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In this paper, we study how cautious conclusions should be taken when considering interval-valued propositional logic, that is logic where to each formula is associated a real-valued interval providing imprecise information about the penalty incurred for falsifying this formula. We work under the general assumption that the weights of falsified formulas are aggregated through a non-decreasing commutative function, and that an interpretation is all the more plausible as it is less penalized. We then formulate some dominance notions, as well as properties that such notions should follow if we want to draw conclusions that are at the same time informative and cautious. We then discuss the dominance notions in light of such properties.

Introduction

Logical frameworks have always played an important role in artificial intelligence, and adding weights to logical formulas allow one to deal with a variety of problems with which classical logic struggles [START_REF] Dubois | Weighted logics for artificial intelligence -an introductory discussion[END_REF].

Usually, such weights are assumed to be precisely given, and associated to an aggregation function, such as the maximum in possibilistic logic [START_REF] Dubois | Possibilistic logic: a retrospective and prospective view[END_REF] or the sum in penalty logic [START_REF] De Saint-Cyr | Penalty logic and its link with Dempster-Shafer theory[END_REF]. These approaches can typically find applications in non-monotonic reasoning [START_REF] Benferhat | Possibilistic and standard probabilistic semantics of conditional knowledge bases[END_REF] or preference handling [START_REF] Kaci | Reasoning with various kinds of preferences: logic, nonmonotonicity, and algorithms[END_REF].

However, as providing specific weights to each formula is likely to be a cognitively demanding tasks, many authors have considered extensions of these frameworks to interval-valued weights [START_REF] Gelain | Interval-valued soft constraint problems[END_REF][START_REF] Benferhat | Interval-based possibilistic logic[END_REF], where intervals are assumed to contain the true, ill-known weights. Such approaches can also be used, for instance, to check how robust conclusions obtained with precise weights are.

In this paper, we are interested in making cautious or robust inferences in such interval-valued frameworks. That is, we look for inference tools that will typically result in a partial order over the interpretations or world states, such that any preference statement made by this partial order is made in a skeptic way, i.e., it holds for any replacement of the weights by precise ones within the intervals, and should not be reversed when gaining more information. We simply assume that the weights are positive and aggregated by a quite generic function, meaning that we include for instance possibilistic and penalty logics as special cases.

We provide the necessary notations and basic material in Section 2. In Section 3, we introduce different ways to obtain partial orders over interpretations, and discuss different properties that corresponding cautious inference tools could or should satisfy. Namely, that reducing the intervals will provide more informative and non-contradictory inferences, and that if an interpretation falsify a subset of formulas falsified by another one, then it should be at least as good as this latter one. Section 4 shows which of the introduced inference tools satisfy which property.

Preliminaries

We consider a finite propositional language L. We denote by Ω the space of all interpretations of L, and by ω an element of Ω. Given a formula φ, ω is a model of φ if it satisfies it, denoted ω |= φ.

A weighted formula is a tuple φ, α where α represents the importance of the rule, and the penalty incurred if it is not satisfied. This weight may be understood in various ways: as a degree of certainty, as a degree of importance of an individual preference, . . . . We assume that α take their values on an interval of R + , possibly extended to include ∞ (e.g., to represent formulas that cannot be falsified). In this paper, a formula with α = 0 is understood as a totally unimportant formula that can be ignored, while a formula with maximal α is a formula that must be satisfied.

A (precisely) weighted knowledge base K = { φ i , α i : i = 1, . . . , n} is a set of distinct weighted formulas. Since these formulas are weighted, an interpretation can (and sometimes must, if K without weights is inconsistent) falsify some of them, and still be considered as valid. In order to determine an ordering between different interpretations, we introduce two new notations:

-F K (ω) = {φ i : ω |= φ i }, the set of formulas falsified by ω -F K (ω \ ω ) = {φ i : ω |= φ i ∧ ω |= φ i }
Let us furthermore consider an aggregation function ag : R n → R that we assume to be non-decreasing, commutative, continuous and well-defined 1 for any finite number n.

We consider that ag({α i : φ i ∈ F }) applied to a subset F of formulas of K measure the overall penalty corresponding to F , with ag(∅) = 0. Given this, we also assume that if ag receives two vectors a and b of dimensions n and n + m such that b has the same first n elements as a, i.e., b = (a, y 1 , . . . , y m ), then ag(a) ≤ ag(b). The idea here is that adding (falsified) formulas to a can only increase the global penalty. Classical options correspond to possibilistic logic (weights are in [0, 1] and ag = max) or penalty logic (weights are positive reals and ag = ). Based on this aggregation function, we define a given K the two following complete orderings between interpretations when weights are precise:

-ω K All ω iff ag({α i : φ i ∈ F K (ω)}) ≤ ag({α i : φ i ∈ F K (ω )}). -ω K Dif f ω iff ag({α i : φ i ∈ F K (ω \ ω )}) ≤ ag({α i : φ i ∈ F K (ω \ ω)}).
Both orderings can be read as ω ω meaning that "ω is more plausible, or preferred to ω , given K".

When the weights are precise, it may be desirable for All and Dif f to be consistent, that is not to have ω K All ω and ω ≺ K Dif f ω for a given K. It may be hard to characterize the exact family of functions ag that will satisfy this, but we can show that adding associativity and strict increasigness2 to the other mentioned properties ensure that results will be consistent.

Proposition 1. If ag is continuous, commutative, strictly increasing and associative, then given a knowledge base K, we have that

ω K All ω ⇔ ω K Dif f ω
Proof. Let us denote the sets {α i : Under these notations, we must show that ag(A, B)

φ i ∈ F K (ω)} and {α i : φ i ∈ F K (ω )}
≥ ag(A, C) ⇔ B ≥ C. That B ≥ C ⇒ ag(A, B) ≥ ag(A, C
) is immediate, as ag is non-decreasing. To show that B ≥ C ⇐ ag(A, B) ≥ ag(A, C), we can just see that if B < C, we have ag(A, B) < ag(A, C) due to the strict increasingness of ag.

Interval-valued logic, dominance notions and properties

In practice, it is a strong requirement to ask users to provide precise weights for each formula, and they may be more comfortable in providing imprecise ones. This is one of the reason why researchers proposed to extend weighted logics to interval-valued logics, where the knowledge base is assumed to have the form

K = { φ i , I i : i = 1, . . . , n} with I i = [a i , b i ] representing an interval of possible weights assigned to φ i .
In practice, this means that the result of applying ag to a set of formulas F is no longer a precise value, but an interval [ag, ag]. As ag is a non-decreasing continuous function, computing this interval is quite easy as

ag = ag({a i |φ i ∈ F }), ag = ag({b i |φ i ∈ F }),
which means that if the problem with precise weights is easy to solve, then solving it for interval-valued weights is equally easy, as it amounts to solve twice the problems for specific precise weights (i.e., the lower and upper bounds). A question is now to know how we should rank the various interpretations in a cautious way given these interval-valued formulas. In particular, this means that the resulting order between interpretations should be a partial order if we have no way to know whether one has a higher score than the other, given our imprecise information. But at the same time, we should try to not lose too much information by making things imprecise.

There are two classical ways to compare interval-valued scores that results in possible incomparabilities: Property 1 (Informational monotonicity) Assume that we have two knowledge bases K 1 = { φ 1 i , I i 1 : i = 1, . . . , n} and K 2 = { φ 2 i , I i 2 : i = 1, . . . , n} with φ 1 i = φ 2 i and I i 1 ⊆ I i 2 for all i. An aggregation method and the partial order it induces on interpretations is informational monotonic if

-Lattice ordering: [a, b] L [c, d] iff a ≤ c
ω K2 ω =⇒ ω K1 ω
That is, the more we gain information, the better we become at differentiating and ranking interpretations. If ω is strictly preferred to ω before getting more precise assessments, it should remain so after the assessments become more precise 3 . A direct consequence of Property 1 is that we cannot have ω K2 ω and ω

K1 ω, meaning that K1 will be a refinement of K2 . This makes sense if we aim for a cautious behaviour, as the conclusion we make in terms of preferred interpretations should be guaranteed, i.e., they should not be revised when we become more precise.

It should also be noted that violating this property means that the corresponding partial order is not skeptic in the sense advocated in the introduction, as a conclusion taken at an earlier step can be contradicted later on by gaining more information.

Property 2 (subset/implication monotonicity) Assume that we have a knowledge base K . An aggregation method and the partial order it induces on interpretations follows subset monotonicity if

F K (ω) ⊆ F K (ω ) =⇒ ω K ω for any pair ω, ω
This principle is quite intuitive: if we are sure that ω falsifies the same formulas than ω in addition to some others, then certainly ω should be less preferable/certain than ω.

Discussing dominance notions

Let us now discuss the different partial orders in light of these properties, starting with the lattice orderings and then proceeding to interval orderings.

Lattice orderings

Let us first show that All,L , Dif f,L do not satisfy Property 1 in general, by considering the following example:

Example 1. Consider the case where a i , b i ∈ R and ag = , with the following knowledge base on the propositional variables {p, q} φ 1 = p, φ 2 = p ∧ q, φ 3 = ¬q with the three following sets (respectively denoted K 1 , K 2 , K 3 ) of interval-valued scores

I K1 1 = [2.5, 2.5], I K1 2 = [0, 4], I K1 3 = [1, 5], I K2 1 = [2.5, 2.5], I K2 2 = [4, 4], I K2 3 = [1, 5], I K3 1 = [2.5, 2.5], I K3 2 = [4, 4], I K3 3 = [1, 1],
that are such that I K3 ⊆ I K2 ⊆ I K1 for all formulas. The resulting scores using the choice All following on the different interpretations are summarised in Table 1.

