(2,2),0)} with (0,(1,1)
(0, (1), (3)), (21,1, ((2.1), (1), 0)} with (1), (1), 0), (1

Again, this is consistent with the results of the previous section.

(1),0,(1)),(-1,2,3)) as a core.
,0),(=1,2,3)) as a core.
1,2)) as a core.

3
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