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Abstract. In this paper, we study how cautious conclusions should be
taken when considering interval-valued propositional logic, that is logic
where to each formula is associated a real-valued interval providing im-
precise information about the penalty incurred for falsifying this formula.
We work under the general assumption that the weights of falsified for-
mulas are aggregated through a non-decreasing commutative function,
and that an interpretation is all the more plausible as it is less penalized.
We then formulate some dominance notions, as well as properties that
such notions should follow if we want to draw conclusions that are at
the same time informative and cautious. We then discuss the dominance
notions in light of such properties.

Keywords: Logic, imprecise weights, skeptic inference, robust infer-
ences, penalty logic

1 Introduction

Logical frameworks have always played an important role in artificial intelli-
gence, and adding weights to logical formulas allow one to deal with a variety of
problems with which classical logic struggles [3].

Usually, such weights are assumed to be precisely given, and associated to
an aggregation function, such as the maximum in possibilistic logic [4] or the
sum in penalty logic [5]. These approaches can typically find applications in
non-monotonic reasoning [1] or preference handling [7].

However, as providing specific weights to each formula is likely to be a cog-
nitively demanding tasks, many authors have considered extensions of these
frameworks to interval-valued weights [6, 2], where intervals are assumed to con-
tain the true, ill-known weights. Such approaches can also be used, for instance,
to check how robust conclusions obtained with precise weights are.

In this paper, we are interested in making cautious or robust inferences in
such interval-valued frameworks. That is, we look for inference tools that will
typically result in a partial order over the interpretations or world states, such
that any preference statement made by this partial order is made in a skeptic
way, i.e., it holds for any replacement of the weights by precise ones within the
intervals, and should not be reversed when gaining more information. We simply
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assume that the weights are positive and aggregated by a quite generic function,
meaning that we include for instance possibilistic and penalty logics as special
cases.

We provide the necessary notations and basic material in Section 2. In Sec-
tion 3, we introduce different ways to obtain partial orders over interpretations,
and discuss different properties that corresponding cautious inference tools could
or should satisfy. Namely, that reducing the intervals will provide more infor-
mative and non-contradictory inferences, and that if an interpretation falsify a
subset of formulas falsified by another one, then it should be at least as good as
this latter one. Section 4 shows which of the introduced inference tools satisfy
which property.

2 Preliminaries

We consider a finite propositional language L. We denote by Ω the space of all
interpretations of L, and by ω an element of Ω. Given a formula φ, ω is a model
of φ if it satisfies it, denoted ω |= φ.

A weighted formula is a tuple 〈φ, α〉 where α represents the importance
of the rule, and the penalty incurred if it is not satisfied. This weight may be
understood in various ways: as a degree of certainty, as a degree of importance of
an individual preference, . . . . We assume that α take their values on an interval
of R+, possibly extended to include ∞ (e.g., to represent formulas that cannot
be falsified). In this paper, a formula with α = 0 is understood as a totally
unimportant formula that can be ignored, while a formula with maximal α is a
formula that must be satisfied.

A (precisely) weighted knowledge base K = {〈φi, αi〉 : i = 1, . . . , n} is a set of
distinct weighted formulas. Since these formulas are weighted, an interpretation
can (and sometimes must, if K without weights is inconsistent) falsify some of
them, and still be considered as valid. In order to determine an ordering between
different interpretations, we introduce two new notations:

– FK(ω) = {φi : ω 6|= φi}, the set of formulas falsified by ω
– FK(ω \ ω′) = {φi : ω 6|= φi ∧ ω′ |= φi}

Let us furthermore consider an aggregation function ag : Rn → R that we
assume to be non-decreasing, commutative, continuous and well-defined1 for any
finite number n.

We consider that ag({αi : φi ∈ F}) applied to a subset F of formulas of K
measure the overall penalty corresponding to F , with ag(∅) = 0. Given this, we
also assume that if ag receives two vectors a and b of dimensions n and n+m
such that b has the same first n elements as a, i.e., b = (a, y1, . . . , ym), then
ag(a) ≤ ag(b). The idea here is that adding (falsified) formulas to a can only
increase the global penalty. Classical options correspond to possibilistic logic
(weights are in [0, 1] and ag = max) or penalty logic (weights are positive reals

1 as we do not necessarily assume it to be associative



On cautiousness and expressiveness in interval-valued logic 3

and ag =
∑

). Based on this aggregation function, we define a given K the two
following complete orderings between interpretations when weights are precise:

– ω �K
All ω

′ iff ag({αi : φi ∈ FK(ω)}) ≤ ag({αi : φi ∈ FK(ω′)}).
– ω �K

Diff ω
′ iff ag({αi : φi ∈ FK(ω \ ω′)}) ≤ ag({αi : φi ∈ FK(ω′ \ ω)}).

