

Partitioning of Mg, Sr, Ba and U into a subaqueous speleothem.

Russell N. Drysdale, Giovanni Zanchetta, Illaria Baneschi, Massimo Guidi, Ilaria Isola, Isabelle Couchoud, Leonardo Piccinini, Alan Greig, Henry Wong, Jon Woodhead, et al.

▶ To cite this version:

Russell N. Drysdale, Giovanni Zanchetta, Illaria Baneschi, Massimo Guidi, Ilaria Isola, et al.. Partitioning of Mg, Sr, Ba and U into a subaqueous speleothem.. Geochimica et Cosmochimica Acta, 2019, 264, pp.67-91. 10.1016/j.gca.2019.08.001 . hal-02415970

HAL Id: hal-02415970 https://hal.science/hal-02415970

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0016703719304995 Manuscript_be9442d90372464446ee2faab840a94e

1	Partitioning of Mg, Sr, Ba and U into a subaqueous
2	calcite speleothem
3	
4	
5	Russell N. Drysdale ^{1,2} , Giovanni Zanchetta ³ , Ilaria Baneschi ⁴ , Massimo Guidi ⁴ , Ilaria Isola ⁵ ,
6	Isabelle Couchoud ^{2,1} , Leonardo Piccini ⁶ , Alan Greig ⁷ , Henri Wong ⁸ , Jon D. Woodhead ⁷ , Eleonora
7	Regattieri ³ , Ellen Corrick ^{1,2} , Bence Paul ⁷ , Christoph Spötl ⁹ , Eleonor Denson ¹ , Jay Gordon ¹ ,
8	Stephane Jaillet ² , Florian Dux ⁷ , John C. Hellstrom ⁷
9	
10	
11	1. School of Geography, The University of Melbourne, 3010 Victoria, Australia
12	2. Laboratoire EDYTEM, UMR CNRS 5204, Université Savoie Mont Blanc, Université Grenoble Alpes,
13	73376 Le Bourget du Lac, France
14	3. Dipartimento di Scienze delle Terra, Universita degli Studi di Pisa, Pisa 56126 Italy
15	4. Istituto di Geoscienze e Georisorse IGG-CNR, via Moruzzi 1, 56126 Pisa, Italy
16	5. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, via della Faggiola 32, 56126 Pisa, Italy
17	6. Dipartimento di Scienze delle Terra, Universita degli Studi di Firenze, Via la Pira 4, 50121 Firenze, Italy
18	7. School of Earth Sciences, The University of Melbourne, 3010 Victoria, Australia
19	8. Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
20	9. Institut für Geologie, Universität Innsbruck, A-6020 Innsbruck, Austria

21 ABSTRACT

22 The trace-element geochemistry of speleothems is becoming increasingly used for reconstructing 23 palaeoclimate, with a particular emphasis on elements whose concentrations vary according to 24 hydrological conditions at the cave site (e.g. Mg, Sr, Ba and U). An important step in interpreting 25 trace-element abundances is understanding the underlying processes of their incorporation. This 26 includes quantifying the fractionation between the solution and speleothem carbonate via partition 27 coefficients (where the partitioning (D) of element X (D_X) is the molar ratio [X/Ca] in the calcite 28 divided by the molar ratio [X/Ca] in the parent water) and evaluating the degree of spatial 29 variability across time-constant speleothem layers. Previous studies of how these elements are 30 incorporated into speleothems have focused primarily on stalagmites and their source waters in 31 natural cave settings, or have used synthetic solutions under cave-analogue laboratory conditions to produce similar dripstones. However, dripstones are not the only speleothem types capable of 32 33 yielding useful palaeoclimate information. In this study, we investigate the incorporation of Mg, Sr, 34 Ba and U into a subaqueous calcite speleothem (CD3) growing in a natural cave pool in Italy. Pool-35 water measurements extending back 15 years reveal a remarkably stable geochemical environment 36 owing to the deep cave setting, enabling the calculation of precise solution [X/Ca]. We determine 37 the trace element variability of 'modern' subaqueous calcite from a drill core taken through CD3 to 38 derive D_{Mg} , D_{Sr} , D_{Ba} and D_U then compare these with published cave, cave-analogue and seawateranalogue studies. The D_{Mg} for CD3 is anomalously high (0.042 ± 0.002) compared to previous 39 estimates at similar temperatures (~8°C). The D_{Sr} (0.100 ± 0.007) is similar to previously reported 40 41 values, but data from this study as well as those from Tremaine and Froelich (2013) and Day and 42 Henderson (2013) suggest that [Na/Sr] might play an important role in Sr incorporation through the 43 potential for Na to outcompete Sr for calcite non-lattice sites. D_{Ba} in CD3 (0.086 ± 0.008) is similar 44 to values derived by Day and Henderson (2013) under cave-analogue conditions, whilst D_U (0.013) 45 \pm 0.002) is almost an order of magnitude lower, possibly due to the unusually slow speleothem growth rates (<1 μ m a⁻¹), which could expose the crystal surfaces to leaching of uranyl carbonate. 46 Finally, laser-ablation ICP-MS analysis of the upper 7 µm of CD3, regarded as 'modern' for the 47 48 purposes of this study, reveals considerable heterogeneity, particularly for Sr, Ba and U, which is 49 potentially indicative of compositional zoning. This reinforces the need to conduct 2D mapping 50 and/or multiple laser passes to capture the range of time-equivalent elemental variations prior to 51 palaeoclimate interpretation.

52

53 Keywords: trace-element geochemistry, speleothems, calcite, partition coefficients, caves,
54 palaeoclimate

56 1. INTRODUCTION AND BACKGROUND

57 The trace-element geochemistry of calcium carbonate minerals is widely used to help reconstruct 58 past environments across a wide range of time scales (Fairchild & Treble 2009). The mechanisms 59 by which these elements are incorporated vary depending on the physical properties of the element (e.g. especially the charge and ionic radius – Bourdin et al. 2011), the carbonate mineral in question 60 (usually either calcite or aragonite, e.g. Balboni et al. 2015; Wassenburg et al. 2016, Chen et al. 61 62 2016) and the mineralization environment (e.g. marine vs cave vs soil; Mucci & Morse 1983; Burton & Walter, 1991; Fairchild et al. 2000; Kelly et al. 2006). Key to understanding these 63 64 mechanisms and interpreting trace-element variations in palaeoenvironmental archives is the 65 quantification of the relationship between the trace element-to-calcium ratio [X/Ca] of the 66 carbonate and that of the parent solution, known as the 'partition coefficient' $[D_X]$. This is defined 67 empirically as:

68

69

$$D_{\rm X} = \frac{[{\rm X}/{\rm Ca}]_{\rm CaCO_3}}{[{\rm X}/{\rm Ca}]_{\rm aq}} \tag{1}$$

70

Speleothems (e.g. stalagmites, flowstones) are palaeoclimate archives composed of calcium carbonate, usually in the form of the mineral calcite or aragonite (Fairchild & Baker 2012). They are formed from carbonate-rich waters that have permeated through limestone or dolomite host rock. When the waters reach an air-filled chamber with a lower partial pressure of carbon dioxide (PCO₂), CO₂ outgassing causes the solution to become supersaturated with respect to calcite (or aragonite) to a point where mineral precipitation occurs in the form of stalagmites, flowstones and other speleothem types.

78

In the last two decades, speleothems have emerged as valuable palaeoenvironmental archives because their source waters encode geochemical information on climate-driven shifts in rainfall, temperature and/or vegetation above the cave (Fairchild & Baker 2012). Their utility is further enhanced by the ability to date them accurately and precisely using U-Th and U-Pb methods (Cheng et al. 2009, 2016; Woodhead et al., 2006), which allows the assembly of high-quality palaeoclimate proxy time series.

85

The most widely used environmental proxies in speleothem studies are stable oxygen and carbon isotope ratios (expressed as δ^{18} O and δ^{13} C, respectively) (Fairchild & Baker 2012). Changes in speleothem δ^{18} O are a function of the temperature of mineralisation in the cave and drip-water δ^{18} O (Hendy & Wilson 1968; Schwarcz et al. 1976), with the latter generally regarded as the main driving factor (McDermott 2004; Lachniet 2009). Mean drip-water δ^{18} O values principally reflect

the amount-weighted average of δ^{18} O of effective recharge at a cave site, which can be affected by 91 92 seasonal changes in local hydrology (e.g. Markowska et al. 2016). The climate mechanisms controlling local rainfall δ^{18} O reflect a complex series of fractionation processes that take place 93 between the original moisture source and the cave site (Lachniet 2009). Interpreting trends in 94 95 speleothem δ^{18} O in terms of changes in, for example, rainfall amount, dominant air-mass trajectories and seasonality, can be challenging. The interpretation of speleothem $\delta^{13}C$ is similarly 96 97 complex (Lauritzen & Lundberg 1999; McDermott 2004), particularly in determining the relative 98 importance of climate-driven processes in the soil/epikarst and those occurring within the cave 99 chamber (which may or may not be climate-driven) (Fairchild & Baker 2012). Thus, 100 complementary sources of proxy information from alternative speleothem properties are useful for 101 refining palaeoclimate reconstructions.

102

103 Trace-element geochemistry has emerged as the principal means by which to extract such 104 complementary information (Johnson et al. 2006; Fairchild & Treble 2009; Griffiths et al. 2010; 105 Fairchild & Baker 2012; Fohlmeister et al. 2012; Hartmann et al. 2013; Orland et al. 2014). Trace elements are sourced from aerosols, soils, vegetation, bedrock and/or sediment infills, and reach the 106 107 growing speleothem as colloids, solutes or particulates (Fairchild & Treble 2009). Although a wide 108 variety of elements has been investigated (Borsato et al. 2007; Zhou et al. 2008; Fairchild & Baker 109 2012; Day & Henderson 2013), most attention has been directed at elements that substitute for the calcium ion (Ca²⁺) in the crystal structure, notably Mg^{2+} , Sr^{2+} and Ba^{2+} (Mucci & Morse 1983; 110 111 Paquette & Reeder 1995; Rimstidt et al. 1998). Such elements are often sensitive to climate-driven changes in cave hydrology (Fairchild & Treble 2009; Day & Henderson 2013; Tremaine et al. 112 113 2013), and thus have considerable value in refining or reinforcing interpretations of stable isotope changes (Treble et al. 2005; Drysdale et al. 2006; Cruz et al. 2007; Liu et al. 2013; Wong et al. 2015; 114 115 Ünal-Imer et al. 2016; Bernal et al. 2016). This can be further complemented by data from other isotope systems (e.g. Ca and U isotopes - Owen et al. 2016; Hellstrom & McCulloch 2000; 116 117 Drysdale et al. 2005).

118

A number of previous studies have determined partition coefficients directly using natural cave waters and speleothems (Gascoyne 1983; Fairchild et al. 2001; Tremaine & Froelich 2013; Wassenburg et al. 2016) and through laboratory 'cave-analogue' experiments (Huang & Fairchild 2001; Day & Henderson 2013), but their number is few owing to the practical difficulties of farming calcite in caves and mimicking the intricate physico-chemistry of caves in a laboratory setting. The great majority of the research conducted to date has been aimed largely at partitioning between drip-waters and stalagmites (or analogues thereof), whereas partitioning into otherspeleothem types remains largely unexplored.

127

128 In this study we investigate the partitioning of trace elements into subaqueous speleothem calcite. 129 Subaqueous speleothems have rarely been considered in palaeoenvironmental research. Most speleothem studies to date have been based on either stalagmites or flowstones, which usually yield 130 higher-resolution records. However, the partitioning of trace elements into these stalagmites or 131 132 flowstones is likely to differ from that of subaqueous speleothems because of the strong contrast in 133 physico-chemical conditions, which govern reaction kinetics and, by implication, trace-element 134 partitioning (Fairchild & Baker 2012). Whilst subaqueous speleothems have been shown to be potentially susceptible to radiometric dating problems (Edwards et al. 1993; Moseley et al. 2016), 135 136 their great value lies in their ability to capture long, continuous palaeoclimate records (Winograd et al. 1992; Drysdale et al. 2012). Being mostly fed by multiple, rather than single, points of vadose 137 138 percolation flux, pool-water geochemistry is likely to be more representative of a regional response 139 to environmental change than stalagmites because, provided the pool is large enough, it potentially 140 integrates recharge from a larger surface above the cave and is less susceptible to the nuances of an 141 individual drip-water flow path. Here we present results from a series of near-monthly water 142 chemistry measurements from an Italian cave pool conducted over the period from May 2009 to 143 March 2012. We assess the temporal patterns of hydrochemical changes in the pool and compare 144 with the observed rainfall for the same period, then combine the pool-water and subaqueous calcite [X/Ca] to calculate a series of partition coefficients (D_{Mg} , D_{Sr} , D_{Ba} and D_{U}). We then compare these 145 146 new data with published partition coefficients from mostly cave and cave-analogue studies.

147

148 2. STUDY SITE AND SAMPLING

149 The water and calcite samples used in this study were collected from Antro del Corchia, a large 150 cave system developed in Mesozoic dolomites, marbles and dolomitic marbles of the Alpi Apuane of western-central Italy (Piccini et al. 2008; Baneschi et al. 2011) (Fig. 1). The samples come from 151 152 a cave pool ('Laghetto Basso') (Fig. 2 & 3) that has developed on the floor of a large, well-153 decorated chamber called the Galleria delle Stalattiti (GdS). The chamber is situated ~400 m 154 vertically below the surface at ~835 m above sea level, and is located about 1 km from the nearest 155 natural entrance to the cave (Piccini et al., 2008). The microclimate is relatively stable, typical of 156 deep-cave environments: based on continuous monitoring between 2002 and 2006, the mean (±1 157 s.d.) temperature, wind speed and relative humidity of the chamber is 8.4 (0.3) $^{\circ}$ C, 0.09 (0.07) m s⁻¹, 158 and 100.0 (0.2) %, respectively (Piccini et al. 2008). Rainfall reaching the cave is derived primarily 159 from air masses moving eastwards from the North Atlantic (Drysdale et al. 2004). The Alpi Apuane

massif presents a topographic barrier to these air masses, and the orographic rainfall it promotes
produces an annual average of over 3000 mm at the watershed near Monte Corchia (Piccini et al.
2008).

163

The rock sequence above the GdS has been subjected to multiple phases of metamorphism 164 (Carmignani & Kligfield 1990; Kligfield et al. 1986). The Paleozoic basement, consisting mainly of 165 phyllites (Filladi Inferiori), porphyritic meta-volcanics (Porfiroidi e Scisti Porfirici), quartzites 166 167 (Filladi Superiori) and local lenses of graphitic schist and meta-dolostone (Dolomie a Orthoceras), 168 is overlain by the dolomitic 'Grezzoni', which is the basal portion of the metamorphosed Apuane carbonates (Fig. 2; Table A1) (Carmignani & Giglia 1984; Conti et al. 1993). The Grezzoni has 169 been overfolded such that the basement sits topographically above the carbonates and is exposed at 170 171 the surface directly above the GdS chamber. However, whilst percolation waters almost certainly 172 enter the karst along the basement-dolomite contact, surface hydrography precludes significant 173 karst recharge via direct surface runoff from the basement itself (Fig. 2).