Figure 1 shows the different partial orders between the interpretations, according to All,L . We can see that ω 2 and ω 3 go from comparable to incomparable when going from K1 All,L to K2 All,L , and that the preference or ranking between them is even reversed when going from K1 All,L to K3 All,L . It should be noted that what happens to ω 2 , ω 3 for All,L is also true for

ω2 1 0 [0, 4] [4, 4] [4, 4] ω3 1 1 [1, 5] [1, 5] [1, 1] Table 1. Interval-valued scores from Example 1 ω1 ω0 ω3 ω2 K 1 All,L ω1 ω0 ω2 ω3 K 2 All,L ω1 ω0 ω2 ω3 K 3 All,L
Dif f,L . Indeed, F K (ω 2 ) = {p ∩ q} and F K (ω 3 ) = {¬q}, hence F K (ω 2 \ ω 3 ) = F K (ω 2 ) and F K (ω 3 \ ω 2 ) = ∅.
However, we can show that the two orderings based on lattice do satisfy subset monotonicity.

Proposition 2. Given a knowledge base K, the two orderings K All,L , K Dif f,L satisfy subset monotonicity.

Proof. For Dif f,L , it is sufficient to notice that if F K (ω) ⊆ F K (ω ), then F K (ω\ ω ) = F K (∅). This means that ag({α i : φ i ∈ F K (ω \ ω )}) = [0, 0], hence we necessarily have ω K Dif f,L ω . For All,L , the fact that F K (ω) ⊆ F K (ω ) means that the vectors a and a of lower values associated to {α i : φ i ∈ F K (ω)} and {α i : φ i ∈ F K (ω )} will be of the kind a = (a, a 1 , . . . , a m ), hence we will have ag(a) ≤ ag(a ). The same reasoning applied to upper bounds means that we will also have ag(a) ≤ ag(a ), meaning that ω K All,L ω .

From this, we deduce that lattice orderings will tend to be too informative for our purpose4 , i.e., they will induce preferences between interpretations that should be absent if we want to make only those inferences that are guaranteed (i.e., hold whatever the value chosen within the intervals I i ).

Strict orderings

In this section, we will study strict orderings, and will show in particular that while All,S provides orderings that are not informative enough for our purpose, Dif f,S does satisfy our two properties.

As we did for lattice orderings, let us first focus on the notion of informational monotonicity, and show that both orderings satisfy it. Proposition 3. Given knowledge bases K 1 , K 2 with φ 1 i = φ 2 i and I i 1 ⊆ I i 2 for all i ∈ {1, . . . , n}, the two orderings All,S , Dif f,S satisfy information monotonicity.

Proof. Assume that [a, b] and [c, d] are the intervals obtained from K 2 respectively for ω and ω after aggregation has been performed, with b ≤ c, hence ω K2 ,S ω with ∈ {All, Dif f }. Since ag is an increasing function, and as I i 1 ⊆ I i 2 , we will have that the intervals [a , b ] and [c , d ] obtained from K 1 for ω and ω after aggregation will be such that

[a , b ] ⊆ [a, b] and [c , d ] ⊆ [c, d], meaning that b ≤ b ≤ c ≤ c , hence ω K1
,S ω , and this finishes the proof.

Let us now look at the property of subset monotonicity. From the knowledge base K 1 in Example 1, one can immediately see that All,S is not subset monotonic, as

F K (ω 3 ) ⊆ F K (ω 1 ) and F K (ω 2 ) ⊆ F K (ω 0 ) ⊆ F K (ω 1
), yet all intervals in Table 1 overlap, meaning that all interpretations are incomparable. Hence All,S will usually not be as informative as we would like a cautious ranking procedure to be. This is mainly due to the presence of redundant variables, or common formulas, in the comparison of interpretations. In contrast, Dif f,S does not suffer from the same defect, as the next proposition shows. Proposition 4. Given a knowledge base K, the ordering Dif f,S satisfies subset monotonicity.

Proof. As for Proposition 2, it is sufficient to notice that if F K (ω) ⊆ F K (ω ), then F K (ω \ ω ) = F K (∅). This means that ag({α i : φ i ∈ F K (ω \ ω )}) = [0, 0], hence we necessarily have ω K Dif f,L ω .

Hence, the ordering Dif f,S satisfies all properties we have considered desirable in our framework. It does not add unwanted comparisons, while not losing information that could be deduced without knowing the weights.

Example 2. If we consider the knowledge base K 1 of Example 1, using Dif f,S we could only deduce the rankings induced by the facts that F K (ω 3 ) ⊆ F K (ω 1 ) and F K (ω 2 ) ⊆ F K (ω 0 ) ⊆ F K (ω 1 ), as ω 3 does not falsify any of the formulas that ω 2 and ω 0 falsify, hence we can directly compare their intervals. The resulting ordering is pictured in Figure 2. 

Conclusions

In this paper, we have looked at the problem of making cautious inferences in weighted logics when weights are interval-valued, and have made first proposals to make such inferences. There is of course a lot that remains to be done, such as studying expressivity, representational or computational issues.

It should also be noted that our approach can easily be extended to cases where weights are given by other uncertainty models. If I i is an uncertain quantity (modelled by a fuzzy set, a belief function, a probability, . . . ), we would then need to specify how to propagate them to obtain ag(F ), and how to compare these uncertain quantities.
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Which is also necessary, as ag = max will not always satisfy Property 1

Note that we consider the new assessments to be consistent with the previous ones, as Ii 1 ⊆ Ii 2 .

Which does not prevent them to be suitable for other purposes.