Both orderings can be read as ω � ω′ meaning that “ω is more plausible, or
preferred to ω′, given K”.

When the weights are precise, it may be desirable for �All and �Diff to be
consistent, that is not to have ω �K

All ω
′ and ω ≺K

Diff ω
′ for a given K. It may

be hard to characterize the exact family of functions ag that will satisfy this,
but we can show that adding associativity and strict increasigness2 to the other
mentioned properties ensure that results will be consistent.

Proposition 1. If ag is continuous, commutative, strictly increasing and asso-
ciative, then given a knowledge base K, we have that

ω �K
All ω

′ ⇔ ω �K
Diff ω

′

Proof. Let us denote the sets {αi : φi ∈ FK(ω)} and {αi : φi ∈ FK(ω′)} as real-
valued vectors a = (x1, . . . , xn, yn+1, . . . , yna

) and b = (x1, . . . , xn, zn+1, . . . , znb
),

where x1, . . . , xn are the weights associated to the formulas that both interpre-
tations falsify. Showing the equivalence of Proposition 1 then comes down to
show

ag(a) ≥ ag(b)⇔ ag((yn+1, . . . , yna)) ≥ ag((zn+1, . . . , znb
)).

Let us first remark that, due to associativity,

ag(a) = ag(ag((x1, . . . , xn)), ag((yn+1, . . . , yna
))) := ag(A,B),

ag(b) = ag(ag((x1, . . . , xn)), ag((zn+1, . . . , znb
))) := ag(A,C).

Under these notations, we must show that ag(A,B) ≥ ag(A,C)⇔ B ≥ C.
That B ≥ C ⇒ ag(A,B) ≥ ag(A,C) is immediate, as ag is non-decreasing.

To show that B ≥ C ⇐ ag(A,B) ≥ ag(A,C), we can just see that if B < C, we
have ag(A,B) < ag(A,C) due to the strict increasingness of ag.

3 Interval-valued logic, dominance notions and properties

In practice, it is a strong requirement to ask users to provide precise weights for
each formula, and they may be more comfortable in providing imprecise ones.
This is one of the reason why researchers proposed to extend weighted logics to
interval-valued logics, where the knowledge base is assumed to have the form
K = {〈φi, Ii〉 : i = 1, . . . , n} with Ii = [ai, bi] representing an interval of possible
weights assigned to φi.

2 Which is also necessary, as ag = max will not always satisfy Property 1
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In practice, this means that the result of applying ag to a set of formulas F
is no longer a precise value, but an interval [ag, ag]. As ag is a non-decreasing
continuous function, computing this interval is quite easy as

ag = ag({ai|φi ∈ F}),

ag = ag({bi|φi ∈ F}),
which means that if the problem with precise weights is easy to solve, then
solving it for interval-valued weights is equally easy, as it amounts to solve twice
the problems for specific precise weights (i.e., the lower and upper bounds).
A question is now to know how we should rank the various interpretations in
a cautious way given these interval-valued formulas. In particular, this means
that the resulting order between interpretations should be a partial order if we
have no way to know whether one has a higher score than the other, given our
imprecise information. But at the same time, we should try to not lose too much
information by making things imprecise.

There are two classical ways to compare interval-valued scores that results
in possible incomparabilities:

– Lattice ordering: [a, b] �L [c, d] iff a ≤ c and b ≤ d. We then have [a, b] ≺L

[c, d] if one of the two inequalities is strict, and [a, b] ' [c, d] iff [a, b] = [c, d].
Incomparability of [a, b] and [c, d] corresponds to one of the two set being
strictly included in the other.

– Strict ordering: [a, b] �S [c, d] iff b ≤ c. We then have [a, b] ≺S [c, d] if
b < c, and indifference will only happen when a = b = c = d (hence never if
intervals are non-degenerate). Incomparability of [a, b] and [c, d] corresponds
to the two sets overlapping.

These two orderings can then be applied either to �All or �Diff , resulting in
four different extensions: �All,L,�All,S ,�Diff,L,�Diff,S . A first remark is that
strict comparisons are stronger than lattice ones, as the former imply the latter,
that is if [a, b] �S [c, d], then [a, b] �L [c, d]. In order to decide which of these
orderings are the most adequate, let us first propose some properties they should
follow when one wants to perform cautious inferences.