174

175 176

177

Figure 1: Location and geology of the study area. A geological cross section between a' and a'' is shown in Figure 2c.

- Based on a preliminary cave survey conducted in May 2017, the minimum volume of Laghetto Basso has been calculated at 15.2 m^3 , 80% of which is contained within a single basin (**Fig. 3**). This
- 181 basin is fed largely by a drapery of stalactites that have grown from percolation waters issuing from

182 fractures aligned parallel to the strike of the carbonate beds that form the chamber's ceiling. It drains across a narrow sill at the southern end (Drysdale et al. 2012). Drip-water discharge 183 monitoring at nearby site CNR2, conducted over a two-year period starting in October 2007, 184 185 suggests relatively constant dripping rates (varying by less than ~50% around a mean value of 89 drips per hour: Baneschi et al. 2011), suggesting some degree of dampening of seasonal recharge 186 variations due to the long flow path and volume of vadose storage. One-off instantaneous drip 187 measurements conducted in May 2017 showed that the pool receives at least ~37 L/day, equivalent 188 189 to a mean residence time of the pool waters of almost one year. Based on the CNR2 drip-rate data, 190 the month of May is a good proxy for mean annual drip rate (mean value: 93 drips per hour; May 191 2008 and 2009 mean value: 95 drips per hour), suggesting the instantaneous pool measurements 192 offer a reasonable first-order estimate of turnover rate. Stable isotope data show that the pool waters 193 are isotopically very stable (Piccini et al. 2008; Baneschi et al. 2011; Daëron et al. 2019), 194 suggesting the percolation waters are well mixed by the time they arrive in the pool.

195

196 197 198

199

200

Figure 2: (a) Laghetto Basso pool, from where the CD3 core was drilled. (b) Plan-view map of the part of Corchia Cave where this study was carried out. Galleria delle Stalattiti is located in the far north. (c) Topographic and geological cross section through Monte Corchia along a traverse (shown in Figure 1) incorporating the Galleria delle Stalattiti.

The wetted perimeter of Laghetto Basso is coated with a continuous crust of "mammillary calcite" of variable thickness, similar to the well-known subaqueous vein calcite of Devils Hole, Nevada (e.g. Winograd et al., 1992; Kolesar and Riggs, 2004). The crust morphology varies according to that of the underlying bedrock floor, which is, in parts, littered with broken speleothems. In the largest basin of Laghetto Basso, several ~hemispheric domes occur, from one (CD3) of which the core sample (CD3-12) for this study was drilled (**Fig. 2**).

208

209 210

211 212

Figure 3: Plan and section view of Laghetto Basso derived from a 3D cave survey conducted in May 2017. Volumetric data are shown for the individual basins. The basin hosting the subaqueous speleothem CD3 is the largest.

- 213214
- 215 **3. METHODS**

216 **3.1 Water sampling and analysis**

217 Water temperature, electrical conductivity (EC) and pH were measured directly in the Laghetto 218 Basso water using a portable multi-parameter meter (Delta OHM Instruments). Accuracy is 0.5%

for conductivity, 0.25% for temperature and 0.1 for pH. The pH and EC sensors were calibrated prior to each sampling trip with certified standard buffer solutions (pH 4 and 7 solutions, and 147, 717.5 and 1413 μ S cm⁻¹ solutions).

222

223 Total alkalinity was measured in the field within 1-2 hours of sampling by HCl (0.1 N) titration 224 according to Gran's method (Gran 1952) using methyl-orange as the indicator solution. The error of 225 the analysis is 0.01 meq L^{-1} . Additional samples were stored in chemically inert polyethylene bottles with a screw cap and a separate internal closure plug for additional air-tight sealing. One 226 227 aliquot of each was filtered through a 0.45-µm cellulose-acetate syringe filter then split into two 228 acid-washed/MQ water-rinsed bottles: the first was acidified with suprapur HNO₃ (2% v/v, 229 TraceSELECT Fluka, with U, Ba, Sr < 0.5 μ g/kg) for U, Sr and Ba analysis, whilst the second 230 fraction, reserved for cation Ca and Mg analysis, was acidified with HCl (2% v/v, Sigma-Aldrich 231 puriss. p.a. with Ca < 0.5 and Mg < 0.1 mg/kg in order to prevent any post-sampling calcite 232 precipitation. A second unacidified aliquot was analysed for anions and Na. A "blank" sample 233 (MQ-water filtered and acidified in the field) was prepared to check for contamination during 234 sampling. All solutions were kept refrigerated at 4 °C until analysis.

235

Major cations (Ca, Mg and Na) were analysed by atomic absorption spectrometry (Perkin-Elmer model 3110), and anions by ion chromatography (Dionex-100). The minor elements Sr and Ba were measured by inductively coupled plasma atomic emission spectrometry (ICP-AES, Perkin-Elmer Optima 200DV) at the Institute of Geoscience and Earth Resources, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy. Uranium analysis was carried out using inductively coupled plasma mass spectrometry (ICP-MS Perkin Elmer model ELAN 5000) at the EUROLAB laboratories in Nichelino, Italy.

243

244 The analytical reproducibility (\pm) for Ca, Mg, Na, K, Cl and SO₄ was $\leq 2\%$, and $\leq 5\%$ for Sr, Ba, and 245 U. The detection limit for Ba and Sr was 1 ppb and for U was 0.5 ppb; these elements were 246 analysed on undiluted subsamples. All analyses included replicates, blanks and quality-control 247 standards measured with every set of unknown samples, the concentrations of which were calculated from daily calibration curves. The calcite saturation indices (defined as the log of the 248 249 quotient of ionic activity product and solubility product) and the partial pressure of CO_2 in equilibrium with the solution, expressed as logPCO₂, were determined from the measured drip-250 251 water chemistry using SOLVEQ (Reed 1982).

252

253 **3.2 Speleothem sampling**

254 Modern samples were obtained from the outer surface of drill core CD3-12, which was recovered from CD3, a ~30-cm-high subaqueous dome-shaped mound, in December 2012 using a battery-255 256 powered drill fitted with a 45-mm-internal-diameter, diamond-crowned core barrel (Spötl and 257 Mattey 2012). The core measures 260 mm in length and was drilled to bedrock. It was cut 258 longitudinally into two halves which were then polished. The speleothem bears no visible signs of 259 alteration and, like other cores drilled from the same pool (Drysdale et al., 2012), comprises a 260 compact crystalline calcite fabric of a predominantly columnar-fascicular optic type (sensu Neuser 261 & Richter 2007; Frisia 2015), with large polycrystals up to several centimetres long (length-to-262 width ratio commonly > 10:1), oriented roughly perpendicular to the growth surface, and 263 characterised by undulatory extinction (in cross-polarized light). This fabric is common to 264 speleothems with a relatively high Mg content (typically from 10,000 to 30,000 ppm). In 265 stalagmites and flowstones, this has been shown to most likely develop where source-water Mg/Ca lies between ~ 0.4 and ~ 3 mol/mol and where the calcite saturation index (SI_c) is between ~ 0.3 and 266 267 ~0.5 (Frisia 2015).

268

269 Each half of CD3-12 was ultrasonically cleaned in double-deionised water to remove any loose 270 particles that might be present on the active growth surface. It was then clamped face down to the 271 edge of a bolting plate fitted to the moving stage of a milling lathe (Fig. A1). Fifteen surface 272 carbonate samples (7 from one half, 8 from the other, giving a total of 15 aliquots) were then 273 carefully abraded individually from discrete ca. 1 cm² regions of the active outer growth surface using a Dremel hand tool fitted with a 0.4-mm diameter diamond bur with the assistance of a 3x 274 275 magnification lense. A single pass across each crystal was made, and, using the bur diameter as a 276 guide, the depth of abrasion was conservatively estimated to be no more than 100 µm. The 277 carbonate was collected on weighing paper suspended on a scissor jack positioned beneath the 278 speleothem tip (Fig. A1). After sampling over each region, the core section was unclamped, and the 279 remaining powder transferred to the weighing paper by tapping the section. The yield was placed 280 into a clean 1.5 mL microcentrifuge tube. Prior to sampling the next region, the section was cleaned 281 using compressed air.

282

The yield from each region was split into several fractions for a range of analyses (including clumped isotopes: Daëron et al. 2019). Two aliquots of $\sim 0.2 - 1.0$ mg were set aside for trace element analyses by ICP-MS in two different laboratories: the Isotope Geochemistry Laboratory at the School of Earth Sciences, The University of Melbourne (herein 'UM'), and the Elemental Laboratory, Isotope Tracing in Natural Systems, the Australian Nuclear Science and Technology Organisation (herein 'ANSTO'). 289

3.3 Speleothem age

291 Exploratory uranium-series dating of CD3 suggested a basal age of around 1 Ma (Drysdale et al. 292 2008). This has been confirmed by comparing stable isotope profiles from Corchia Cave 293 stalagmites dated by U-Pb, including stalagmite CC8 reported in Bajo et al. (2012), with isotope 294 profiles from the base of CD3 (our unpublished data). Ages reported in Drysdale et al. (2012) from 295 core CD3-1 (drilled in 2007; length: 260 mm), covering the depth range of ~40 to ~50 mm from the 296 top, span 229±5 to 295±8 ka, consistent with a basal age of the order of 1 Ma. Verifying a 'modern' 297 age at the top of CD3, on the other hand, has proved somewhat more challenging. U-Th 298 measurements on powders carefully scraped from the very outer surface give ages up to several 299 thousand years before present, suggesting growth had stopped well before the monitoring period for 300 this study. However, a subsequent chronology (**Table A2**) used to anchor CD3 δ^{18} O and δ^{13} C time series reveals that stable isotope patterns are up to several thousand years older than those from a 301 302 well-dated coeval stalagmite (CC26) (Zanchetta et al. 2007; Bajo et al. 2016; see supplementary 303 information in Appendix 1 and Fig. A2 to A6). This indicates that CD3 yields older-than-true ages, 304 and that the pool water is susceptible to the same dating issue recently proposed for Devils Hole (Nevada, USA): the growing surface of subaqueous calcite scavenges excess ²³⁰Th produced by 305 decay of ²³⁴U in the water column (Edwards & Gallup 1993; Moseley et al. 2016). To place CD3 306 onto an accurate age scale and to quantify the age offset, we synchronised its δ^{18} O and δ^{13} C profiles 307 to those of CC26 (Fig. A5). The results show that the mean offset over the Holocene is ~2 kyr. The 308 δ^{18} O and δ^{13} C at the top of CD3 (Daëron et al. 2019) is consistent with the δ^{18} O and δ^{13} C 309 composition of the tips of stalagmites actively growing within a 20 m radius of the pool (Fig. A5). 310 311 Therefore, whilst we cannot definitively demonstrate that CD3 is active today due to its slow growth rate and the incorrect U-Th dates, the combined evidence of: (i) the corrected CD3 age 312 313 profile; (ii) the excellent agreement between the isotopic composition of the CD3 outer surface and 314 that of actively growing stalagmites near the pool; and (iii) the fact that the speleothem has grown 315 continuously over almost the last million years, including glacial periods (Drysdale et al. 2012), 316 would indicate that the speleothem is actively growing today. We also note that the slow growth 317 rate precludes the detection of the radiocarbon bomb pulse, as has been possible for faster-growing 318 speleothems (Genty & Massault 1997; Mattey et al. 2008; Hodge et al. 2011; Griffiths et al. 2012).

319

Based on the thickness of its Holocene section (~4 mm; **Fig. A6**), and the likelihood of relatively stable growth rates based on previously studied Holocene stalagmites from Corchia (Zanchetta et al. 2007; Bajo et al. 2016; Isola et al. 2019), the sampled surface calcite of CD3-12 conservatively integrates the last ~300 yr of growth. 324

325 **3.4 Calcite analyses**

326 3.4.1 Solution analyses of CD3-12 core-top calcite

327 For solution analyses at UM, the calcite aliquots were dissolved in 1 mL of 5% twice-distilled HNO₃ containing a nominal 2 ppb of internal standards (⁶Li, ⁸⁴Sr, ²³⁵U and In). The vial contents 328 were mixed by shaking then dispensed into tubes for analysis. A further 1 mL was added to the 329 330 now-empty vials and the process repeated to ensure all solutes were removed. For the purpose of 331 preparing standards, data from previous laser-ablation ICP-MS analyses on Laghetto Basso calcite 332 enabled the matrix of the speleothem to be matched as closely as possible. A 50:50 mix of a 333 previously analysed speleothem solution and a basalt rock standard solution were used for 334 calibration for a better matrix match than the pure silicate rock standards normally used for 335 calibration. Samples were run on an Agilent 7700x ICP-MS. The calibration standard was run every 8 samples to correct for external drift after internal standard normalisation. 336

337

At ANSTO, the aliquots were digested in 3% Merck suprapur HNO₃ which was spiked with an internal standard to a final concentration of 20 ppb. Standards were prepared using the same spiked 3% HNO₃ solution. The standard concentrations were prepared according to previously determined approximate sample concentrations. The elements were analysed using a Varian 820MS ICP-MS with internal standards used to correct for matrix effects and instrument drift. Standard checks were analysed after every 20th sample.

344

In both laboratories, elements were normalized to 43 Ca and molar ratios calculated. The reproducibility for the calibration standard ratios at UM were 1.2% for (25 Mg: 43 Ca), 1.0% for (88 Sr: 43 Ca), 1.0% for (137 Ba: 43 Ca), and 0.9% for (238 U: 43 Ca), whilst at ANSTO they were 1.6% for (25 Mg: 43 Ca), 1.6% for (88 Sr: 43 Ca), 1.2% for (137 Ba: 43 Ca), and 1.3% for (238 U: 43 Ca).

349

350 3.4.2 Laser-ablation analyses of the outermost layer of CD3-12 calcite

351 To complement the calcite solution ICP-MS analyses, we used laser-ablation inductively coupled 352 plasma mass spectrometry (LA-ICP-MS) to investigate the level of homogeneity of Mg, Sr, Ba and U concentrations in the outermost layer of CD3-12 (Fig. A7). To achieve this, analyses were 353 354 conducted on a polished section of CD3-12 using a 193-nm Ar-F excimer laser-ablation system 355 coupled to an Agilent 7700x quadrupole ICP-MS. The laser targetted the outermost 7 µm, running parallel to the growth surface. The operating conditions of the laser and ICP-MS, as well as the 356 357 elements/masses that were analysed, are summarised in Table 1. The sample was first ultra-358 sonically cleaned in double-deionised water for 15 minutes then fitted into the sample holder of the

359 laser system, which moves in x, y via a computerised stage. The RESOlution laser-ablation system, 360 fitted with a Laurin Technic two-volume ablation cell, is driven by *GeoStar* software (Resonetics) and was set up to ablate seven traverses of unequal length along the outermost 7 µm (e.g. 361 Woodhead et al., 2007) (Fig. A7) and using a 7-µm-square ablation profile. Based on a mean 362 Holocene growth rate of ~0.34 μ m yr⁻¹ (Appendix 1), this is likely to integrate the last ~21 years of 363 364 growth up to the date of core drilling (December 2012), encompassing the period over which the 365 water sampling was conducted. Although the accuracy and precision of the calcite LA-ICP-MS 366 results are unlikely to compete with those from the solution analyses due to the lack of a compatible 367 matrix-matched standard against which to calibrate raw laser data, the advantage lies in its 368 outstanding spatial detail. The technique should resolve significant changes in element 369 concentrations that might be related to, for example, the mode of element incorporation (e.g. 370 replacement, interstitial) or crystal zoning (Reeder & Grams 1987).

