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ABSTRACT 

To predict the wave characteristics of the periodic media in the presence of fuzzy 
uncertainties, the wave finite element method in conjunction with fuzzy logic and algebra has 
been applied. For one-dimensional wave propagation, firstly, the most significant input 
parameters such as Young’s modulus and mass density are identified and then fuzzified using 
the membership functions. Then, the fuzzy variable is propagated through the numerical 
model of interval analysis. The dispersion curves for flexural and longitudinal waves with 
fuzzy parameters have been used to illustrate the generality of the proposed approach also 
looking at the possibility to have frequency region in which those waves cannot propagate 
(frequency band gaps). The triangular membership functions have been used in the numerical 
examples and the obtained results are compared against the classical Monte Carlo simulations 
(MCS). The approach was presented for very simplified test-cases but it is found to be more 
efficient when compared with the conventional MCS approach in terms of computational cost.  

Key words: WFEM, uncertainty modeling, periodic media, bandgap, fuzzy analysis.  
 

1 INTRODUCTION 

In recent years the propagation of elastic waves in periodic media with periodic material and 
geometrical properties has been extensively studied. These periodic media offer property 
known as band gaps where the propagation of the elastic wave is restricted in all the 
directions. Such properties are demanded for the vibroacoustic performance and dynamics of 
the structure and especially sought in aeronautics, transport, energy and space for vibration 
reduction, acoustic blocking, acoustic channeling and acoustic cloaking [1].  
Three different frequency ranges identified: at the low-frequency range, because of the low 
order modes and low sensitivity to variability generally, the finite element approaches are 
applicabe; and high frequency, energy-based methods (e.g. Statistical Energy Analysis (SEA)) 
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are well suited because of the involvement of many high order modes; finally  the mid-
frequency range affected by the variability of the model parameter and wave-based 
approaches has been developed by increasing computational efficiency [2].  
The design of periodic media is generally based on deterministic models without considering 
the effect of intrinsic uncertainties existing in these media. In general, the design is aimed at 
controlling as much as possible the mechanical waves; however, inherent uncertainty may 
affect their characteristics. Periodic media are diffused in all the transportation engineering 
and demand a high level of robustness, which can be ensured with the careful consideration of 
the presence of uncertainty in the numerical models. The uncertainties, in terms of material 
properties and geometrical parameters, are mostly exhibited in both the manufacturing and 
assembly processes. To address this unavoidable actuality, the effects of uncertainties need to 
be considered when analyzing band structures (pass and stop bands). Generally, the stochastic 
characteristics of the periodic media can be determined by studying the design parameter 
uncertainties which are often modeled by random variables with consideration for spatial 
variability of the material and geometrical properties.  
Manohar et al. studied the randomness in the wave propagation in waveguides using spectral 
element analysis [3]. Ichchou et al. proposed a numerical approach using the Wave Finite 
Element Method (WFEM) considering spatially homogeneous variability in waveguides using 
a first and second order perturbations are proposed [4][5]. Recently Rayleigh quotient method 
introduced to investigate the symplectic eigenvalue problem of random symplectic matrix [6]. 
The material or geometrical uncertainty often displays spatial correlation, in layered 
structures. There, random fields theory can be used to model spatially distributed variability 
with probability measure [7]. Also, this would be an approximate representation for the 
spatially varying system  [8]. 
The probabilistic models to account for these uncertainties employ probabilistic methods 
which require a wealth of data on probabilistic parameters. The exact sources of uncertainty 
are rarely found since their identification represents a difficult task. Furthermore, even small 
inaccuracies in the data can lead to large errors in the computed probability of response [9].  
When faced with incomplete information such as, “Young’s modulus of the material lies 
between  70 GPa to 72.4 GPa,” “mass ration is about 4%,” and “lenght of side slightly larger 
than 1.2m,” cannot be accomdated by deterministic model[10]. In fact, statements as ