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Abstract 
Periodic structures have properties of controlling mechanical wave. These are used in aircraft, trains, 

submarines, space structures and demand high level of robustness, which can be ensured with consideration 

of the presence of uncertainty in the numerical models. The uncertainties, in terms of material properties 

and geometrical parameters, are mostly introduced in both the manufacturing and assembly process. In order 

to predict the wave characteristics of the periodic structures under the uncertainty, the stochastic wave finite 

element method has been extended to periodic structures; wave finite element method (WFEM) added with 

an additional dimension to model the uncertain parameter using the perturbation approach. Numerical 

experiments are performed to test the method with one-dimensional periodic rod and periodic beam with 

parametric uncertainty. The performance of the developed method is compared in terms of computational 

cost which offers computational advantages over the Monte Carlo Simulation. 

1 Introduction 

The vibroacoustic performance and dynamics of the structure are important subjects in aeronautics, 

transport, energy, and space where the periodic media can be used for vibration reduction, acoustic blocking, 

acoustic channeling and acoustic cloaking. Application for these unusual phenomena is mainly correlated 

to the inherent band gaps or frequency regions in which the propagation of acoustic/elastic waves in the 

periodic media can be manipulated. Inherent material inhomogeneity, manufacturing errors (ex. variation 

of geometry) and environmental influences are unavoidable. 

To address this unavoidable actuality, the effects of uncertainties need to be considered when analyzing 

band structures (pass and stop band) and dynamics of the periodic structures. Also, to meet the regulatory 

compliance and user requirement, the designer accounts for variation in the input parameter at the design 

phase. For example, in the space industry designers consider the uncertainty in the system parameter to 

ensure that the during launch and orbital operation the vibration level are in a range that is acceptable.  

Three different frequency ranges of analysis can be defined for the typical dynamic response of weakly 

dissipative structures. At the low-frequency range, FE-like approaches are applicable because of the low 

order modes and low sensitivity to variability, contrary the high frequency with many high order modes 

involved, energy-based methods (e.g. Statistical Energy Analysis (SEA)) are well suited. The mid-frequency 

range affected by variability of the model parameter and the wave-based approaches have been developed 

by increasing computational efficiency. However, most of them assume that waveguide properties are 

homogeneous in the direction of the travelling wave, which is the limitation of such approaches for variety 

of application where uncertainty can be considered. Also the analytical solutions are available but limited 

to the particular cases (e.g. acoustic horns, ducts, rods and beams) [1]. Manohar et al. [2] considered the 

randomness in the wave propagation in waveguides using spectral element analysis. Ichchou et al.[3] 

proposed a numerical approach using the Wave Finite Element Method (WFEM) [4] considering spatially 
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homogeneous variability in waveguides using a first order perturbation and extended with second order 

perturbation is proposed [5].  

When dealing with layered structures the material or geometrical uncertainty often exhibits spatial 

correlation and random fields theory can be used to model spatially distributed variability with probability 

measure [6]. In addition, a Karhunen–Loeve (KL) expansion provides characterization of the random field 

in terms of deterministic eigenfunctions weighted by uncorrelated random variables. Also the (after 

Wentzel, Kramers and Brillouin) WKB approximation are employed in the modelling the random media 

[7]. The limitation of the method is that it does not consider the internal reflections which occur due to any 

local changes in the material or geometrical properties. This assumption can be mitigated if one considers a 

waveguide with piecewise constant material variability, where internal reflections due to local changes in 

the impedance can be taken into account at the junctions of the sections and the piecewise constant separated 

into a finite number of discrete sections [8]. Also, this would be an approximate representation for the 

spatially varying system [9]. 

 

The literature reveals that the effects of uncertainty in the material properties, geometry, loading condition 

and model play significant role in altering wave states. The work reported so far in the literature with the 

best of authors knowledge, is limited to wave propagation (with structured and unstructured uncertainty) in 

elastic media and random media only. In the present work, a Stochastic Wave Finite Element Method 

(SWFEM) [10], [11] is employed to analyze the complex band gap in 1D periodic structures. The results of 

the stochastic formulation are compared those obtained with analytical and Monte Carlo Simulation (MCS) 

for the bar and beam. 

2 Formulation of SWFEM 

One dimensional periodic structures are obtained by formulating the unit cell and then repeating in the 

propagation direction. Then, the study of this structure can be converted into study of unit cell based on the 

Floquet-Bloch theorem [3]. The schematic representation is shown in Fig. 1.  

To consider the effect of the uncertainty on the response of the structure, the SWFEM is formulated which 

is extension of the classical WFEM to accommodate the uncertainty. The workflow of the SWFEM is 

depicted in Fig. 2. 

 

A  B   A     B 

Cell k   Cell k+1 

   𝑙1 

 
   𝑙2 

 

Figure 1: Schematic representation of periodic structure 
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To make the reader easily understand, the step in the formulation of SWFEM [3] is explained here.  

The WFEM is used to study the behavior of periodic structures. This is extended to apply the WFEM for 

the uncertainty study. This starts with consideration of the random field as a supplementary dimension 

through the spatial discretization using the finite element steps. Which start from discretization of one sub-

element of length (d). This discretization leads to stochastic dynamic equilibrium of any substructure in the 

following manner.  

(𝐷̃) (
𝑞̃𝐿

𝑘

𝑞̃𝑅
𝑘) = (

𝐹̃𝐿
𝑘

𝐹̃𝑅
𝑘) (1) 

Here (𝐷̃) is the stochastic complex dynamic stiffness matrix of the substructure, condensed on left and right 

boundaries degree of freedom at the pulsation 𝜔: 

(𝐷̃) = −𝜔2 𝑀̃ + 𝐾̃(1 + 𝑖𝜂)  (2) 

Here 𝑀̃ 𝑎𝑛𝑑 𝐾̃ are stochastic mass and stiffness matrix respectively. 

Dynamic Stiffness matrix (D) 

[µ, Φ] 

[𝜎µ, 𝜎𝛷] 

Post processing: Selection of 

Wavenumber and             

Wave modes 

Statistics of wave 

propagation characteristics 

WFEM 

Stochastic 

formulation 
[𝐾𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛, 

𝑀𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛] 

Figure 2: Flow diagram for SWFEM 
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In the probabilistic tools, the parametric approach allows to consider the uncertain parameters (material, 

geometrical properties etc.) as random quantities. This is modeled using the stochastic finite element 

discretization approaches as expressed in [12].    

The random variables are modeled using the first order perturbation, as Gaussian variables, such that the 

dynamical equilibrium is expressed as: 

[−𝜔2(𝑀̅ + 𝜎𝑀𝜀) + (𝐾̅ + 𝜎𝐾𝜀)(1 + 𝑖𝜂)] (
𝑞̅𝐿

(𝑘)
+ 𝜎𝑞𝐿

(𝑘)
𝜀

𝑞̅𝑅
(𝑘)

+ 𝜎𝑞𝑅

(𝑘)
𝜀

) = (
𝐹̅𝐿

(𝑘)
+ 𝜎𝐹𝐿

(𝑘)
𝜀

𝐹̅𝑅
(𝑘)

+ 𝜎𝐹𝑅

(𝑘)
𝜀

) (3) 

The overbar   .  ̅̅ ̅ symbol denotes the mean of the random variable, σ; is standard deviation and 𝜀 is a Gaussian 

centered variable [13]. In the expression 𝑀̅, 𝐾̅, 𝑞̅, 𝐹̅ are the mean quantities of mass matrix, stiffness matrix, 

displacement vector and load. 𝜎𝑀 , 𝜎𝐾 , 𝜎𝑞 , 𝜎𝐹 are their standard deviation.  

As in the classical case, the stochastic problem in equation (1) can be partitioned in the following way: 

(
𝐷̃𝐿𝐿 𝐷̃𝐿𝑅

𝐷̃𝑅𝐿 𝐷̃𝑅𝑅

) (
𝑞̃𝐿

𝑘

𝑞̃𝑅
𝑘) = (

𝐹̃𝐿
𝑘

𝐹̃𝑅
𝑘) 

 

(4) 

It is to be noted that equation (4) is valid and can accommodate the stochastic behavior of the stiffness and 

mass matrix.  

The stochastic kinematic variable, 𝑞̃ and 𝐹̃  are represented through stochastic state vector and related by 

the stochastic transfer matrix 𝑆̃. 

𝑢̃𝑅
𝑘 = 𝑆̃. 𝑢̃𝐿

𝑘 (5) 

Where 𝑆̃ = 𝑆̅ + 𝜎𝑠𝜀 

𝑆̅ = (
−𝐷̅𝐿𝑅

−1𝐷̅𝐿𝐿 𝐷̅𝐿𝑅
−1

𝐷̅𝑅𝐿 − 𝐷̅𝑅𝐿𝐷̅𝐿𝑅
−1𝐷̅𝐿𝐿 −𝐷̅𝑅𝐿𝐷̅𝐿𝑅

−1) 

 

𝜎𝑠 = (
−𝐷̅𝐿𝑅 0

−𝐷̅𝑅𝑅 1
)

−1

(
𝜎𝐷𝐿𝐿

𝜎𝐷𝐿𝑅

𝜎𝐷𝑅𝐿
𝜎𝐷𝑅𝑅

) (
1 0

−𝐷̅𝐿𝑅
−1𝐷̅𝐿𝐿 𝐷̅𝐿𝑅

−1) 

 

Following the steps of the deterministic development, a stochastic eigenvalue problem formulated as 

follows: 

𝑆̃𝜙̃𝑖 = 𝜇̅𝑖. 𝜙̃𝑖 

|𝑆̃ − 𝜇̃𝑖𝐼2𝑛| = 0 

 

(6) 

The polynomial chaos projection of the eigenvalue problem leads to find their mean and standard deviation. 

The standard deviation of the propagation constant 𝜇𝑖  (𝜎𝜇𝑖
) 

𝜎𝜇𝑖
= [(𝜙̅𝑖)𝑇𝜎𝑠

𝑇(𝑆̅𝑇 − 𝜇̅𝑖𝐼2𝑛)−1𝐽𝑛(𝑆̅ − (𝜇̅𝑖)−1𝐼2𝑛) − (𝜙̅𝑖)𝑇𝐽𝑛𝜎𝑠)]  

x [(𝜙̅𝑖)𝑇(𝑆̅𝑇 − 𝜇̅𝑖𝐼2𝑛)−1𝐽𝑛(𝑆̅ − (𝜇̅𝑖)−1𝐼2𝑛) − (𝜇̅𝑖)−2(𝜙̅𝑖)𝑇𝐽𝑛)]−1 

 

(7) 

similarly, the standard deviation of the eigenvectors (𝜎𝜙𝑖
) can be written as 

𝜎𝜙𝑖
= −[𝑆̅ − 𝜇̅𝑖𝐼2𝑛]+[𝜎𝑠 − 𝜎𝜇𝑖

𝐼2𝑛]𝜙̅𝑖 (8) 

where + is pseudo inverse. 

4734 PROCEEDINGS OF ISMA2018 AND USD2018



Using equation (7) and (8), the statistics of the wave characteristics can be expressed in the standard 

deviation of the propagation constant. 

3 Results 

This section shows the validation of SWFEM formulation considering binary periodic rod and binary 

periodic beam respectively. Binary rod and beam consist of section A of length 𝑙1 and section B of length 

𝑙2 as depicted in the Fig. 3. Here cells A and B are made of different materials. In the first case, the 

longitudinal waves are studies while in the second case the flexural waves in beam of circular section are 

studied. 

3.1 Longitudinal waves in binary periodic rod with uncertainty 

In this subsection, the SWFEM is used to study the effect of parametric uncertainty on the dispersion relation 

of the longitudinal wave in binary periodic rod with sections A and B made of epoxy and aluminum 

respectively. The length of 𝑙1 and 𝑙2 are 1m each with circular cross section of radius of 0.0644m.  

For the validation purpose SWFEM results is compared with the analytical solution of the wave number K 

expressed [14]: 

cos(𝐾𝑙) = cos (
𝜔

𝑐𝑎
𝑙𝑎) cos (

𝜔

𝑐𝑏
𝑙𝑏) −

1

2
(
𝜌𝑎𝑐𝑎

𝜌𝑏𝑐𝑏
+

𝜌𝑏𝑐𝑏

𝜌𝑎𝑐𝑎
)𝑠𝑖𝑛 (

𝜔

𝑐𝑎
𝑙𝑎) 𝑠𝑖𝑛 (

𝜔

𝑐𝑏
𝑙𝑏) (8) 

 

Where 𝑐𝑎, 𝑐𝑏 is the wave velocity in the section A and B respectively and expressed as 𝑐𝑎 = √
𝐸𝑎

𝜌𝑎
 and  

𝑐𝑏 = √
𝐸𝑏

𝜌𝑏
 

The uncertainty effect is studied considering variation of the Young’s modulus with four percentage. The 

study frequency range are up to 1800 Hz. The analytical results are treated as reference result for validation 

purpose. The sampling method with 10000 samples are used to get the wave characteristics of the analytical 

wave number obtained using equation (8).  

In SWFEM formulation two-node rod elements are considered with the stiffness and mass matrices as 

following: 

𝐾𝑟𝑜𝑑 =
𝐸𝑆

𝑑
(

1 −1
−1 1

) 

𝑀𝑟𝑜𝑑 =
𝜌𝑆𝑑

6
(

2 1
1 2

) 

A  B 

Unit cell 

   𝑙1 

 
   𝑙2 

 

Figure 3: Symmetric unit cell 
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Where E is the Young’s modulus, S is cross sectional area and d is element length. 

The global stiffness and mass matrices are assembled in the MATLAB environment with 100 elements in 

the unit cell of binary periodic rod. The material and geometric properties are shown in Table 1. 

 

 

 

 

 

 

 

 

 

            Table 1: Geometric parameters and material properties of binary periodic rod 

Validation of SWFEM result in terms of dispersion equation is also computed using the MCS method with 

10000 samples. As shown in Fig. 4, there exist one stop band in the considered frequency range according 

to the results obtained with SWFEM, analytical sampling and MCS in the considered frequency range. Also, 

the non-dispersive nature of propagation can be observed for the standard deviation. The comparison of the 

standard deviation is presented in the Fig. 5, obtained from analytical sampling, SWFEM and WFEM MCS. 

The results are in good agreement. The SWFEM standard deviation is computed considering loss factor on 

the contrary the analytical sampling is based on without damping. 

 

Figure 4: Comparison of mean of wave number 

Geometry/Property Value 

Rod length (A) 1 m 

Rod length (B) 1 m 

Radius of rod 0.0644 m 

Young’s modulus (A)  4.35 Gpa 

Young’s modulus (B)  77.56 Gpa 

Mass density (A) 1180 kg/m3 

Mass density (B) 2730 kg/m3 

Loss factor (A) and (B) 0.001 
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Figure 5: Comparison of the standard deviation of wave number 

3.2 Flexural waves in binary periodic beam with uncertainty 

In this subsection, the study of the uncertainty effect on the bending wave in binary periodic beam is 

performed. The Euler-Bernoulli beam theory is considered with material and geometrical properties listed 

in Table 2.  

 

 

 

 

 

 

 

 

 

Table 2: Geometric parameters and material properties of binary periodic beam 

For the numerical formulation the two-node beam element with two degrees of freedom per node is 

considered. The mass and stiffness matrices of the beam are as follows: 

𝐾𝑏𝑒𝑎𝑚 =
𝐸𝐼

𝑑3 [

16 6𝑑 −12
6𝑑 4𝑑2 −6𝑑

−12 −6𝑑 12
    

6𝑑
2𝑑2

−6𝑑
6𝑑 2𝑑2     −6𝑑 4𝑑2

] 

𝑀𝑏𝑒𝑎𝑚 =
𝜌𝑆𝑑

420
[

156 22𝑑 54
22𝑑 4𝑑2  13𝑑
54 −6𝑑   156

    
−13𝑑
−3𝑑2

−22𝑑
−13𝑑 −3𝑑2  −22𝑑 4𝑑2

] 

 

The frequency range of computation is 1-1500 Hz. Considering the uncertainty in the Young’s modulus of 

the binary periodic beam with four percent about the nominal value, the numerical experiment is performed 

with SWFEM formulation. To validate the obtained result, MCS study is carried out with 10000 samples.  

Geometry/Property Value 

Beam length 0.5m 

Radius of beam 0.00945m 

Young’s modulus (A) 210 Gpa 

Young’s modulus (B) 0.72 Gpa 

Mass density (A) 7800 kg/m3 

Mass density (B) 935 kg/m3 

Loss factor (A) and (B) 0.001 
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Fig. 6 shows the comparison of the mean value of the wave number obtained from SWFEM and MCS on 

the WFEM simulation. In Fig.7, the standard deviation comparison is shown from SWFEM and MCS 

results. The results are in good agreement which confirmed the validity of the SWFEM formulation applied 

to bending wave analysis. 

 

 

Figure 6: Comparison of mean of wave number 

 

 

Figure 7: Comparison of the standard deviation 
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For the elapsed time computation, the MCS result obtained using homemade WFEM code which exploits 

the resources of the workstation with following characteristics, Intel® core™i7 7820 HQ CPU@2.90GHz 

with 32 GB RAM and data storage using solid state drive. The comparison is presented in the Table 3. 

 

 WFEM MCS 

 (10000 Sample) 

SWFEM 

(single run) 

Elapse time (Seconds) 3840 9.56 

Table 3: Elapsed time comparison 

4 Conclusion 

This paper provides a computationally inexpensive stochastic numerical approach to study the uncertainty 

effect on free vibration of the 1D periodic structures. This formulation allows wave characteristic to be 

defined by stochastic finite element model using parametric probabilistic approach and which is easy to 

implement as it considers finite element model of the sample structural element.  The SWFEM shows that 

the wave characteristic of the longitudinal and flexural wave can be obtained precisely.  Main conclusion 

can be derived as follows: 

(1) The formulation of the SWFEM is applied for the binary periodic rod and beam. 

(2) Analytical sampling and numerical result showed the effectiveness of the formulation to predict the 

mean and standard deviation of the wave propagation. 

(3) The SWFEM has computational advantage over MCS results. 

The saving the computational cost can be a good point for the optimization and reliability study under 

uncertainties of complex waveguides. The statistics of the response can also be useful for the damage 

detection and sensitivity analysis. Future investigation is under progress for the forced response 

computation, using the present formulation. 
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