371

372 Each ablation 'spot' (n=120 in total) was ablated for 15 s at a pulse rate of 5 Hz and a fluence of 5 J cm⁻². The spacing between successive ablation centres was 8 µm. Ablation took place in an 373 374 environment of ultra-high-purity helium, with the ablated aerosol carried into the mass spectrometer 375 under an ultra-high-purity argon stream. Elemental concentrations were calibrated against the NIST SRM610 glass reference standard (measured three times during the session) with ⁴³Ca used as an 376 377 internal standard to monitor and correct for instrument drift. Raw mass spectrometry data were 378 reduced using *Iolite* software (Hellstrom et al., 2008; Paton et al., 2011). A laser log file produced 379 by *GeoStar* records the laser state and the position of the laser spot against a timestamp. For each 380 spot, the first 2 s were cropped to eliminate residual surface contaminants after ultrasonication, 381 whilst the last 8 s were cropped due to down-hole diminution of yield and mass fractionation. This resulted in a final data acquisition time of ~5 s per spot, equivalent to 24 or 25 data points per spot. 382 383 The mean analytical uncertainty on the four elements based on the internal 95% standard error (2 384 s.e.) on the three NIST610 glass standard measurements is between 3.0 and 3.8%.

385

Finally, the mean and standard deviation from the LA-ICP-MS Mg, Sr, Ba and U data were calculated and combined with the pool water [X/Ca] to derive a comparison series of D_X values.

388

389 3.5 Rainfall data

To determine the sensitivity of pool-water trace element concentrations to cave recharge, hourly pluviometric data from the nearest rain gauging stations (Cervaiole: ~4.5 km WNW of Monte Corchia, elevation 1140 m a.s.l.) and Retignano (~3 km SSW of the cave entrance, 440 m a.sl.) (**Fig. 1 & 2**) were aggregated to produce monthly series over the period of water sampling. 394 395

396 **4. RESULTS**

397 **4.1 Pool-water chemistry**

The pool-water chemistry of Laghetto Basso is summarised in Table 2; additional data, including 398 399 charge balances, saturation indices and PCO₂ values, are contained in Table A3. The Laghetto Basso water temperature is stable at $7.9 \pm 0.4^{\circ}$ C (2 σ), which is to be expected from a deep-400 401 interior chamber. The pH of the waters is slightly alkaline, and for most of the sampling period only fluctuated within a narrow envelope (\pm 0.2 units). The ion chemistry indicates that the waters 402 are of low ionic strength for a karstic environment (Drysdale 2001; McDonald et al. 2007; 403 Tremaine & Froelich 2013). The Mg²⁺ concentrations are relatively high, and yield [Mg/Ca] 404 persistently above 1 (mean ± 1 s.d. 1.18 ± 0.06). The mean concentrations of Sr (56.0 $\pm 3.5 \ \mu g \ L^{-1}$) 405 and Ba $(23.8 \pm 2.1 \text{ ug L}^{-1})$ produce [Sr/Ca] and [Ba/Ca] $(0.88 \pm 0.11 \text{ mmol mol}^{-1})$ and 0.24 ± 0.04 406 mmol mol^{-1}) that are significantly (~3x) enriched compared to the Grezzoni dolomite bedrock 407 [Sr/Ca] and [Ba/Ca] values (0.29 mmol mol⁻¹ and 0.07 mmol mol⁻¹ respectively (Azzaro et al. 1987: 408 Cortecci et al 1999; **Table A1**). Sulphate is also present at moderate concentrations (up to ~32 mg 409 L^{-1} : **Table A3**). Pool-water PCO₂ averages around twice that of the open atmosphere, whilst mean 410 calcite saturation is $\sim 0.27 \pm 0.18$ (2 σ). 411

412

413 The concentration of each ion is relatively invariant, with coefficients of variation (CVs, based on 2σ) less than 10% for all species; the CVs of the major elements Ca²⁺, Mg²⁺ and HCO₃⁻ are less 414 than 4% (**Table 2**). A consequence of the ~invariant ion concentrations is stable [X/Ca], with mean 415 416 and 25 uncertainties for [Mg/Ca], [Sr/Ca], [Ba/Ca] and [U/Ca] being 1.175±0.055 (mol/mol), 417 0.879±0.058 (mmol/mol), 0.238±0.021 (mmol/mol) and 0.039±0.010 (µmol/mol) respectively (Table 2). Such invariant solution chemistry and the availability of naturally accreted subaqueous 418 419 calcite indicates that Laghetto Basso is ideally suited for yielding well-constrained calcite partition 420 coefficients.

421

422 **4.2 Temporal patterns in pool-water chemistry and rainfall**

Plots of the major hydrochemistry parameters and the derived indices (PCO₂ and the calcite saturation index, SI_c) against time are shown in **Fig. 4**. On first inspection, there does not appear to be any patterns that would indicate clear, and mutually consistent, hydrologically driven changes over the monitoring period (**Fig. 4**). Prominent peaks occur simultaneously in Sr^{2+} and Ba^{2+} between July and August 2009; U concentrations rise around the same time but the peak persists well after Sr^{2+} and Ba^{2+} fall, and the peaks are not consistently matched by other ions through the

same period. On the other hand, the decrease in Mg^{2+} shortly after (October 2009) is to some extent 429 expressed in both Ca^{2+} and HCO_3^{-} , suggesting a dilution effect, but not in pH, PCO₂ or SI₆. If a 430 431 dilution effect were responsible this should also impact Sr and Ba, but both of these ions are 432 ~invariant through this interval. Overall, there is a suggestion of a weak downward trend in $HCO_3^$ and Ca²⁺ (if one ignores the last data point). Both Ba²⁺ and, particularly, U show a downward trend 433 from late 2011; Sr²⁺ also shows a steady decrease from late 2011. These latter changes are 434 proportionally greater than the subtle overall decreases in HCO_3^- and Ca^{2+} . The pH also tends to 435 decrease through time but correlations with the downward trending ions are weak and statistically 436 437 insignificant.

Figure 4: Comparison of Laghetto Basso pool-water geochemistry and local rainfall amount through the monitoring period: (a) ion concentrations; (b) ion ratios; and (c) temperature, pH, PCO₂ and SI_c. Each lower panel shows the monthly rainfall amounts for two nearby rainfall gauging stations Cervaiole (1140 m a.s.l., orange) and Retignano (440 m a.s.l., purple). Vertical errors bars in panel (a) are 1 s.d. analytical uncertainties.

443

438

The monthly rainfall patterns for Cervaiole and Retignano (**Fig. 4**) over the monitoring period broadly follow one another. Peaks occur in autumn to mid winter in all years, although conditions were wetter for 2009-10 and 2010-11 than in 2011-12, and the spring-to-early-summer peak in 2010 is significantly higher than the corresponding periods for the years either side.

448

449 **4.3 Calcite geochemistry**

450 4.3.1 Solution ICP-MS data from calcite surface scrapings

The [X/Ca] ratios from the surface calcite of CD3-12 are shown in **Table 3**. The mean values from both UM and ANSTO laboratories compare favourably within their respective 2σ uncertainties, although there are some systematic offsets that imply analytical incongruencies between the two sets of analyses. The mean [Mg/Ca] and [Ba/Ca] measured at UM are 1.3% and 7.3% higher than those measured at ANSTO, respectively, whilst the mean [Sr/Ca] is 2.2% lower.

456

457 The degree of scatter in molar ratios amongst the 15 calcite samples is relatively small for [Mg/Ca],

458 [Sr/Ca] and [Ba/Ca], with CVs (based on 2σ) $\leq 3.3\%$ (**Table 3**); variability in [U/Ca], however, is 459 more than twice that for the other ratios.

460

461 4.3.2 LA-ICP-MS analysis of calcite from the outermost ~7 μm

462 Table 4 and Fig. 5 summarise the results of the LA-ICP-MS analyses of the outer rim of CD3-12; 463 the raw data from each spot along each of the seven traverses are shown in Table A4. The data 464 from each 5-s spot measurement yields a mean and 95% standard error for each of the four elements. These standard errors provide an approximation of the analytical precision of the spot analysis, 465 466 assuming there is no significant downhole change in element concentrations, which is reasonable 467 because the 7 μ m \times 7 μ m laser profile reaches a depth of only ~2.5 μ m across the period of ablation. The average standard error for each element based on the standard errors of all 120 spots 468 469 provides an estimate of the overall analytical uncertainty of the sample measurements. The standard 470 deviation from the mean values of all 120 spots for each element, on the other hand, indicates the 471 variability in each element's concentration across the outermost 7 µm of CD3-12, and thus provides 472 a measure by which to compare the variability in concentrations from the calcite solution ICP-MS 473 data in section 4.3.1.

474

The overall variability in the laser data is higher than that for the solution data (Table 4), which is 475 to be expected given the higher resolution of the laser spot compared to the area (~ 1 cm^2) and 476 thickness (not exceeding 100 µm) of the calcite sampled from the core top for the solution ICP-MS 477 478 analyses. The range of concentrations of each element measured by LA-ICP-MS is also well in 479 excess of the variability observed in the three NIST610 analyses (range 5.3% to 6.6%, 2 s.e.) conducted before, during and after sample acquisition. Thus, the laser analyses appear to capture 480 481 real variability, both within and between most traverses. For example, all elements show variability 482 along traverses 2 and 6, whilst the variability across traverse 3 is minimal. Furthermore, the rank 483 order of variability for each element is similar in both analyses, with Mg having the least variability 484 and U having the greatest.

486 **4.4 Partition coefficients**

487 Partition coefficients (D_x) were derived by combining the UM and ANSTO CD3-12 solution trace element datasets. We first applied the reduced χ -squared test (Reiners et al. 2017) to determine if 488 489 the UM and ANSTO calcite measurements for each element were drawn from the same population. 490 The calculated χ -squared statistic, or mean square weighted deviation (MSWD), is below the 491 critical value of χ for each of the paired [X/Ca] means at the 95% probability level, indicating that 492 each pair is drawn from the same population. Accordingly, error-weighted means were calculated 493 for each ratio along with their error-weighted 95% uncertainties (bottom panel of Table 3). 494 Applying equation (1) and combining the calcite and pool water [X/Ca] fractional uncertainties in 495 quadrature yields the mean $\pm 1\sigma$ partition coefficients for Mg, Sr, Ba and U shown in **Table 5.** 496 Partition coefficients are also shown for CD3-12 derived from the pool-water [X/Ca] and laser-497 ablation [X/Ca] data from the outermost \sim 7 µm, with fractional uncertainties calculated in the same 498 way. The two sets of partition coefficients for CD3 are statistically indistinguishable, although the 499 uncertainty for the laser-derived measurements is larger.

501 Figure 5: LA-ICP-MS trace element results (Mg, Sr, Ba and U) based on seven discrete traverses (total number of spots: 502 120) along the outermost 7 μm of core CD3-12. Each data point represents the mean concentration based on a five-503 second analysis window; the individual error bars are the 2 s.e. of measurement. The vertical lines separate the 504 individual traverses (numbered at the top; see Fig. A7 for the position of the traverse on the sample section). The 505 lighter-coloured bands are 2 s.d. envelopes around the mean of all laser spot values, as quoted in bold in the lower panel

506 of Table 4. To compare the variability between laser and solution data, the dark-coloured bands are the corresponding 2 507 s.d. envelopes for the averaged calcite solution-analysis results. These were derived by converting molar ratios to 508 elemental concentrations using the data in Table 3, and applying a Ca concentration of 39% (considering CD3 Mg 509 concentrations of ~1%). The dark-coloured bands were then centred on the LA-ICP-MS average for each element. 510

511

512 **5. DISCUSSION**

513 **5.1 Low ionic strength waters of Laghetto Basso**

The Laghetto Basso pool waters are of low ionic strength, with concentrations of major ions (Ca^{2+} , 514 Mg^{2+} and HCO_3) being at the lower end of the spectrum of cave percolation waters. Part of the 515 reason for this is the likelihood of low PCO₂ of the infiltrating waters as they enter the karst, which 516 517 can be attributed to the low soil cover above the cave (Drysdale et al. 2004). Much of the surface 518 above Corchia Cave is steep and devoid of substantive soil cover. Here, the ground is criss-crossed by fractures, which facilitates infiltration. This exposed, high-purity carbonate rock produces 519 520 negligible soil-forming insoluble residue. Instead, soils are confined either to lower-angle, largely 521 debris-mantled slopes to the northeast and comprise almost entirely organic matter, or to solution 522 features etched into the karst rock. The areas of greatest soil development above the cave occur on 523 the phyllite basement rock, which crops out on the eastern flank of Monte Corchia and is vertically 524 above the GdS. However, hydrographic constraints suggest that significant runoff from the basement is unlikely to reach this part of the karst (Fig. 2). The low ionic strength and low calcite 525 526 saturation values of the pool waters (Table A3), and the subaqueous setting, are also undoubted contributors to the excessively slow growth rates of CD3-12 (Drysdale et al. 2012). The slow 527 growth rates could also be influenced by the presence of relatively high [Mg/Ca] and SO_4^{2-} 528 529 concentrations, which are known inhibitors of calcite crystal growth (Busenberg & Plummer 1989; 530 Nielsen et al. 2016).

531

The most distinguishing feature of the pool hydrochemistry, however, is its overall stability through 532 533 time when compared to cave waters reported in other studies (e.g. Fairchild et al. 2000; McDonald, 534 et al. 2004; Tremaine & Froelich 2013; Casteel & Banner 2015), including those where measurements of pool waters have been made (Huang et al. 2001). This supports earlier assertions 535 536 of hydrochemical stability of Laghetto Basso (Piccini et al. 2008) based on lower-frequency 537 sampling between 1997 and 2006 (see summary in the lower panel of Table 2). This attests to the very deep-seated position of Laghetto Basso within the cave system and its dampening effect on 538 539 hydrochemical variability.

540

541 The persistently high [Mg/Ca] in the pool waters (**Table 2**) exceeds the ratio predicted from the 542 dissolution of the Grezzoni dolomite bedrock (Azzaro et al. 1987; Cortecci et al. 1999), suggesting

543 that prior calcite precipitation (PCP) (Fairchild et al. 2000; Bajo et al. (2017) and/or incongruent dissolution of dolomite (Busenberg & Plummer 1982) are important processes controlling the 544 545 evolution of the percolation waters upstream of the pool. PCP occurs when calcite is precipitated 546 along the percolation-water flow path before it reaches the speleothem under study. This causes a loss of Ca²⁺ from solution and an increase in the [X/Ca] of the percolation water. The operation of 547 each of these processes can be tested using correlation. If PCP were important, Ca would decrease 548 549 as [Mg/Ca] increases (Fairchild et al. 2000), whereas incongruent dissolution of dolomite, a 550 theoretically plausible process under the partially closed-system conditions that occur at Corchia 551 (Bajo et al. 2017), should produce a positive correlation between Mg and [Mg/Ca] because Ca is 552 consumed by CaCO₃ precipitation as further Mg is released by continued dissolution of dolomite 553 according to the reaction:

554

555
$$CaMg(CO_3)_2 + 2H_2O + 2CO_2 \rightarrow Ca^{2+} + Mg^{2+} + 4HCO_3^- \rightarrow CaCO_3 + Mg^{2+} + 2HCO_3^- + CO_2 + H_2O$$
 (2)
556

and owing to the lower solubility of dolomite. On the other hand, PCP should not increase Mg 557 concentrations. For Ca vs [Mg/Ca] and Mg vs [Mg/Ca], both correlation coefficients are statistically 558 significant (p < 0.05; df = 26; one-tailed Pearson r), but the correlation for Mg vs [Mg/Ca] is much 559 higher (Panels a-b, Fig. 6). The pattern is the same for [Sr/Ca] and [U/Ca]: both pairs of r values are 560 561 statistically significant, but Sr vs [Sr/Ca] and U vs [U/Ca] (panels c-d and g-h, Fig. 6) are much higher. For [Ba/Ca], the correlation with Ca is almost zero, whilst the correlation with Ba is 0.94 562 (panels e-f, Fig. 6). As noted earlier, however, [Sr/Ca] and [Ba/Ca] are ~3x enriched in the pool 563 waters compared to the Grezzoni bedrock (Azzaro et al. 1987; Cortecci et al 1999; Table A1), 564 whereas [Mg/Ca] are only ~1.2x enriched. Both [Sr/Ca] and [Ba/Ca] are also significantly 565 566 correlated (Pearson's r correlation, r = 0.71, df = 26; p < 0.05; Fig. 7), suggesting enrichment from 567 a common source. If incongruent dissolution of dolomite were also contributing to enriched [Sr/Ca] 568 and [Ba/Ca] we would expect both these ratios to be positively correlated with [Mg/Ca], but this is 569 not the case (Fig. 7). Instead, the enriched [Sr/Ca] and [Ba/Ca] may be sourced where a component 570 of the infiltration waters exploits the contact between the Paleozoic basement rock and the Grezzoni. This may explain the matching peaks in mid 2009 and decreasing trends from mid 2011 in both Sr^{2+} 571 and Ba^{2+} . The tendency for U to share some of the patterns of Sr^{2+} and Ba^{2+} suggests it is also partly 572 573 derived from a non-dolomitic source such as the basement rock.

574

575 The pool water contains moderate concentrations of SO_4^{2-} , which is likely sourced from pyrite that 576 is present throughout the Apuane metamorphosed carbonates (including the Grezzoni dolomite). An 577 alternative source is anhydrite, which, according to Azzaro et al. (1987), is present in the Grezzoni

sequence. However, this appears unlikely as it would also contribute more Ca²⁺ to the waters, and 578 there is no excess Ca^{2+} in the pool-water chemistry. Weathering of pyrite can lead to sulphuric-acid 579 580 dissolution of the carbonate host rock, and in a previous study (Bajo et al. 2017) from GdS massbalance calculations indicate that such sulphuric-acid dissolution makes up one-third of the total 581 582 dissolved carbonate content of waters, with the remainder derived from carbonic-acid dissolution involving soil CO₂. Therefore, whilst the observed $Ca^{2+}-Mg^{2+}-HCO_3^{-}$ concentrations are lower than 583 is usually found in karst systems, they would be even lower were it not for a contribution from 584 bedrock dissolution caused by sulphide weathering. 585

586

Figure 6: Scatterplots between aqueous [X/Ca] and their constituent ions for Laghetto Basso pool water. (a) Ca vs [Mg/Ca]; (b) Mg vs [Mg/Ca]; (c) Ca vs [Sr/Ca]; (d) Sr vs [Sr/Ca]; (e) Ca vs [Ba/Ca]; (f) Ba vs [Ba/Ca]; (g) Ca vs [U/Ca]; (h) U vs [U/Ca]. Pearson *r* correlation coefficients are shown (underlined values are statistically significant at *p* ≤ 0.05).

593

594 **5.2 Relationship between pool hydrochemistry and rainfall**

595 The major hydrochemical parameters from Laghetto Basso show no clear and consistent 596 relationships with rainfall through the sampling period (Fig. 4) when compared with monthly 597 rainfall data from Cervaiole and Retignano over the same period. We tested this by interpolating the 598 rainfall series to the calendar dates of water sample collection and calculating Pearson r correlation 599 coefficients between each ion and both rainfall series using lags between zero and 19 months (after 600 which n < 10). Most r values are below 0.1 and only one significant correlation emerges: U vs Cervaiole rainfall (r = -0.64, df = 10, p < 0.05) with a lag of 18 months. This complacency is to be 601 602 expected given the deep position of the cavern within the karst, and contrasts with many published 603 case studies (e.g. McDonald et al. 2004; Mattey et al. 2008; Treble et al. 2013; Tremaine & Froelich 604 2013), though not all (Mattey et al. 2010; McDonald et al. 2007), where overlying rock thickness is 605 sufficiently thin or permeable to record the effects of seasonal or event-based recharge variations on 606 trace element concentrations.

608

609 **Figure 7:** Scatterplots and Pearson *r* correlation coefficients of: (a) [Ba/Ca] vs [Sr/Ca]; (b) [Ba/Ca] vs [Mg/Ca]; and (c) 610 [Sr/Ca] vs [Mg/Ca] from Laghetto Basso pool waters. The underlined *r* value is statistically significant at p < 0.05. 611

612 5.3 Trace element variations in 'modern' CD3 calcite

There is a degree of heterogeneous incorporation of trace elements into CD3-12 apparent from both 613 solution analysis of large (1 cm²) surface scrapings and, in particular, the higher spatial-resolution 614 $(49 \ \mu m^2)$ laser-spot analysis. Correlation coefficients for bivariate plots of the ANSTO and UM 615 616 solution-analysis results reveal statistically significant r values for [Mg/Ca], [Sr/Ca] and [U/Ca] (p 617 < 0.05, two-tailed Pearson r correlation test) (Fig. 8). This indicates measurable inter-sample 618 differences in these ratios (see the row of per cent values in Table 3) even at such a coarse spatial 619 resolution, pointing to a degree of trace-element variability across the growing crystal surfaces. 620 Paired sets of solution results for [Ba/Ca], on the other hand, reveal no correlation (Fig. 6).

622 Both solution and laser datasets show consistent patterns in the degree of relative scatter around mean values, with Mg, Sr and Ba having the lowest scatter, and U having the highest scatter. 623 However, the magnitude of scatter is greater - up to eight times for U - in the laser data. The 624 625 detection and nature of such scatter is important because of the growing use of microanalytical 626 techniques for measuring trace elements in speleothems (Fairchild & Baker 2012), which raises the 627 issue of how representative of the average time-equivalent trace-element concentrations in 628 speleothem calcite are the concentrations determined from one or even a few individual laser scan 629 lines. This has implications for deriving meaningful quantitative or semi-quantitative 630 palaeohydrological information from elemental ratios.

631

632

Figure 8: Scatterplots of individual Melbourne and ANSTO ICP-MS results for the CD3-12 calcite trace element ratios [Mg/Ca], 10^{3*} [Sr/Ca], 10^{3*} [Ba/Ca], and 10^{6*} [U/Ca] (grey points), along with mean values (coloured points). All error bars are 2 s.d. uncertainties. The diagonal dashed line represents parity (y = x) between the two sets of analyses. Pearson r values are shown, with underlined values being statistically significant at $p \le 0.05$ (df = 13, two-tailed test).

637

The notion of heterogenous incorporation of trace elements into time-equivalent regions of calcite is well-documented in both laboratory and natural settings (Fairchild & Baker 2012) and is referred to as compositional zoning. It can occur between different crystal sectors with non-equivalent faces (intersectoral zoning) (Reeder & Grams 1987; Reeder & Paquette 1990) or within the same crystal 642 sector (intrasectoral zoning) (Paquette & Reeder 1995). In the case of the former, interfacial, time-643 equivalent trace-element concentrations can vary by up to a factor of eight, and are attributed to 644 variable growth rates on different sectors or to the different surface structures characterising the 645 non-equivalent faces (Reeder & Paquette 1990). Intrasectoral zoning occurs within a given single 646 sector and is caused by anisotropic layer growth, giving rise to step-selective affinities for foreign ions that culminate in differential elemental partitioning (Paquette & Reeder 1990). As with 647 648 intersectoral zoning, it is related to the fundamental structural properties of the crystal surface, and 649 it co-exists with sectoral zoning (although the converse is not the case) (Paquette & Reeder 1995).

650

The traverse patterns evident in **Fig. 5** show some degree of covarying behaviour between pairs of elements. Scatterplots and correlation coefficients using all of the laser spot data (**Fig. 9**) show significant positive correlations between those elements regarded as being substituting ones (Ba vs Sr, Sr vs Mg), whilst significant negative correlations occur between elements deemed to be incompatible (U vs Mg, U vs Sr) (Reeder & Paquette 1990). This is consistent with the general notion of compositional zoning (Paquette & Reeder 1990).

658

663

Figure 9: Scatterplots of all (n = 120) LA-ICP-MS calcite trace element spot data (Mg, Sr, Ba and U, all in ppm) shown in Figure 5. (a) Sr vs U; (b) Sr vs Mg; (c) Ba vs U; (d) Ba vs Sr; (e) Mg vs Ba; (f) Mg vs U. Error bars represent the measurement error from downhole ablation (2 s.e.). All Pearson *r* correlation coefficients shown are statistically significant at $p \le 0.05$). Red symbols represent outlying Ba values excluded from all Ba vs X correlations.

The tendency for U to have the greatest heterogeneity (in terms of proportional variability around 664 665 the mean value) is consistent with patterns observed in a 2D image of this element produced from the Marine Isotope Stage (MIS) 7 and 8 section of another core drilled from CD3 (Figure 2d in 666 Drysdale et al. 2012). In this image, dendritic zones of low U are visible, with the range of U 667 concentrations (0.6 to 1.6 ppm) similar to that shown in Fig. 5; a hint of Sr and Ba zoning in the 668 669 same regions of this image is also apparent. This pattern in U has since been shown to persist from 670 the core top (modern) back to at least the MIS 12 section (our unpublished data), and whilst lying beyond the scope of this present work, a future multi-element study warrants further investigation. 671 672 Such 2D patterns may be linked to the variations observed in **Fig. 5**, and is suggestive of either 673 petrographic or crystallographic control of U (and potentially Sr and Ba) incorporation into calcite 674 or selective leaching of U along specific crystal sectors.

676 In oxidising environments, such as those of Laghetto Basso, U is usually present in its hexavalent state U(VI) as the uranyl ion (UO_2^{2+}) (Langmuir 1978), which is capable of forming bonds with 677 ligands commonly found in natural waters (e.g. CO_3^{2-}) (Reeder et al. 2001). These are thought to be 678 679 incorporated into calcite through either coprecipitation or adsorption (e.g. via colloids). U 680 speciation is highly sensitive to pH (Langmuir 1978). Processing of the pool water hydrochemistry data through the MINTEQ program reveals the presence of two dominant uranyl species: the 681 neutral complex $Ca_2UO_2(CO_3)_{3(a_1)}$ (~55-56%) and the anion $CaUO_2(CO3)_2^{2-}$ (~41-42%). One 682 possible explanation for the wide range of U concentrations in time-equivalent calcite is the 683 684 incorporation of both of these species, each according to a different $D_{\rm U}$. However, the affinity of the 685 neutral species for calcite is thought to be low because of the positive charge of a calcite surface at 686 the pH of Laghetto Basso waters (Chen et al. 2016). This implicates the uranyl anion as the form 687 most likely to be incorporated into CD3-12. Although adsorption onto colloidal phases might be possible (Hartland et al. 2014; Wassenburg et al. 2016), the long travel path that percolation waters 688 689 take before reaching the GdS, and the low soil cover above the cave, would argue against a strong 690 presence of colloids in the pool waters. This points to the direct incorporation of uranyl into the calcite, most likely by U^{6+} substitution for Ca^{2+} and two axial oxygen atoms substituting for the 691 692 carbonate ion (Kelly et al. 2003).

693

694 **5.4 Partition coefficients: comparison with previous studies**

695 5.4.1 Introduction

We now compare our calcite partition coefficients for Mg, Sr, Ba and U with previously published 696 697 values. Partition coefficients for calcite have been derived from a range of laboratory and natural 698 settings (Huang & Fairchild 2001; Tremaine & Froelich 2013), representing a diversity of physico-699 chemical environments. For example, the strong interest in the study of trace elements in marine 700 carbonates has seen many laboratory studies where calcite has been farmed from solutions that 701 simulate seawater chemistry (Kitano & Oomori 1971; Mucci & Morse 1983; Burton & Walter 1991; 702 Yoshimura et al. 2015; Chen et al. 2016). Given the relatively narrow range of hydrogeochemical 703 conditions of most cave systems, the comparisons we make below are largely restricted to 704 coefficients derived from field studies of caves (Holland et al. 1964; Gascoyne 1983; Huang et al. 705 2001; Karmann et al. 2007; Fairchild et al. 2010; Tremaine & Froelich 2013) and cave-analogue 706 laboratory studies (Huang & Fairchild 2001; Day & Henderson 2013) (Table 5).

707

An unavoidable problem of deriving calcite partition coefficients in cave studies is the stability of the solution [X/Ca] values at each monitoring station within the cave through the period of each calcite harvest. Source-water [X/Ca] values can change relatively rapidly (e.g. McDonald et al. 711 2004; Tremaine & Froelich 2013), and although it is common to average before and after (or more) 712 values over the period of calcite growth, it is not possible to determine the weighting of each 713 individual [X/Ca] value without some form of continuous monitoring, or at least very intensive (e.g. monthly) sampling. An additional potential problem in cave studies is whether or not farmed calcite 714 715 (e.g. by precipitation onto glass plates) is truly representative of natural calcite growth, particularly 716 in the context of crystal growth and morphology effects on element partitioning. This is also an 717 issue for cave-analogue studies, which, like other related laboratory (e.g. seawater-analogue) 718 experiments, suffer the additional problem of using synthetically prepared solutions. In this study, 719 we have attempted to overcome these issues by targeting a very deep cave environment 720 characterised by relatively stable hydrochemistry, and by sampling naturally grown calcite.

721

722 5.4.2 Magnesium

723 The D_{Mg} for Laghetto Basso (0.042 ± 0.002) is one the highest mean values ever recorded for cave 724 or cave-analogue conditions, being exceeded in mean values only by Gascoyne (1983) in his study of Jamaican cave calcite (Table 5). Considering the thermodynamic tendency for D_{Mg} to vary 725 726 positively with temperature (Katz 1973; Gascoyne 1983; Mucci & Morse 1983; Burton & Walter 727 1991; Huang & Fairchild 2001; Day & Henderson 2013), the high value is surprising given the relatively low temperatures of Laghetto Basso waters (~8 °C) and the expectation that during 728 729 warmer periods (all other things being equal) the pool waters would produce even higher D_{Mg} 730 values. Potential reasons for such a high D_{Mg} at this low temperature include the pool water 731 [Mg/Ca], which is high for karst waters (~1.2). To examine this possibility further, we compared 732 the Laghetto Basso D_{Mg} with data from a range of seawater or seawater-analogue studies, where the 733 solution [Mg/Ca] reaches up to 20. As Fig. 10 shows, the slopes of temperature vs D_{Mg} from these 734 studies (Mucci 1987); Oomori et al. 1987; Burton and Walter 1991) fall within the scatter of 735 temperature vs D_{Mg} for cave and cave-analogue studies, where [Mg/Ca] is <1, suggesting that 736 [Mg/Ca] is not significant. Mucci & Morse (1983), however, report an increase in D_{Mg} from 0.012 to 0.027 at 25°C as the solution [Mg/Ca] decreases from 7.5 to 1, but an identical experiment 737 738 conducted at Laghetto Basso temperatures using a solution $[Mg/Ca] \approx 1$ would produce significantly 739 lower D_{Mg} values given the temperature/ D_{Mg} relationship. Therefore, we disqualify the high pool-740 water [Mg/Ca] as the reason for the unusually high Laghetto Basso D_{Mg} . 741

742

Figure 10: Comparison of D_{Mg} values versus temperature between a range of published cave/cave analogue (blue symbols) and seawater-analogue studies (orange symbols) and this study (red symbols). The straw (s) and plate (p) values are shown separately for the Huang & Fairchild (2001) data. 746

747 Source-water PCO_2 and saturation state, the reaction rate and crystal nucleation style have also been 748 considered as possible drivers of D_{Mg} variations (Howson et al. 1987; Huang & Fairchild 2001; 749 Hartley & Mucci 1996; Mavromatis et al. 2013), but these have been either rejected as having 750 negligible influence (PCO₂) or their effects can be ruled out in the case of Laghetto Basso because 751 the direction of D_{Mg} change is contrary to what would be expected. For example, homogeneous 752 nucleation is thought to drive D_{Mg} values lower, but many experimental studies include crystal 753 seeding (e.g. Huang & Fairchild 2001; Day & Henderson 2013) to mimic the heterogeneous 754 nucleation observed in marine and cave settings. The results of cave-analogue experiments 755 conducted in this way still yield D_{Mg} values much lower than Laghetto Basso at or near the 756 observed pool temperatures. The effects of growth rate and saturation state were investigated 757 recently by Mavromatis et al. (2013) at 25°C and 1 atm PCO₂, who found clear increases in D_{Mg} with both variables. However, these factors cannot explain the high D_{Mg} in Laghetto Basso calcite, 758 759 given that the relatively low saturation state of the waters, and the very low growth rates, plus 760 cooler temperatures, would yield even higher D_{Mg} at the experimental conditions used by Mavromatis et al. (2013). In a study of a Florida cave, Tremaine and Froelich (2013) produced a 761 762 detailed dataset of paired growth rates and D_{Mg} (and D_{Sr}) within a narrow range of cave 763 temperatures $(18 - 21.5^{\circ}C)$, but despite a considerable range in coefficients, no relationship is 764 observed.

The unusually high D_{Mg} value for Laghetto Basso calcite possibly owes its origin to the low-ionic 766 767 strength and low-saturation-state of its source waters, which, in addition to the hydrodynamics of a 768 subaqueous setting, give rise to the excessively slow growth rates of CD3. Such unusual conditions 769 for a speleothem have not been encountered in previous cave and cave-analogue investigations. 770 Recently, a comparison of modern calcite and pool waters from Laghetto Basso and Devils Hole 771 (Nevada, USA) (Daëron et al. 2019) has suggested that the depositional conditions at these two sites 772 are likely to approximate thermodynamic isotopic equilibrium, or at least closer to equilibrium 773 compared to previous studies. Combining isotopic information from both sites across a temperature 774 range spanning most speleothem settings (~8 and 34 °C) produces calcite clumped-isotope 775 calibration and conventional oxygen isotope fractionation curves that are significantly offset from 776 those of calcites formed under different depositional conditions. Like Laghetto Basso, Devils Hole 777 calcite growth rates are extremely slow on account of the hydrochemistry and hydrodynamic setting 778 (Plummer et al. 2000). It would be useful to conduct future cave-analogue studies that mimic 779 subaqueous environments like Laghetto Basso to examine D_{Mg} and other D_X across a range of growth rate, temperature and low-ionic-strength conditions. 780

781

782 *5.4.3 Strontium*

783 The mean D_{Sr} for Laghetto Basso (0.100 ± 0.007; **Table 4**) lies within the range of values observed in other cave studies. As with Mg, the partitioning of Sr into calcite has been the subject of 784 785 considerable study in both natural and laboratory cave settings as well as marine applications (Böttcher & Dietzel 2010). The numerous possible factors driving D_{Sr} variations in marine studies 786 787 have also been explored for speleothems, notably temperature, solution [Sr/Ca], [Mg/Ca] and 788 [Na/Ca], and growth rate. In two detailed cave-analogue studies and one natural cave study, 789 Fairchild & Huang (2001), Day & Henderson (2013) and Tremaine & Froelich (2013) each found 790 no relationship between D_{Sr} and either growth rate or temperature. Huang & Fairchild (2001), 791 however, concluded that the low Na concentrations used in their experimental solutions may have 792 contributed to their D_{Sr} being higher than those from seawater-analogue studies, where much higher Na concentrations are used. This is because the Na ion is thought to outcompete Sr for non-lattice 793 794 sites on the calcite crystal (Pingitore & Eastman 1986). Although there has been no subsequent 795 systematic study since Huang and Fairchild (2001) on the effects of solution [Na/Ca], [Sr/Ca] and 796 [Mg/Ca] on D_{Sr} in cave or cave-analogue settings, the data presented in Tremaine & Froelich (2013) 797 (their Supplementary Table EC.1) contain a sufficient spread of both solution [X/Ca] and D_{Sr} values 798 to test this. Statistically significant negative correlations are found for [Na/Ca] versus D_{Sr} (r = -0.89) 799 and [Sr/Ca] versus D_{Sr} (r = -0.77) (Fig. 11a); no significant correlation exists for [Mg/Ca] versus 800 $D_{\rm Sr}$. Although we do not have individual calcite-water [X/Ca] pairs to perform precisely the same

801 test on the pool-water/CD3-12 data, we can see that the [Sr/Ca] versus D_{Sr} for CD3-12 (closed 802 green diamonds, Fig. 11a) lies close to the scatter in the Tremaine & Froelich (2013) data. Further, the [Na/Ca] versus D_{Sr} for CD3-12 lie well clear of the corresponding Tremaine & Froelich (2013) 803 804 values. Given the proposed effects of Na described above (Pingitore & Eastman 1986), the relatively high Na concentrations in Laghetto Basso should yield lower D_{Sr} if Na concentrations per 805 806 se were important. A more robust test of the effects of Na is to use [Na/Sr] instead of [Na/Ca]: if Na 807 outcompetes Sr for lattice sites then this should be evident in the ratio of these two elements. As 808 shown in Fig. 11b, this is indeed the case: a significant negative exponential relationship exists 809 between [Na/Sr] and D_{Sr} based on the data from Tremaine and Froelich (2013), and Day and 810 Henderson (2013).

811 812

Figure 11: (a) Scatterplots of [Na/Ca] vs D_{Sr} (orange symbols) and [Sr/Ca] versus D_{Sr} (green symbols) for data presented in Tremaine and Froelich (2013) (open diamonds), Day and Henderson (2013) (crosses) and this study (CD3-12: solid squares). The Pearson *r* correlation coefficients are statistically significant (df = 19, p < 0.05) and correspond to the Tremaine and Froelich (2013) data only. (b) Scatterplot of [Na/Sr] vs D_{Sr} for the same studies shown in (a). The exponential fit, which models all data shown, is described by the equation $y = 0.1173e^{-0.0004x}$ and is statistically significant (df = 24, p < 0.05).

819 820

821 5.4.3 Barium and Uranium

822 The partitioning of Ba and U into calcite has not been the explicit subject of experimental cave 823 investigations. The only cave-analogue study is that of Day and Henderson (2013), who reported a 824 mean D_{Ba} value slightly larger than that for CD3-12. Although the study of Day and Henderson (2013) was conducted at temperatures (25° and 35°C) that are significantly higher than that of the 825 Laghetto Basso water, temperature is not regarded as important in controlling D_{Ba} (Lea & Spero 826 1994). Growth rate and solution [Ba/Ca] have been linked to variations in D_{Ba} (Pingitore & 827 828 Eastman 1984; Tesoriero & Pankow 1996), with higher growth rates producing higher D_{Ba} . 829 However, these relationships have only been observed once growth rates and [Ba/Ca] greatly

830 exceed those of CD3-12. Day and Henderson (2013) observed no relationship between growth rate 831 and D_{Ba} (or D_{U}).

832

Uranium partitioning has been shown to vary with growth rate and temperature. The $D_{\rm U}$ values for CD3-12 (0.013 ± 0.002) are between 5 and 9 times below those experimentally determined by Day and Henderson (2013) (**Table 4**). They found a weak negative relationship between temperature and $D_{\rm U}$, with values decreasing from 0.11 ± 0.011 to 0.062 ± 0.012 as temperature rose from 7°C to 35°C. However, the value for CD3-12 is almost an order of magnitude lower than Day and Henderson (2013) at similar temperatures.

839

Several studies have evaluated the effects of growth rate on $D_{\rm U}$. Weremeichik et al. (2017) 840 determined that $D_{\rm U}$ increased from 0.02 to 0.06 as growth rate increased from 0.01 to 0.14 nm s⁻¹. 841 Although the Holocene growth rates observed in CD3-12 $(1.24 \times 10^{-5} \text{ nm s}^{-1})$ are several orders of 842 magnitude lower than these, the direction of $D_{\rm U}$ change is consistent. Further, the starting solution 843 844 [U/Ca] used by Weremeichik et al. (2017) (0.919 mmol/mol) is ~24 times higher than the Corchia 845 pool water [U/Ca]. The much slower growth rates in the pool implies that the calcite crystals remain exposed to the solution for much longer before being 'protected' by further calcite growth. This 846 847 would facilitate leaching or desorption of uranyl carbonate from the calcite lattice, given the high 848 solubility of this species.

849

850 6. CONCLUSIONS

851 In this study, we have sought to advance understanding of how trace elements are incorporated into 852 natural calcites by investigating the partitioning of Mg, Sr, Ba and U into subaqueous cave calcite, a 853 rarely studied form of speleothem. We have shown that the pool-water chemistry of Laghetto Basso 854 displays decadal-scale stability, in contrast to percolation-waters reported in a number of other cave 855 studies (e.g. Fairchild et al. 2000; McDonald et al. 2004; Tremaine & Froelich 2013). This produces 856 relatively well-constrained solution [X/Ca] from which to derive D_X values. We have measured 857 [X/Ca] on 'modern' subaqueous calcite (CD3-12) that grows naturally from these pool waters, 858 rather than calcite grown on seeded, artificial substrata or from synthetic solutions under laboratory 859 conditions.

860

Several lines of evidence indicate that the outer surface of CD3 is actively depositing today. These include a U-Th chronology corrected to an independently dated age profile of a stalagmite from the same cave chamber, the supersaturated state of the pool water, and the fact that the speleothem has grown over multiple glacial-interglacial cycles (Drysdale et al. 2012). The slow growth rates of

CD3-12, the challenge of sampling its active outer growth surface, and the potential for time-865 equivalent layers of non-uniform thickness prevent us from unequivocally determining that the 866 867 calcite grew exclusively across the monitoring period. However, the stability of the pool-water 868 chemistry over a 15-year period (1997 to 2012) suggests at least decadal-scale hydrochemical stability, conducive to precipitating relatively invariant calcite [X/Ca]. This is validated by the 869 870 statistically indistinguishable mean CD3-12 [X/Ca] values from the surface (analysed by solution 871 ICP-MS and incorporating, no more than ~300 years of growth) and the outermost 7 µm of calcite 872 (analysed by LA-ICP-MS and incorporating ~21 years of growth). Taking these solution and calcite 873 results together, we have circumvented the issue of having to average (often quite different) 874 instantaneous solution [X/Ca] values for pairing with the [X/Ca] from calcite grown over the same 875 period. We argue that the mean D_X values from CD3-12 therefore represent reliable estimates of 876 partition coefficients from naturally grown subaqueous calcite.

877

878 Comparison with published studies reveals that the mean D_{Mg} value from CD3-12 is significantly 879 higher than values produced from other cave and cave-analogue (and indeed, sea-water analogue) situations given the low pool-water temperature. This may be facilitated by the extremely slow 880 881 growth rates of the speleothem. Future calcite/source-water studies conducted in broadly similar 882 cave-pool settings but at sites with different temperatures, could enable quantification of D_{Mg} -883 temperature relationships. However, we suspect that finding appropriate sites (dolomitic bedrock, 884 low-ionic strength waters, deep-set cavern) would prove rather challenging, and laboratory 885 simulations might be the most appropriate approach in this regard.

886

The $D_{\rm Sr}$ values for CD3-12 are comparable with published cave/cave analogue studies, the few data 887 888 available suggest that [Na/Sr] might be an important factor in controlling Sr partitioning through Na 889 outcompeting Sr for compatible non-lattice sites. The long exposure time of the CD3-12 calcite 890 surface, where growth rates are a mere $\sim 0.3 - 0.4 \,\mu\text{m}$ per year (averaged over the Holocene), raises the prospect of dissolution of soluble uranyl carbonate. This could explain the higher variability of 891 892 U partitioning and low mean $D_{\rm U}$ shown here, as well as the dendritic zones of low U concentration 893 observed throughout the upper half of CD3-12, including the MIS 8-7 section reported in Drysdale 894 et al. (2012).

895

In spite of the relatively well-constrained D_X values obtained, data from both the surface calcite and the outermost 7 μ m reveal heterogeneity in trace element distribution in CD3-12, which, as expected, is more evident in the better-resolved laser data. A number of the laser profiles show covariation amongst elements, suggesting that element incorporation may be influenced by 900 compositional zoning or fabric effects. Mapping the spatial patterns of elemental variation in 2D is 901 necessary to determine the presence / extent of compositional zoning. It would enable the 902 quantification of the range of elemental concentrations, and reveal if zoning bears any relationship 903 to the prevailing climate state, upon which speleothem growth rates and hydrochemistry depend.