Property 1 (Informational monotonicity) Assume that we have two knowl-
edge bases K1 = {〈φ1i , Ii

1〉 : i = 1, . . . , n} and K2 = {〈φ2i , Ii
2〉 : i = 1, . . . , n}

with φ1i = φ2i and Ii
1 ⊆ Ii

2 for all i. An aggregation method and the partial
order � it induces on interpretations is informational monotonic if

ω �K2 ω′ =⇒ ω �K1 ω′

That is, the more we gain information, the better we become at differenti-
ating and ranking interpretations. If ω is strictly preferred to ω′ before getting
more precise assessments, it should remain so after the assessments become more
precise3. A direct consequence of Property 1 is that we cannot have ω �K2 ω′

3 Note that we consider the new assessments to be consistent with the previous ones,
as Ii

1 ⊆ Ii
2.
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and ω′ �K1 ω, meaning that �K1 will be a refinement of �K2 . This makes
sense if we aim for a cautious behaviour, as the conclusion we make in terms of
preferred interpretations should be guaranteed, i.e., they should not be revised
when we become more precise.

It should also be noted that violating this property means that the corre-
sponding partial order is not skeptic in the sense advocated in the introduction,
as a conclusion taken at an earlier step can be contradicted later on by gaining
more information.

Property 2 (subset/implication monotonicity) Assume that we have a knowl-
edge base K . An aggregation method and the partial order � it induces on
interpretations follows subset monotonicity if

FK(ω) ⊆ FK(ω′) =⇒ ω �K ω′ for any pair ω, ω′

This principle is quite intuitive: if we are sure that ω′ falsifies the same
formulas than ω in addition to some others, then certainly ω′ should be less
preferable/certain than ω.

4 Discussing dominance notions

Let us now discuss the different partial orders in light of these properties, starting
with the lattice orderings and then proceeding to interval orderings.

4.1 Lattice orderings

Let us first show that �All,L,�Diff,L do not satisfy Property 1 in general, by
considering the following example:

Example 1. Consider the case where ai, bi ∈ R and ag =
∑

, with the following
knowledge base on the propositional variables {p, q}

φ1 = p, φ2 = p ∧ q, φ3 = ¬q

with the three following sets (respectively denotedK1,K2,K3) of interval-valued
scores

IK1
1 = [2.5, 2.5], IK1

2 = [0, 4], IK1
3 = [1, 5],

IK2
1 = [2.5, 2.5], IK2

2 = [4, 4], IK2
3 = [1, 5],

IK3
1 = [2.5, 2.5], IK3

2 = [4, 4], IK3
3 = [1, 1],

that are such that IK3 ⊆ IK2 ⊆ IK1 for all formulas. The resulting scores
using the choice �All following on the different interpretations are summarised
in Table 1.

Figure 1 shows the different partial orders between the interpretations, ac-
cording to �All,L. We can see that ω2 and ω3 go from comparable to incom-

parable when going from �K1

All,L to �K2

All,L, and that the preference or ranking

between them is even reversed when going from �K1

All,L to �K3

All,L.
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p q ag1 ag2 ag3

ω0 0 0 [2.5, 6.5] [6.5, 6.5] [6.5, 6.5]
ω1 0 1 [3.5, 11.5] [7.5, 11.5] [7.5, 7.5]
ω2 1 0 [0, 4] [4, 4] [4, 4]
ω3 1 1 [1, 5] [1, 5] [1, 1]

Table 1. Interval-valued scores from Example 1

ω1

ω0

ω3

ω2

�K1
All,L

ω1

ω0

ω2 ω3

�K2
All,L

ω1

ω0

ω2

ω3

�K3
All,L

Fig. 1. Orderings �All,L of Example 1 on interpretations.

It should be noted that what happens to ω2, ω3 for �All,L is also true for
�Diff,L. Indeed, FK(ω2) = {p ∩ q} and FK(ω3) = {¬q}, hence FK(ω2 \ ω3) =
FK(ω2) and FK(ω3 \ ω2) = ∅. However, we can show that the two orderings
based on lattice do satisfy subset monotonicity.

Proposition 2. Given a knowledge base K, the two orderings �K
All,L,�K

Diff,L

satisfy subset monotonicity.

