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The introduction of algebra in the elementary school mathematics is expected to navigate students 
from concrete, arithmetical thinking to increasingly complex, abstract algebraic thinking required in 
secondary school mathematics and beyond. Yet, empirical studies exploring this idea are relatively 
scarce. Drawing on a sample of 684 students from grades 4, 5, 6, and 7, this study explored a path 
model which tested associations between students’ abilities in solving different types of early 
algebraic tasks: generalized arithmetic, functional thinking, and modeling languages. Results 
emerging from latent path analysis showed that students were more successful in generalized 
arithmetic tasks and only when this was achieved they were able to solve functional thinking tasks; 
once these were achieved, they could proceed to solve modeling languages tasks. Qualitative analysis 
of students’ solutions provided further insight into these findings.  

Keywords: Early algebraic thinking, generalized arithmetic, functional thinking, modeling 
languages, path model.   

Introduction  
While the traditional arithmetic-then-algebra curricula have been proved to be unsuccessful in 
developing deep understanding of abstract algebra in the secondary grades, it has been suggested that 
algebra should become a cohesive thread in mathematics curriculum from K to 12 grades (Carraher 
& Schliemann, 2007). Yet, introducing algebra in the early grades does not mean to move the content 
of secondary algebra courses to elementary mathematics. Instead, it means setting the ground for 
students to develop ways of thinking that can support the later learning of algebra. To make this idea 
more clear, different approaches have been pursued, ranging from the identification of core algebra 
content strands, such as generalized arithmetic, functional thinking, and modeling languages (Kaput, 
2008), to the examination of fundamental algebraic concepts, such as the equals sign (Matthews et 
al., 2012), to the analysis of essential algebraic processes, such as generalization and representation 
(Blanton & Kaput, 2005). Moreover, several researchers examined developmental paths where 
intuitive forms of algebraic thinking become more sophisticated through the mediation offered by 
appropriate instruction in specific areas of early algebra (e.g. Radford, 2014; Stephens et al., 2017). 

The findings of these studies imply that the development of early algebraic thinking lies in the 
extension of arithmetic that is typically taught in elementary school so that students become aware of 
its underlying structure and properties and gradually develop the ability to identify and describe 
functional relationships between quantities that co-vary. Yet, more studies are needed to empirically 
test this idea. Towards this end, this study aimed to investigate the validity of an algebraic thinking 
path model which describes early algebraic thinking abilities that students seem to develop first and 
the way these are associated to other abilities that students seem to develop later on.  

The rest of this manuscript is structured as follows: The next section provides an overview of studies 
that explored the nature of early algebraic thinking, its processes and mathematical content. Following 



 

 

that, the research question is presented and the hypothesis tested. The methodology, including 
information about the participants, tasks, and analyses, is outlined next. After presenting the main 
findings, conclusions and implications for practice are discussed.  

Theoretical Framework 
Algebraic processes that mark the emergence of early algebraic thinking 

A critical issue within the field of early algebra has been the way in which early algebraic thinking 
might occur and be expressed by students. Several researchers tend to agree that students exhibit early 
algebraic thinking by the time they begin to formulate generalizations about mathematical 
relationships, properties, and structure (Blanton & Kaput, 2005). Particularly, the process of 
generalizing is considered as an undisputed characteristic of early algebraic thinking. Generalizing is 
interrelated with the process of representing, as students make efforts to articulate and represent their 
generalizations (Blanton et al., 2015). At the same time, a variety of other processes frame 
generalizing and representing, such as noticing, hypothesizing, and validating (Blanton et al., 2011).  

Algebraic processes are not developed or expressed by students in a mere single way (Stephens et al., 
2017). For example, students’ use of natural language, gestures or diagrams might be an indicator for 
the emergence of early algebraic thinking, which will in turn mediate the long-term development of 
alphanumeric symbolism. Particularly, Radford (2003) exemplified that the way students 
communicate generalizations might differ, varying from concrete numerical actions (factual 
generalization), to situated descriptions of the objects of the actions (contextual generalization), to 
actions with symbols or signs (symbolic generalization). Summing up, algebraic processes seem to 
be central to students’ engagement with early algebraic tasks. The following section describes further 
the content areas in which these processes and forms of thinking are expected to emerge and grow.  

Core algebra content strands and concepts 

Kaput (2008) suggested that three core content strands involve algebraic thinking from K to 12 
grades: generalized arithmetic, functional thinking, and application of modeling languages. These 
strands, which are interconnected with the processes described in the previous section, provide a 
unified framework for analyzing the multidimensional and complex nature of early algebraic thinking 
(Chimoni, Pitta-Pantazi & Christou, 2018).  

Generalized arithmetic refers to the study of structure and relationships that are inherent to numbers 
and arithmetical operations. The emphasis in this strand is about looking at the structure of 
arithmetical expressions and computations rather than their results (Kaput, 2008). In generalized 
arithmetic, students are expected to use the properties of operations and relationships on classes of 
numbers, interpret the equals sign relationally, and solve single-variable equations and inequalities.  

Functional thinking involves generalizing relationships between quantities that co-vary and 
representing them through multiple tools, such as natural language, alphanumeric symbols, pictures, 
function tables, and graphs (Blanton et al., 2017). Central in this strand are the concepts of variable 
and functional relationships, such as recursive patterns, co-variational relationships, and 
correspondence relationships (Stephens et al., 2017). 



 

 

Modeling languages refers to the application of a cluster of modeling languages both inside and 
outside mathematics (Kaput, 2008). In this strand students begin with problem situations and make 
attempts to mathematise the regularities that are implicitly presented through the situation, using 
appropriate models, such as verbal expressions, equations, and graphs. 

Research question and hypothesis 

The research question that guided this study was the following: Is there a consistent trend in the level 
of difficulty across generalized arithmetic, functional thinking, and modeling languages tasks that 
describes students’ early algebraic thinking abilities? In addressing this question and based on 
theoretical implications described in the previous section, this study tested the following hypothetical 
path model: Students are able to solve generalized arithmetic tasks first. Once this is achieved, they 
proceed to solve functional thinking tasks. Solving modeling languages tasks is achieved last.  

Participants  

A convenience sample of 684 students was involved in the study. The sample consisted of 170 fourth-
graders (10 years old), 164 fifth-graders (11 years old), 184 sixth-graders (12 years old) and 166 
seventh-graders (13 years old). The selection of these grades was done purposefully, since some of 
the concepts embedded in the three algebra content strands are not covered in earlier grades; at the 
same time, formal algebra is taught in later grades. Moreover, the existence of four age-groups 
enabled the examination of the stability of the path model or possible changes across age-groups. 

Test  

The test used to measure students’ early algebraic thinking abilities consisted of 18 tasks that were 
adapted from previous research studies (e.g. Blanton & Kaput, 2005). The test included generalized 
arithmetic, functional thinking, and modeling languages tasks. Table 1 presents indicative examples.  

Table 1: Examples of tasks included in the algebraic thinking test 

Considering that students had adequate time to complete the test during administration, tasks with no 
response were graded with 0 marks. For the multiple choice tasks which had four alternative 

Example Strand 
Is the value of the following expressions the same or not? Justify your answer. 
 

Generalized 
Arithmetic 

At a table that has the shape of a trapezium, 5 children can be seated. If two tables are 
connected, then 8 children can be seated. 

 
(a) How many children can be seated at 3 tables? Justify your answer. 
(b) How many children can be seated at 10 tables? Justify your answer. 

Functional 
thinking 

Joanna will take computers lessons twice a week. Which is the best offer? Justify your 
answer. 
Offer Α: €8 for each lesson 
Offer B: €50 for the first 5 lessons of the month and then €4 for every additional lesson 

Modeling 
languages  

7	 + 	5 7	 + 	5	 + 	2	 − 2 



 

 

responses, one mark was given to each correct response and zero marks were given to each incorrect 
response. For the tasks that had sub-questions, partial credit was given, considering the maximum 
sum of the marks of the sub-questions to be equal to 1. In the tasks where students had to justify their 
answers, the scoring was as follows: 0 mark for fully incorrect responses, 0.50 for giving a correct 
answer without justifying the answer or giving a wrong justification and 1 mark for giving a correct 
answer and a proper justification. In some tasks, where students were expected to use various 
strategies to solve them, a second identification mark was given based on the strategy used. Yet, the 
variation in students’ strategies is not under investigation in the current paper.  

Analysis  

To analyze the quantitative data collected from the test, Latent Path Analysis was used. This kind of 
analysis is part of a more general class of techniques called Structural Equation Modeling (SEM). 
Specifically, Latent Path Analysis is used for testing whether a set of factors that are measured from 
multiple indicators (latent factors) are connected via directional regression paths. In this study, Latent 
Path Analysis was used for testing whether the three algebra content strands are connected via a 
specific path model. The analysis was conducted separately for each age-group and for the whole 
sample as well.  

Firstly, the model described in the study’s hypothesis was examined (Model 1). Moreover, two 
alternative models were also examined (Models 2 & 3). Model 2 assumed that students are able to 
solve both generalized arithmetic and functional thinking tasks first, and then they proceed to solve 
modeling languages tasks. Model 3 assumed that students are able to solve modeling languages tasks 
first, then they proceed to solve functional thinking tasks, and finally they are able to solve generalized 
arithmetic tasks.  

Three fit indices were computed for each model: the chi-square to its degree of freedom ratio (x2/df), 
the comparative fit index (CFI) and the root mean-square error of approximation (RMSEA). For a 
model to be validated, the observed values for x2/df should be less than 2, the values for CFI should 
be higher than .9, and the RMSEA values should be close to or lower than .08. The analysis was 
carried out using the MPLUS software (Muthén & Muthén, 1998).  

In order to better interpret the quantitative results and illustrate examples of students’ thinking in each 
strand, qualitative information from students’ tests was analyzed: ten students were selected and their 
solutions were examined. The selection of these students was based on the method of purposeful 
sampling (Patton, 2002) which suggests the selection of cases that provide rich information about the 
phenomenon under investigation.  

Results 

The results of the Latent Path Analysis suggested that the best fitting model was Model 1, since it had 
the best fitting indices and high regression coefficients for each of the three latent factors. This result 
was the same for each of the four age-groups and for the whole sample. Figure 1 presents the structure 
of the model and the regression coefficients, as resulted from the Latent Path Analysis conducted to 
the data of the whole sample. Specifically, the fitting indices were adequate to provide evidence that 
supports the structure implied in the model (CFI=.959, x2=201.853, x2/df=1.73, RMSEA=.033). This, 



 

 

supports the hypothesis of the existence of a consistent trend. Particularly, it appears that students are 
first able to solve generalized arithmetic tasks, such as using properties of numbers and operations, 
solving equations and inequalities, and analyzing expressions that involve symbols and numbers. 
Once they develop these abilities, they are able to solve functional thinking tasks, such as identifying 
distant terms in patterns, analyzing tables that represent correspondence relationships, and 
interpreting graphs. Generalized arithmetic and functional thinking appear as stepping stones for 
students to move on to modeling languages, where they are able to identify relationships between 
quantities that are presented through a situation and mathematize the situation using an appropriate 
model. 

              
Note. *p<.01, The first number indicates the regression coefficient and the number in parenthesis indicate the proportion of variability 

that can be explained (r2) 

Figure 1: Associations between students’ abilities in different types of early algebraic tasks 

The results of descriptive statistics analyses showed that the students’ highest performance mean was 
in generalized arithmetic tasks (M=.530). The second highest mean score was in functional thinking 
tasks (M=.507). Students’ lowest mean score was in modeling languages tasks (M=.303), indicating 
that these tasks were more difficult for them.  

The qualitative analysis of students’ responses to specific tasks provided insights into the way 
students develop and apply the processes of generalizing and representing in each content strand. At 
the same time, these data allow further interpretation of the trend outlined from the latent path 
analysis. Figure 2 presents indicative examples of students’ responses to three different tasks. 

In the generalized arithmetic task (Fig. 2a), the student seems to directly recognize that the value of 
each expression is the same, without performing computations and comparing their results. The 
student expresses verbally the observed structure and seems to use the numbers -2 and +2 in a general 
way, as “quasi-variables” (Fujii & Stephens, 2001), to represent a regularity. Student’s response 
shows that a familiar context, as the one of arithmetical expressions, enables noticing structure and 
regularities, generalizing from these regularities, and using means other than alphanumeric symbols 
to represent these generalizations, such as verbal descriptions. 

The abilities developed within a generalized arithmetic perspective seem to facilitate students to begin 
making “factual” generalizations from concrete actions (Radford, 2003). Based on the quantitative 
data, these abilities seem to prompt students to look for structure and relationships in more complex 
contexts. As shown in Figure 2b, in a figural pattern, the student approaches the first question based 
on numerical actions, by drawing the next table and seats and probably counting the number of seats. 
The student seems to focus on one variable (the number of seats) and finds the answer based on the 
identification of a recursive pattern. Yet, the second question prompts the student to reason about two 
quantities that co-vary, since drawing and counting would not be a convenient strategy for finding a 
far term. The student seems to notice the pattern’s structure and the relationship between the number 

Functional 
thinking 

Generalized 
arithmetic 

Modeling 
languages 

.884 (.781) .883 (.780) 



 

 

of tables and the number of seats. In this case, the student recognizes that tables at the edges always 
have 4 seats each and tables in the middle always have 3 seats each, and writes two distinct 
expressions to reach the final answer. However, the student seems to acknowledge that there is a 
general rule, despite the fact that there is no use of alphanumeric symbols. The student’s 
generalization at this point seems to be, in terms of Radford (2003), a “contextual” generalization 
based on a situated description. 