904

905 Single subaqueous speleothems can preserve continuous palaeoclimate records spanning many 906 hundreds of thousands of years (Winograd et al. 1992). The subaqueous speleothem used in the present study captures a palaeoclimate record spanning almost the last one million years (Drysdale 907 908 et al. 2012). As demonstrated by previous research on stalagmites and flowstones (Drysdale et al. 909 2006; Johnson et al. 2006; Wong et al. 2011; Hartmann et al. 2013; Weber et al. 2018), trace-910 element changes have the potential to complement stable-isotope records from this speleothem, and to play a key role in developing robust interpretations of regional palaeoclimate and wider 911 912 environmental changes (e.g. long-term landscape evolution) over multiple glacial-interglacial cycles. 913 The current study has laid the foundations for additional extensive trace element study of CD3 by 914 deriving partitioning coefficients under modern conditions. Future work will focus on long-term 915 trace element changes and the palaeoclimate drivers, particularly whether elements considered to be 916 useful hydrological tracers from previous speleothem studies also preserve palaeohydrological 917 information in CD3. However, given the slow growth rates and relatively complacent decadal-scale 918 hydrochemistry, palaeohydrological changes would likely only be resolved at centennial or greater 919 (e.g. millennial or orbital) time scales.

- 920
- 921
- 922

923 ACKNOWLEDGEMENTS

This research was supported by funding from the Australian Research Council (Discovery Project number DP160102969, awarded to RD, GZ, ER and JW; Laureate Fellowship FL160100028 awarded to JW; and Future Fellowship FT130100801 awarded to JH. We are grateful to the Gruppo Speleologico Lucchese and the Federazione Speleologica Toscana for outstanding support. This paper benefitted from discussions with Professor Richard Reeder. This paper has benefitted significantly from three very meticulous and constructive reviews, for which we are very grateful.

- 930
- 931
- 932

933 **REFERENCES**

- Azzaro, E., Negretti, G. and Tucci, P. (1987) A chemiostratigraphic study of the metadolomitic
 sequence of the southern side of Mount Corchia (Alpi Apuane, Italy). *Geologica Rom.* 26,
 293-303.
- Bajo, P., Drysdale, R.N., Woodhead, J.D., Hellstrom, J.C., Zanchetta, G. 2012. High-resolution UPb dating of an Early Pleistocene stalagmite from Corchia Cave (central Italy). *Quatern*. *Geochronology* 14, 5-17.
- Bajo, P., Borsato, A., Drysdale, R., Hua, Q., Frisia, S., Zanchetta, G., Hellstrom, J. and Woodhead,
 J. (2017) Stalagmite carbon isotopes and dead carbon proportion (DCP) in a near-closedsystem situation: An interplay between sulphuric and carbonic acid dissolution. *Geochim. Cosmochim. Acta* 210, 208-227.
- Bajo, P., Hellstrom, J., Frisia, S., Drysdale, R., Black, J., Woodhead, J., Borsato, A., Zanchetta, G.,
 Wallace, M.W., Regattieri, E. and Haese, R. (2016) "Cryptic" diagenesis and its implications
 for speleothem geochronologies. *Quatern. Sci. Rev.* 148, 17-28.
- Balboni, E., Morrison, J.M., Wang, Z., Engelhard, M.H. and Burns, P.C. (2015) Incorporation of
 Np(V) and U(VI) in carbonate and sulfate minerals crystallized from aqueous solution. *Geochim. Cosmochim. Acta* 151, 133-149.
- Baneschi, I., Piccini, L., Regattieri, E., Isola, I., Guidi, M., Lotti, L., Mantelli, F., Menichetti, M.,
 Drysdale, R.N. and Zanchetta, G. (2011) Hypogean microclimatology and hydrology of the
 800-900 m asl level in the Monte Corchia cave (Tuscany, Italy): preliminary considerations
 and implications for paleoclimatological studies. *Acta Carsologica* 40, 175-187.
- Bernal, J.P., Cruz, F.W., Stríkis, N.M., Wang, X., Deininger, M., Catunda, M.C.A., OrtegaObregón, C., Cheng, H., Edwards, R.L. and Auler, A.S. (2016) High-resolution Holocene
 South American monsoon history recorded by a speleothem from Botuverá Cave, Brazil. *Earth and Planetary Science Letters* 450, 186-196.
- Borsato, A., Frisia, S., Fairchild, I.J., Somogyi, A. and Susini, J. (2007) Trace element distribution
 in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence:
 Implications for incorporation of environmentally significant species. *Geochim. Cosmochim. Acta* 71, 1494-1512.
- Böttcher, M.E. and Dietzel, M. (2010) Metal-ion partitioning during low-temperature precipitation
 and dissolution of anhydrous carbonates and sulphates. *EMU Notes in Mineralogy* 10, 139187.
- Bourdin, C., Douville, E. and Genty, D. (2011) Alkaline-earth metal and rare-earth element
 incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave,
 Southeastern France. *Chem. Geol.* 290, 1-11.

- Burton, E.A. and Walter, L.M. (1991) The effects of P_{CO2} and temperature on magnesium
 incorporation in calcite in seawater and MgCl₂-CaCl₂ solutions. *Geochim. Cosmochim. Acta*55, 777-785.
- Busenberg, E. and Niel Plummer, L. (1989) Thermodynamics of magnesian calcite solid-solutions
 at 25°C and 1 atm total pressure. *Geochim. Cosmochim. Acta* 53, 1189-1208.
- Busenberg, E. and Plummer, N. (1982) The kinetics of dissolution of dolomite in CO₂-H₂O systems
 at 1.5 to 65°C and 0 to 1 atm PCO₂. *Amer. J. Sci.* 282, 45-78.
- Carmignani, L. and Giglia, G. (1984) "Autoctono Apuano" e Falda Toscana. Sintesi dei dati e delle
 interpretazionini, Cento anni di Geologia Italiana. Pitagora, Bologna, pp. 199-214.
- Carmignani, L. and Kligfield, R. (1990) Crustal extension in the northern Apennines: The transition
 from compression to extension in the Alpi Apuane Core Complex. *Tectonics* 9, 1275-1303.
- Casteel, R.C. and Banner, J.L. (2015) Temperature-driven seasonal calcite growth and drip water
 trace element variations in a well-ventilated Texas cave: Implications for speleothem
 paleoclimate studies. *Chem. Geol.* 392, 43-58.
- Chen, X., Romaniello, S.J., Herrmann, A.D., Wasylenki, L.E., Anbar, A.D. (2016) Uranium isotope
 fractionation during coprecipitation with aragonite and calcite. *Geochim. Cosmochim. Acta*188, 189-207.
- Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R. and
 Wang, X. (2009) Ice age terminations. *Science* 326, 248-252.
- Cheng, H., Edwards, R.L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., Kathayat, G., Wang, X.,
 Li, X., Kong, X., Wang, Y., Ning, Y. and Zhang, H. (2016) The Asian monsoon over the past
 640,000 years and ice age terminations. *Nature* 534, 640-648.
- Conti, P., Di Pisa, A., Gattiglio, M. and Meccheri, M. (1993) The Pre-Alpine Basement in the Alpi
 Apuane (Northern Apennines, Italy), in: von Raumer, J.F., Neubauer, F. (Eds.), *Pre-Mesozoic Geology in the Alps.* Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 609-621.
- Cortecci, G., Dinelli, E., Indrizzi, M.C., Susini, C. and Adorni Braccesi, A. (1999) The Apuane
 Alps metamorphic complex, Northern Tuscany: chemical and isotopic features of Grezzoni
 and Marmi dolomitici. *Atti Soc. Tosc. Sci. Nat., Mem.*, Serie A 106, 79-89.
- Cruz, F.W., Burns, S.J., Jercinovic, M., Karmann, I., Sharp, W.D. and Vuille, M. (2007) Evidence
 of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late
 Pleistocene stalagmite. *Geochim. Cosmochim. Acta* 71, 2250-2263.
- Daeron, M., Drysdale, R., Peral, M., Huyghe, D., Blamart, D., Coplen, T., Lartud, F. & Zanchetta,
 G. (2019) Most Earth-surface calcites precipitated out of isotopic equilibrium. *Nature Communications* doi.org/10.1038/s41467-019-08336-5.

- Day, C.C. and Henderson, G.M. (2013) Controls on trace-element partitioning in cave-analogue
 calcite. *Geochim. Cosmochim. Acta* 120, 612-627.
- 1004 Drysdale, R.N. (2001) Factors controlling the hydrochemistry of Louie Creek, a
 1005 travertinedepositing stream in the seasonally wet tropics of northern Australia. *Mar.* 1006 *Freshwater Res.* 52, 793-804.
- 1007Drysdale, R., Zanchetta, G., Hellstrom, J.C., Zhao, J-x, Fallick, A.C., Isola, I., Bruschi, G. (2004)1008Palaeoclimatic implications of the growth history and stable isotope (δ^{18} O and δ^{13} C)1009geochemistry of a Middle to Late Pleistocene stalagmite from central-western Italy. *Earth and*1010*Planetary Science Letters* 227, 215-229.
- 1011 Drysdale, R.N., Zanchetta, G., Hellstrom, J.C., Fallick, A.E. and Zhao, J.X. (2005) Stalagmite
 1012 evidence for the onset of the Last Interglacial in southern Europe at 129 ± 1 ka. *Geophys. Res.*1013 *Lett.* 32, L24708, doi:24710.21029/22005GL024658.
- Drysdale, R.N., Zanchetta, G., Hellstrom, J., Maas, R., Fallick, A., Pickett, M., Cartwright, I. and
 Piccini, L. (2006) Late Holocene drought responsible for the collapse of Old World
 civilizations is recorded in an Italian cave flowstone. *Geology* 34, 101-104.
- 1017 Drysdale, R., Hellstrom, J., Couchoud, I., Zanchetta, G., Woodhead, J., Greig, A., Fallick, A., Isola,
 1018 I. (2008) Towards a new radiometrically dated North Atlantic palaeo-climate record covering
 1019 the last million years: preliminary results from Corchia Cave speleothems, Italy. European
 1020 Geosciences Union abstract EGU2008-A-05940.
- Drysdale R. N., Paul B. T., Hellstrom J. C., Couchoud I., Greig A., Bajo P., Zanchetta G., Isola I.,
 Spötl C., Baneschi I., Regattieri, E. and Woodhead J. D. (2012) Precise microsampling of
 poorly laminated speleothems for U-series dating. *Quat. Geochronol.* 14, 38–47.
- Edwards, R.L., Gallup, C.D., Ludwig, K.R., Simmons, K.R., Winograd, I.J., Szabo, B.J. and Riggs,
 A.C. (1993) Dating of the Devils Hole calcite vein. *Science* 259, 1626-1627.
- Fairchild, I.J. and Baker, A. (2012) Speleothem science: From process to past environments. Wiley Blackwell.
- Fairchild, I.J., Baker, A., Borsato, A., Frisia, S., Hinton, R.W., McDermott, F. and Tooth, A.F.
 (2001) Annual to sub-annual resolution of multiple trace-element trends in speleothems. J. *Geol. Soc.* 158, 831-841.
- Fairchild, I.J., Borsato, A., Tooth, A.F., Frisia, S., Hawkesworth, C.J., Huang, Y., McDermott, F.
 and Spiro, B. (2000) Controls on trace element (Sr-Mg) compositions of carbonate cave
 waters: implications for speleothem climatic records. *Chem. Geol.* 166, 255-269.
- Fairchild, I.J., Spötl, C., Frisia, S., Borsato, A., Susini, J., Wynn, P.M. and Cauzid, J. (2010)
 Petrology and geochemistry of annually laminated stalagmites from an Alpine cave (Obir, Austria): seasonal cave physiology. *Geol. Soc. London, Spec. Pub.* 336, 295-321.

- Fairchild, I.J. and Treble, P.C. (2009) Trace elements in speleothems as recorders of environmental
 change. *Quatern. Sci. Rev.* 28, 449-468.
- Fohlmeister, J., Schröder-Ritzrau, A., Scholz, D., Spötl, C., Riechelmann, D.F.C., Mudelsee, M.,
 Wackerbarth, A., Gerdes, A., Riechelmann, S., Immenhauser, A., Richter, D.K. and Mangini,
 A. (2012) Bunker Cave stalagmites: An archive for central European Holocene climate
 variability. *Climate of the Past* 8, 1751-1764.
- Frisia, S. (2015) Microstratigraphic logging of calcite fabrics in speleothems as tool for
 palaeoclimate studies. *Int. J. Speleol.* 44, 1-16.
- Gascoyne, M. (1983) Trace element partition coefficients in the calcite-water system and their
 paleoclimatic significance in cave studies. J. Hydrol 61, 213-222.
- Gran, G. (1952) Determination of the equivalence point in potentiometric titrations. Part II. *Analyst*77, 661-671.
- Genty, D. & Massault, M. (1999) Carbon transfer dynamics from bomb 14C and d13C times series
 of a laminated stalagmite from SW France: modelling and comparison with other stalagmites.
 Geochimica et Cosmochimica Acta 63, 1537–1548.
- Griffiths, M., Drysdale, R., Gagan, M., Zhao, J-x., Ayliffe, L., Hantoro, W., Frisia, S., Hellstrom, J.,
 Fischer, M. Feng, J-x., Suwargadi, B. (2010). Multi-proxy stalagmite evidence for east
 Indonesian monsoon variability during the Holocene. *Earth and Planetary Science Letters*292, 27-38.
- Griffiths, M.L., Fohlmeister, J., <u>Drysdale, R.N.</u>, Hua, Q., Johnson, K.R., Hellstrom, J.C., Gagan,
 M.K., Zhao, J-x. 2012. Hydrological control on the dead-carbon content of a Holocene
 tropical speleothem. *Quatern. Geochronology* doi:10.1016/j.quageo.2012.04.001.
- Hartland, A., Fairchild, I.J., Müller, W. and Dominguez-Villar, D. (2014) Preservation of NOM metal complexes in a modern hyperalkaline stalagmite: Implications for speleothem trace
 element geochemistry. *Geochim. Cosmochim. Acta* 128, 29-43.
- Hartley, G. and Mucci, A. (1996) The influence of P_{CO2} on the partitioning of magnesium in calcite
 overgrowths precipitated from artificial seawater at 25° and 1 atm total pressure. *Geochim. Cosmochim. Acta* 60, 315-324.
- Hartmann, A., Eiche, E., Neumann, T., Fohlmeister, J., Schröder-Ritzrau, A., Mangini, A. and
 Haryono, E. (2013) Multi-proxy evidence for human-induced deforestation and cultivation
 from a late Holocene stalagmite from middle java, Indonesia. Chemical Geology 357, 8-17.
- Hellstrom, J. and McCulloch, M. (2000) Multi-proxy constraints on the climatic significance of
 trace element records from a New-Zealand speleothem. *Earth Planet. Sci. Lett.* 179, 287-297.