Proof. For �Diff,L, it is sufficient to notice that if FK(ω) ⊆ FK(ω′), then FK(ω\
ω′) = FK(∅). This means that ag({αi : φi ∈ FK(ω \ ω′)}) = [0, 0], hence we
necessarily have ω �K

Diff,L ω
′.

For �All,L, the fact that FK(ω) ⊆ FK(ω′) means that the vectors a and a′

of lower values associated to {αi : φi ∈ FK(ω)} and {αi : φi ∈ FK(ω′)} will be
of the kind a′ = (a, a1, . . . , am), hence we will have ag(a) ≤ ag(a′). The same
reasoning applied to upper bounds means that we will also have ag(a) ≤ ag(a′),
meaning that ω �K

All,L ω
′.

From this, we deduce that lattice orderings will tend to be too informative
for our purpose4, i.e., they will induce preferences between interpretations that
should be absent if we want to make only those inferences that are guaranteed
(i.e., hold whatever the value chosen within the intervals Ii).

4 Which does not prevent them to be suitable for other purposes.
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4.2 Strict orderings

In this section, we will study strict orderings, and will show in particular that
while �All,S provides orderings that are not informative enough for our purpose,
�Diff,S does satisfy our two properties.

As we did for lattice orderings, let us first focus on the notion of informational
monotonicity, and show that both orderings satisfy it.

Proposition 3. Given knowledge bases K1,K2 with φ1i = φ2i and Ii
1 ⊆ Ii

2 for
all i ∈ {1, . . . , n}, the two orderings �All,S ,�Diff,S satisfy information mono-
tonicity.

Proof. Assume that [a, b] and [c, d] are the intervals obtained from K2 respec-
tively for ω and ω′ after aggregation has been performed, with b ≤ c, hence
ω �K2

`,S ω
′ with ` ∈ {All,Diff}.

Since ag is an increasing function, and as Ii
1 ⊆ Ii

2, we will have that the
intervals [a′, b′] and [c′, d′] obtained from K1 for ω and ω′ after aggregation will
be such that [a′, b′] ⊆ [a, b] and [c′, d′] ⊆ [c, d], meaning that b′ ≤ b ≤ c ≤ c′,
hence ω �K1

`,S ω
′, and this finishes the proof.

Let us now look at the property of subset monotonicity. From the knowledge
base K1 in Example 1, one can immediately see that �All,S is not subset mono-
tonic, as FK(ω3) ⊆ FK(ω1) and FK(ω2) ⊆ FK(ω0) ⊆ FK(ω1), yet all intervals in
Table 1 overlap, meaning that all interpretations are incomparable. Hence �All,S

will usually not be as informative as we would like a cautious ranking procedure
to be. This is mainly due to the presence of redundant variables, or common
formulas, in the comparison of interpretations. In contrast, �Diff,S does not
suffer from the same defect, as the next proposition shows.

Proposition 4. Given a knowledge base K, the ordering �Diff,S satisfies subset
monotonicity.

Proof. As for Proposition 2, it is sufficient to notice that if FK(ω) ⊆ FK(ω′),
then FK(ω \ ω′) = FK(∅). This means that ag({αi : φi ∈ FK(ω \ ω′)}) = [0, 0],
hence we necessarily have ω �K

Diff,L ω
′.

Hence, the ordering �Diff,S satisfies all properties we have considered desir-
able in our framework. It does not add unwanted comparisons, while not losing
information that could be deduced without knowing the weights.

Example 2. If we consider the knowledge base K1 of Example 1, using �Diff,S

we could only deduce the rankings induced by the facts that FK(ω3) ⊆ FK(ω1)
and FK(ω2) ⊆ FK(ω0) ⊆ FK(ω1), as ω3 does not falsify any of the formulas that
ω2 and ω0 falsify, hence we can directly compare their intervals. The resulting
ordering is pictured in Figure 2.
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ω1

ω0

ω2

ω3

Fig. 2. Orderings �Diff,S of Example 2

5 Conclusions

In this paper, we have looked at the problem of making cautious inferences in
weighted logics when weights are interval-valued, and have made first proposals
to make such inferences. There is of course a lot that remains to be done, such
as studying expressivity, representational or computational issues.

It should also be noted that our approach can easily be extended to cases
where weights are given by other uncertainty models. If Ii is an uncertain quan-
tity (modelled by a fuzzy set, a belief function, a probability, . . . ), we would then
need to specify how to propagate them to obtain ag(F ), and how to compare
these uncertain quantities.
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