 
Figure 2: Indicative examples of students’ responses  

In the modeling languages task (Fig. 2c), the student identifies first the quantities involved: the 
dependent variable (the monthly cost of the lessons) and the independent variable (the number of 
lessons during a month); the student considers the number of monthly lessons to be 8. Furthermore, 
the student formulates expressions for Offer A and B, taking into consideration all variables described 
in the problem. In this sense, the student develops the processes of generalizing and representing in 
order to establish a general mathematical relationship that fits the situation. The student’s response 
implies that arithmetical expressions are used to build a “contextual” generalization (Radford, 2003).  

a. Generalized arithmetic task 

Is the value of the following expressions the same or not? Justify your answer. 
 
 
 
Yes because 7+5 is the same in both expressions and -2+2=0. 

b. Functional thinking task 

(a) How many children can be seated at 3 tables? Justify your answer. 
 
 
 
 
(b) How many children can be seated at 10 tables? Justify your answer. 
 
 
 
 
 

children 

children 

2 edges 

8 between 

c. Modeling languages task 

Joanna will take computers lessons twice a week. Which is the best offer? Justify your answer. 
Offer Α: €8 for each lesson 
Offer B: €50 for the first 5 lessons of the month and then €4 for every additional lesson 
 
 
 
 
 
 
 

1 month = 4 weeks  

1st offer= €64  
2ndt offer= €62  

Offer B is more advantageous  



 

 

Discussion and Conclusions  

In this study, we attempted to validate a path model which describes early algebraic thinking abilities 
that students seem to develop first and the way these are associated to other abilities that students 
seem to develop later on. The abilities examined were extracted from Kaput’s (2008) theoretical 
framework about the three core algebra content strands: generalized arithmetic, functional thinking, 
and modeling languages. The results of the quantitative analyses provide evidence that there is a 
consistent trend in the level of difficulty across the three strands. It appears that students find it first 
easiest to solve generalized arithmetic tasks, and then functional thinking tasks. Once this is achieved, 
they can proceed to solve modeling languages tasks. These results complement but also extend the 
findings of previous studies that reported the significant role of content strands, such as generalized 
arithmetic and functional thinking in setting foundations in elementray mathematics for the longterm 
development of students’ algebraic thinking (e.g. Carraher et al., 2006). Particularly, the findings of 
this study verify the ideas of a number of researchers (e.g. Fujii & Stephens, 2001) that the 
development of early algebraic thinking lies in the arithmetic that is taught in elementary school so 
that students pay attention to its underlying structure and properties and gradually develop the ability 
to identify and describe functional relationships between quantities that co-vary.  

The data from the qualitative analysis exemplify the nature of students’ thinking while they try to 
solve these types of tasks. Moreover, these data provide a plausible explanation for the idea that, in 
generalized arithmetic, students’ pre-acquired arithmetical knowledge serves as a turning point for 
introducing them to early algebraic thinking. Generalized arithmetic encompasses familiar contexts 
that allow students to develop the processes of generalization and representation, without necessarily 
using alphanumeric symbols. The strand of functional thinking seems to strengthen the interplay 
between arithmetic and algebra, by introducing students to the concept of functions (Radford, 2014). 
Modeling languages appear to involve more advanced forms of algebraic thinking (Blanton & Kaput, 
2005) that require the use of algebra as a tool in order for students to generalize, model, and justify 
relationships that are implicitly presented through problem situations.  

Overall, this study provides empirical data that document students’ capability to develop essential 
forms of early algebraic thinking that are foundational for the development of formal and abstract 
algebraic thinking. Moreover, the results imply that a comprehensive and sustained early algebra 
approach must build on developing students’ abilities not only on one specific content strand but 
across the strands of generalized arithmetic, functional thinking and modeling languages. It should 
be noted that the model proposed in this study was formulated based on Kaput’s theoretical 
framework and involved a sample of students with specific mathematical experiences. Future studies 
may examine the stability of this model in earlier or later grades of schooling. Following recent 
suggestions (e.g. Blanton et al., 2017), future studies might also confront generalized arithmetic and 
equation solving as two seperated strands and test the associations between them as well as with the 
strands of functional thinking and modeling languages. 
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