- Hellstrom, J., Paton, C., Woodhead, J. and Hergt, J. (2008) Iolite: software for spatially resolved
 LA-(quad and MC) ICPMS analysis, in: Sylvester, P. (Ed.), *Laser Ablation ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues*, pp. 343-348.
- 1073 Hendy, C.H. and Wilson, A.T. (1968) Palaeoclimatic data from speleothems. *Nature* 219, 48-51.
- Hodge, E., McDonald, J., Fischer, M., Redwood, D., Hua, Q., Levchenko, V., <u>Drysdale, R.</u>,
 Waring, C. & Fink, D. (2011) Using the ¹⁴C bomb pulse to date young speleothems. *Radiocarbon* 53, 345-357.
- Holland, H.D., Holland, H.J. and Munoz, J.L. (1964) The coprecipitation of cations with CaCO3-II.
 The coprecipitation of Sr²⁺ with calcite between 90° and 100°C. *Geochim. Cosmochim. Acta* 28, 1287-1301.
- Howson, M.R., Pethybridge, A.D. and House, W.A. (1987) Synthesis and distribution coefficient of
 low-magnesium calcites. *Chem. Geol.* 64, 79-87.
- 1082 Huang, Y. and Fairchild, I.J. (2001) Partitioning of Sr^{2+} and Mg^{2+} into calcite under karst-analogue 1083 experimental conditions. *Geochim. Cosmochim. Acta* 65, 47-62.
- Huang, Y.M., Fairchild, I.J., Borsato, A., Frisia, S., Cassidy, N.J., McDermott, F. and
 Hawkesworth, C.J. (2001) Seasonal variations in Sr, Mg and P in modern speleothems (Grotta
 di Ernesto, Italy). *Chem. Geol.* 175, 429-448.
- Isola, I, Zanchetta, G, Drysdale, RN, Regattieri, E, Bini, M, Bajo, P, Hellstrom, JC, Baneschi, I,
 Lionello, P, Woodhead, J & Greig, A. (2019) The 4.2-ka event in the central Mediterranean:
 new data from a Corchia speleothem (Apuan Alps, central Italy). *Climate of the Past* 15, 135–
 1090 151, doi:10.5194/cp-15-135-2019.
- Johnson, K.R., Hu, C., Belshaw, N.S. & Henderson, G.M. (2006) Seasonal trace-element and stable
 isotope variations in a Chinese speleothem: the potential for high-resolution paleomonsoon
 reconstruction. *Earth and Planetary Science Letters* 244, 394–407.
- Karmann, I., Cruz, F.W., Viana, O. and Burns, S.J. (2007) Climate influence on geochemistry
 parameters of waters from Santana–Pérolas cave system, Brazil. *Chem. Geol.* 244, 232-247.
- Katz, A. (1973) The interaction of magnesium with calcite during crystal growth at 25-90°C and
 one atmosphere. *Geochim. Cosmochim. Acta* 37, 1563-1586.
- Kelly, S.D., Newville, M.G., Cheng, L., Kemner, K.M., Sutton, S.R., Fenter, P., Sturchio, N.C. and
 Spötl, C. (2003) Uranyl incorporation in natural calcite. *Environ. Sci. Technol.* 37, 12841100 1287.
- Kelly, S.D., Rasbury, E.T., Chattopadhyay, S., Kropf, A.J. and Kemner, K.M. (2006) Evidence of a
 stable uranyl site in ancient organic-rich calcite. *Environ. Sci. Technol.* 40, 2262-2268.

- Kitano, Y. and Oomori, T. (1971) The coprecipitation of uranium with calcium carbonate. J. Ocean. *Soc. Japan* 27, 34-42.
- Kligfield, R., Hunziker, J., Dallmeyer, R.D. and Schamel, S. (1986) Dating of deformation phases
 using K-Ar and ⁴⁰Ar/³⁹Ar techniques: results from the northern apennines. *J. Struct. Geol.* 8,
 781-798.
- Kolesar, P.T. and Riggs, A.C. (2004) Influence of depositional environment on Devils Hole calcite
 morphology and petrology, in: Sasowsky, I.D., Mylroie, J. (Eds.), *Studies of Cave Sediments*.
 Springer, Boston, MA, pp. 227-241.
- Lachniet, M.S. (2009) Climatic and environmental controls on speleothem oxygen-isotope values.
 Quatern. Sci. Rev. 28, 412-432.
- Langmuir, D. (1978) Uranium solution-mineral equilibria at low temperatures with applications to
 sedimentary ore deposits. *Geochim. Cosmochim. Acta* 42, 547-569.
- Lauritzen, S.E. and Lundberg, J. (1999) Speleothems and climate: a special issue of *The Holocene*. *The Holocene* 9, 643-647.
- 1117 Lea, D.W. and Spero, H.J. (1994) Assessing the reliability of paleochemical tracers: Barium uptake
 1118 in the shells of planktonic foraminifera. *Paleocean*. 9, 445-452.
- Liu, Y.H., Henderson, G.M., Hu, C.Y., Mason, A.J., Charnley, N., Johnson, K.R. and Xie, S.C.
 (2013) Links between the East Asian monsoon and North Atlantic climate during the 8,200
 year event. *Nature Geoscience* 6, 117-120.
- 1122Markowska, M., Baker, A., Andersen, M.S., Jex, C.N., Cuthbert, M.O., Rau, G.C., Graham, P.W.,1123Rutlidge, H., Mariethoz, G., Marjo, C.E., Treble, P.C. and Edwards, N. (2016) Semi-arid zone1124caves: Evaporation and hydrological controls on δ^{18} O drip water composition and1125implications for speleothem paleoclimate reconstructions. *Quatern. Sci. Rev.* 131, 285-301.
- Mattey, D., Lowry, D., Duffet, J., Fisher, R., Hodge, E. and Frisia, S. (2008) A 53-year seasonally
 resolved oxygen and carbon isotope record from a modern Gibraltar speleothem:
 Reconstructed drip water and relationship to local precipitation. *Earth Planet. Sci. Lett.* 269,
 80-95.
- Mattey, D.P., Fairchild, I.J., Atkinson, T.C., Latin, J.-P., Ainsworth, M. and Durell, R. (2010)
 Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern
 speleothem from St Michaels Cave, Gibraltar. *Geol. Soc., London, Spec. Pub.* 336, 323-344.
- Mavromatis, V., Gautier, Q., Bosc, O. and Schott, J. (2013) Kinetics of Mg partition and Mg stable
 isotope fractionation during its incorporation in calcite. *Geochim. Cosmochim. Acta* 114, 188203.
- McDermott, F. (2004) Paleo-climate reconstruction from stable isotope variations in speleothems: a
 review. *Quatern. Sci. Rev.* 23, 901 918.

- McDonald, J., Drysdale, R. and Hill, D. (2004) The 2002-2003 El Niño recorded in Australian cave
 drip waters: Implications for reconstructing rainfall histories using stalagmites. *Geophys. Res. Lett.* 31, doi:10.1029/2004GL020859.
- McDonald, J., Drysdale, R., Hill, D., Chisari, R. and Wong, H. (2007) The hydrochemical response
 of cave drip waters to sub-annual and inter-annual climate variability, Wombeyan Caves, SE
 Australia. *Chem. Geol.* 244, 605-633.
- Moseley, G.E., Edwards, R.L., Wendt, K.A., Cheng, H., Dublyansky, Y., Lu, Y., Boch, R. and
 Spötl, C. (2016) Reconciliation of the Devils Hole climate record with orbital forcing. *Science*351, 165-168.
- 1147 Mucci, A. and Morse, J.W. (1983) The incorporation of Mg^{2+} and Sr^{2+} into calcite overgrowths: 1148 influences of growth rate and solution composition. *Geochim. Cosmochim. Acta* 47, 217-233.
- Mucci, A. (1987) Influence of temperature on the composition of magnesian calcite overgrowths
 precipitated from seawater. *Geochim. Cosmochim. Acta* 51, 1977-1984.
- 1151 Neuser, R. D., Richter, D.K. (2007) Non-marine radiaxial fibrous calcites examples of
 1152 speleothems proved by electron backscatter diffraction. *Sed. Geol.* 194, 149-154.
- Nielsen, M.R., Sand, K.K., Rodriguez-Blanco, J.D., Bovet, N., Generosi, J., Dalby, K.N. and Stipp,
 S.L.S. (2016) Inhibition of Calcite Growth: Combined Effects of Mg²⁺ and SO₄²⁻. Crystal
 Growth & Design 16, 6199-6207.
- Oomori, T., Kaneshima, H. and Maezato, Y. (1987) Distribution coefficient of Mg²⁺ ions between
 calcite and solution at 10-50°C. *Mar. Chem.* 20, 327-336.
- Orland, I.J., Burstyn, Y., Bar-Matthews, M., Kozdon, R., Ayalon, A., Matthews, A. and Valley,
 J.W. (2014) Seasonal climate signals (1990-2008) in a modern Soreq Cave stalagmite as
 revealed by high-resolution geochemical analysis. Chemical Geology 363, 322-333.
- Owen, R.A., Day, C.C, Hu, C.-Y., Liu, Y.-H., Pointing, M.D., Blättler, C.L. and Henderson, G.M.
 (2016) Calcium isotopes in caves as a proxy for aridity: modern calibration and application to
 the 8.2 kyr event. *Earth and Planetary Science Letters* 443, 129–138.
- Paquette, J. and Reeder, R.J. (1995) Relationship between surface structure, growth mechanism,
 and trace element incorporation in calcite. *Geochim. Cosmochim. Acta* 59, 735-749.
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J. and Hergt, J. (2011) Iolite: Freeware for the
 visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 25082518.
- Piccini, L., Zanchetta, G., Drysdale, R.N., Hellstrom, J., Isola, I., Fallick, A.E., Leone, G., Doveri,
 M., Mussi, M., Mantelli, F., Molli, G., Lotti, L., Roncioni, A., Regattieri, E., Meccheri, M.
 and Vaselli, L. (2008) The environmental features of the Monte Corchia cave system (Apuan
 Alps, central Italy) and their effects on speleothem growth. *Int. J. Speleol.* 37 153-172.

- Pingitore, N.E. and Eastman, M.P. (1984) The experimental partitioning of Ba²⁺ into calcite. *Chem. Geol.* 45, 113-120.
- Pingitore, N.E. and Eastman, M.P. (1986) The coprecipitation of Sr²⁺ with calcite at 25°C and 1
 atm. *Geochim. Cosmochim. Acta* 50, 2195-2203.

Plummer, N., Busenberg, E., Riggs, A.C. (2000) In-situ growth of calcite at Devils Hole, Nevada:
comparison of field and laboratory rates to a 500,000 year record of near-equilibrium calcite
growth. *Aqueous Geochemistry* 6, 257-274.

- Reed, M.H. (1982) Calculation of multicomponent chemical equilibria and reaction processes in
 systems involving minerals, gases and an aqueous phase. *Geochim. Cosmochim. Acta* 46,
 513-528.
- 1183 Reeder, R.J. and Grams, J.C. (1987) Sector zoning in calcite cement crystals: Implications for trace
 1184 element distributions in carbonates. *Geochim. Cosmochim. Acta* 51, 187-194.
- Reeder, R.J., Nugent, M., Beck, K.M., Tait, C.D., Hess, W.P., Morris, D.E., Heald, S.M. and
 Lanzirotti, A. (2001) Coprecipitation of Uranium(VI) with Calcite: XAFS, micro-XAS, and
 luminescence characterization. *Geochim. Cosmochim. Acta* 65, 3491–3503.
- 1188 Reeder, R.J. and Paquette, J. (1990) Sector zoning in natural and synthetic calcites. *Sed. Geol.* 65,
 1189 239-247.
- Reiners, P.W., Carlson, R.W., Renne, P.R., Cooper, K.M., Granger, D.E., McLean, N.M. and
 Schoene, B. (2017) *Geochronology and Thermochronology*. Wiley.
- Richards, D.A. and Dorale, J.A. (2003) Uranium-series chronology and environmental applications
 of speleothems. *Rev. Mineral. Geochem.* 52, 407-460.
- Rimstidt, J.D., Balog, A. and Webb, J. (1998) Distribution of trace elements between carbonate
 minerals and aqueous solutions. *Geochim. Cosmochim. Acta* 62, 1851-1863.
- Schwarcz, H.P., Harmon, R.S., Thompson, P. and Ford, D.C. (1976) Stable isotope studies of fluid
 inclusions in speleothems and their paleoclimatic significance. *Geochim. Cosmochim. Acta*40, 657-665.
- Spötl, C. and Mattey, D. (2012) Scientific drilling of speleothems a technical note. *Int. J. Speleol.*41, 29-34.
- 1201 Tesoriero, A.J. and Pankow, J.F. (1996) Solid solution partitioning of Sr^{2+} , Ba^{2+} , and Cd^{2+} to 1202 calcite. *Geochim. Cosmochim. Acta* 60, 1053-1063.
- 1203Treble, P., Chappell, J., Gagan, M., McKeegan, K. and Harrison, T. (2005) In situ measurement of1204seasonal δ^{18} O variations and analysis of isotopic trends in a modern speleothem from1205southwest Australia. *Earth Planet. Sci. Lett.* 233, 17-32.

- Treble, P.C., Bradley, C., Wood, A., Baker, A., Jex, C.N., Fairchild, I.J., Gagan, M.K., Cowley, J.
 and Azcurra, C. (2013) An isotopic and modelling study of flow paths and storage in
 Quaternary calcarenite, SW Australia: implications for speleothem paleoclimate records. *Quatern. Sci. Rev.* 64, 90-103.
- Tremaine, D.M. and Froelich, P.N. (2013) Speleothem trace element signatures: A hydrologic
 geochemical study of modern cave dripwaters and farmed calcite. *Geochim. Cosmochim. Acta*1212 121, 522-545.
- Ünal-Imer, E., Shulmeister, J., Zhao, J.X., Uysal, I.T. and Feng, Y.X. (2016) High-resolution trace
 element and stable/radiogenic isotope profiles of late Pleistocene to Holocene speleothems
 from Dim Cave, SW Turkey. *Palaeogeography, Palaeoclimatology, Palaeoecology* 452, 6879.
- Wassenburg, J.A., Scholz, D., Jochum, K.P., Cheng, H., Oster, J., Immenhauser, A., Richter, D.K.,
 Häger, T., Hoffmann, D.L., Breitenbach, S.F.M., 2016. Determination of aragonite trace
 element partition coefficients from speleothem calcite-aragonite transitions. *Geochim. Cosmochim. Acta* 190, 347-367.
- Weber, M., Scholz, D., Schröder-Ritzrau, A., Deininger, M., Spötl, C., Lugli, F., Mertz-Kraus, R.,
 Jochum, K.P., Fohlmeister, J., Stumpf, C.F. and Riechelmann, D.F.C. (2018) Evidence of
 warm and humid interstadials in central Europe during early MIS 3 revealed by a multi-proxy
 speleothem record. *Quaternary Science Reviews* 200, 276-286.
- Weremeichik, J.M., Gabitov, R.I., Thien, B.M.J. and Sadekov, A. (2017) The effect of growth rate
 on uranium partitioning between individual calcite crystals and fluid. *Chem. Geol.* 450, 145153.
- Winograd, I.J., Coplen, T.B., Landwehr, J.M., Riggs, A.C., Ludwig, K.R., Szabo, B.J., Kolesar,
 P.T. and Revesz, K.M. (1992) Continuous 500.000-year climate record from vein calcite in
 Devils Hole, Nevada. *Science* 258, 255-260.
- Wong, C.I., Banner, J.L. and Musgrove, M. (2015) Holocene climate variability in Texas, USA: An
 integration of existing paleoclimate data and modeling with a new, high-resolution
 speleothem record. Quaternary Science Reviews 127, 155-173.
- Woodhead, J., Hellstrom, J., Maas, R., Drysdale, R., Zanchetta, G., Devine, P. and Taylor, E.
 (2006) U-Pb geochronology of speleothems by MC-ICPMS. *Quat. Geochronol.* 1, 208-221.
- Woodhead, J.D., Hellstrom, J., Hergt, J.M., Greig, A. and Maas, R. (2007) Isotopic and Elemental
 Imaging of Geological Materials by Laser Ablation Inductively Coupled Plasma-Mass
 Spectrometry. *Geostand. Geoanal. Res.* 31, 331-343.
- Yoshimura, T., Suzuki, A. and Iwasaki, N. (2015) Ba, B, and U element partitioning in magnesian
 calcite skeletons of Octocorallia corals. *Biogeosci. Discuss.* 12, 413-444.

- I241 Zanchetta, G., Drysdale, R.N., Hellstrom, J.C., Fallick, A.E., Isola, I., Gagan, M.K. and Pareschi,
 M.T. (2007) Enhanced rainfall in the Western Mediterranean during deposition of sapropel
- 1243 S1: stalagmite evidence from Corchia cave (Central Italy). *Quatern. Sci. Rev.* 26, 279-286.
- Zhou, H., Chi, B., Lawrence, M., Zhao, J., Yan, J., Greig, A. and Feng, Y. (2008) High-resolution
 and precisely dated record of weathering and hydrological dynamics recorded by manganese
 and rare-earth elements in a stalagmite from Central China. *Quat. Res.* 69, 438-446.
- 1247

 Table 1: Instrumental operating conditions for the LA-ICP-MS.

Agilent 7700x ICP-MS	
Forward power	1300 W
Reflected power	2 W
Sample depth	3 mm
Dwell time	0.01 s
Carrier gas	0.89 L min ⁻¹
Masses measured (m/z)	²⁵ Mg, ⁴³ Ca, ⁸⁸ Sr, ¹³⁸ Ba, ²³⁸ U
Helex laser-ablation system Lambda Physik Compex 110 ArF excimer Laser fluence Data collection spot size Data collection repetition rate Helium gas to cell Ablation time Final data acquisition window	193 nm ~5 J cm ⁻² 7 μm 5 Hz 500 mL min ⁻¹ 15 s ~5 s

Date	Temp. (°C)	рН	HCO_3^{-1} $(mg L^{-1})$	Ca^{2+} (mg L^{-1})	Mg^{2+} (mg L^{-1})	Sr^{2+} ($\mu g L^{-1}$)	Ba^{2+} ($\mu g L^{-1}$)	U $(\mu g L^{-1})$	Mg/Ca (mol/mol)	Sr/Ca (mmol/mol)	Ba/Ca (mmol/mol)	U/Ca (mmol/mol)	
22/05/09	8.0	8.3	151.3	29.5	20.9	53	25	5.2	1.168	0.822	0.247	0.030	
17/06/09	7.3	8.4	157.4	30.2	21.0	55	28	5.1	1.146	0.833	0.271	0.028	
28/07/09	8.1	8.0	153.7	30.1	21.0	68	29	8.0	1.150	1.033	0.281	0.045	
28/08/09	8.0	8.4	154.4	29.7	20.7	65	28	7.9	1.149	1.001	0.275	0.045	
02/10/09	8.1	8.3	152.5	29.8	19.6	53	23	7.5	1.084	0.814	0.225	0.042	
14/11/09	7.9	8.2	143.4	28.0	17.5	54	23	7.9	1.030	0.882	0.240	0.048	
14/12/09	8.0	8.3	151.3	29.0	20.4	54	23	7.7	1.160	0.852	0.231	0.045	
24/02/10	8.0	8.2	164.7	29.9	21.8	57	24	6.4	1.202	0.872	0.234	0.036	
27/03/10	8.0	8.1	152.5	29.4	21.2	53	22	5.6	1.189	0.825	0.218	0.032	
19/04/10	7.9	8.4	154.4	28.5	21.0	53	23	5.5	1.215	0.851	0.236	0.032	
31/05/10	7.8	8.3	158.6	28.6	20.5	56	26	7.2	1.182	0.896	0.265	0.042	
29/06/10	7.8	8.3	149.5	30.0	20.8	58	25	6.9	1.143	0.884	0.243	0.039	
05/08/10	7.9	8.3	148.3	28.6	21.0	58	27	7.2	1.211	0.928	0.276	0.042	
01/09/10	7.9	8.3	148.3	28.9	20.8	56	24	7.0	1.187	0.886	0.242	0.041	
30/09/10	7.9	8.3	143.4	29.0	20.9	53	23	6.6	1.188	0.836	0.231	0.038	
29/10/10	7.9	8.2	146.4	27.1	20.8	58	24	7.1	1.265	0.979	0.258	0.044	
25/11/10	7.9	8.1	156.8	29.9	20.3	56	23	7.2	1.119	0.857	0.225	0.041	
29/12/10	7.9	8.1	149.5	29.3	21.0	56	22	7.1	1.182	0.874	0.219	0.041	
03/02/11	7.5	8.2	147.6	28.4	20.7	56	24	6.9	1.202	0.902	0.247	0.041	
10/03/11	8.0	8.2	154.4	29.4	19.8	55	22	6.6	1.110	0.856	0.218	0.038	
05/04/11	7.8	8.2	152.5	28.1	21.1	54	21	6.5	1.238	0.879	0.218	0.039	
11/05/11	7.7	8.2	148.3	28.5	21.4	56	22	6.5	1.238	0.899	0.225	0.038	
24/06/11	7.6	8.2	158.6	28.8	21.7	55	23	6.4	1.242	0.874	0.233	0.037	
11/07/11	7.8	8.1	148.9	29.1	21.4	55	23	6.3	1.212	0.865	0.231	0.036	
09/08/11	7.4	8.1	146.4	27.8	20.4	57	23	6.4	1.210	0.938	0.241	0.039	
06/10/11	7.9	8.2	151.3	29.7	21.8	56	22	6.3	1.210	0.862	0.216	0.036	
07/11/11	8.4	8.1	144.0	28.6	20.7	55	22	6.1	1.193	0.880	0.225	0.036	
23/03/12	8.1	7.9	151.3	32.0	20.7	52	21	5.7	1.067	0.743	0.192	0.030	
Mean	7.9	8.2	151.4	29.1	20.7	56.0	23.8	6.7	1.175	0.879	0.238	0.039	
2σ	0.4	0.2	10.0	1.8	1.6	6.9	4.2	1.6	0.116	0.116	0.042	0.010	
% CV (20)			3.3	3.3	3.9	6.1	8.9	11.9	9.3	13.2	17.6	25.6	
п	28	28	28	28	28	28	28	28	28	28	28	28	
			Summary	of 1997 – 20	06 data (Pic	cini et al. 20	008)						
Mean		8.2	154.0	30.3	20.6				1.121				
2σ		0.2	10.0	2.0	1.8				0.123				
n		10	10	10	10				10				

Table 2: Laghetto Basso pool water chemistry measured on samples taken between 25 May 2009 and 23 March 2012. A summary of data measured between 1997 and2006 (from Piccini et al. 2008) are shown in the bottom section of the table. Further water chemistry variables are shown in Supplementary Table 2.

Table 3: Results of ICP-MS solution analyses conducted on calcite abraded from the actively growing surface of core CD3-12. Analyses were conducted at two laboratories, the University of Melbourne (UoM) and the Australian Nuclear Science and Technology Organisation (ANSTO). The reduced χ -squared statistics on the paired means for all four ratios are less than the critical value of χ at p = 0.05. Therefore, each pair can be regarded as being drawn from the same population, and the data combined by calculating the error-weighted mean (EW mean); the corresponding 2σ is the error-weighted 95% uncertainty. CV % is the per cent coefficient of variation calculated using 2σ .

Samuelo	Mg/Ca (i	mol/mol)	Sr/Ca (m	mol/mol)	Ba/Ca (n	imol/mol)	U/Ca (µ	mol/mol)
Sample	UM	ANSTO	UM	ANSTO	UM	ANSTO	UM	ANSTO
CD3-12-A	0.0494	0.0487	0.0873	0.0895	0.0209	0.0204	0.4793	0.4934
CD3-12-B	0.0497	0.0485	0.0878	0.0881	0.0220	0.0201	0.5196	0.5026
CD3-12-C	0.0500	0.0497	0.0887	0.0909	0.0214	0.0207	0.5020	0.5051
CD3-12-D	0.0496	0.0491	0.0859	0.0874	0.0213	0.0201	0.5170	0.5041
СD3-12-Е	0.0500	0.0494	0.0871	0.0887	0.0215	0.0199	0.5078	0.4941
CD3-12-F	0.0495	0.0485	0.0848	0.0879	0.0206	0.0195	0.5447	0.5578
CD3-12-G	0.0496	0.0476	0.0868	0.0878	0.0220	0.0199	0.5272	0.5193
CD3-12-H	0.0494	0.0488	0.0857	0.0867	0.0214	0.0195	0.5175	0.5107
CD3-12-I	0.0494	0.0487	0.0862	0.0898	0.0217	0.0205	0.5420	0.5173
CD3-12-J	0.0498	0.0495	0.0869	0.0880	0.0218	0.0198	0.5229	0.5137
CD3-12-K	0.0503	0.0504	0.0886	0.0896	0.0230	0.0204	0.5453	0.5093
CD3-12-L	0.0499	0.0490	0.0871	0.0893	0.0221	0.0200	0.5320	0.5108
CD3-12-M	0.0498	0.0488	0.0844	0.0878	0.0205	0.0197	0.4997	0.4730
CD3-12-N	0.0503	0.0508	0.0875	0.0921	0.0218	0.0206	0.5172	0.5114
CD3-12-0	0.0495	0.0488	0.0876	0.0876	0.0228	0.0197	0.5201	0.4878
Mean	0.0497	0.0491	0.0868	0.0888	0.0216	0.0201	0.5196	0.5074
$\pm 2\sigma$	0.0006	0.0016	0.0025	0.0029	0.0014	0.0008	0.0359	0.0372
% CV (20)	1.2	3.2	2.9	3.3	1.9	3.9	6.9	7.3
<i>r</i> ²	0.81*		0.54*		0.16		0.67*	
% difference	1.3		-2.2		7.3		2.4	
EW mean $\pm 2\sigma$	0.0496	0.0006	0.0877	0.0029	0.0205	0.0007	0.5137	0.0258
% CV (20)	1.2		3.3		3.4		5.0	

Table 4: (a) Summary of Mg, Sr, Ba and U concentrations from the seven traverses of the outer rim of CD3-12 measured by LA-ICP-MS. The mean and 2 s.d. of each traverse for each element is shown, as is the overall mean (bold) and 2 s.d. The % CV is the per cent coefficient of variation calculated using 2 s.d.

Traverse number	Number of spots	Mg (ppm)	$\pm 2\sigma$	Sr (ppm)	$\pm 2\sigma$	Ba (ppm)	$\pm 2\sigma$	U (ppm)	$\pm 2\sigma$
1	11	10992	1017	70.8	8.0	24.4	3.2	1.27	0.19
2	21	11382	791	72.4	6.3	24.2	3.4	1.02	0.26
3	16	11380	503	72.1	3.3	24.6	2.1	1.38	0.14
4	17	11382	693	72.8	4.3	25.7	2.0	1.40	0.09
5	17	11396	794	72.6	6.2	26.5	7.1	1.43	0.15
6	28	11607	1094	75.2	9.9	25.6	6.5	0.84	0.36
7	10	11097	597	68.3	5.6	23.5	2.4	1.32	0.15
Mean ± 2σ		11377	896	72.6	7.7	25.1	4.9	1.19	0.65
% CV (2 0)		7.9		10.6		19.6		55.1	

Table 5: Calcite partition coefficients for Mg, Sr, Ba and U from this study. Coefficients are also shown from previous studies cave and cave-analogue (lab) studies for comparison. For Laghetto Basso, *D*_X results for both surface calcite [X/Ca]/pool water [X/Ca] (Table 3) and LA-ICP-MS outer rim [X/Ca]/pool water [X/Ca] (Table 5) are shown.

Source of data		Settina	Temp.	Dı Max-Min	^{Ag} Mean	D Max-Min	Sr Mean	D _{Ba} Max-Min	Mean	Du Max-Min	Mean
Source of auta	betting	(°C)		1σ		1σ		1σ		1σ	
This study	Solution ICP-MS	Cave	8		0.042 ±0.002	-	0.100 ±0.007	-	0.086 ±0.008	-	0.013 ±0.002
,	LA-ICP-MS				0.042 ±0.003	-	0.094 ±0.008	-	0.076 ±0.018		0.013 ±0.005
Tremaine & Froehlich (2013)		Cave	19	0.047-0.014	0.027 ±0.008	0.120-0.037	0.090 ±0.022				
Fairchild et al. (2010)		Cave	6	0.020-0.015	0.018 ±0.003	0.130-0.079	0.110 ±0.027	-	-	-	-
Karman et al. (2007)		Cave	19	-	0.023	-	0.059	-	-	-	-
Huang et al. (2001)		Cave	7	0.016-0.012	0.014 ±0.003	0.16-0.15	0.155 ±0.007	-	-	-	-
			7	0.021-0.013	0.017 ±0.003	0.232-0.127	0.175 ±0.038	-	-	-	-
Gascoyne (1983)		Cave	23	0.057-0.040	0.045 ±0.006	0.298-0.088	0.206 ±0.092	-	-	-	-
Holland et al. (1964a)		Cave	16	-	-	0.280-0.130	0.190 ±0.016	-	-	-	-
			7	-	0.012 ±0.001	-	0.130 ±0.007	-	-	-	0.110 ±0.011
Day & Henderson (2013)		Lah	15	-	0.013 ±0.001	-	0.120 ±0.007	-	-	-	0.120 ±0.011
Day & Henderson (2015)		Цар	25	-	0.016 ±0.001	-	0.130 ±0.006	-	0.110 ±0.008	-	0.033 ±0.011
			35	-	0.020 ±0.001	-	0.120 ±0.006	-	0.110 ±0.009	-	0.062 ±0.012
			15	0.022-0.016	0.020 ±0.003	0.079-0.068	0.072 ±0.006	-	-	-	-
Huang & Fairchild (2001)		Lab	25	0.033-0.030	0.031 ±0.001	0.077-0.071	0.076 ±0.003	-	-	-	-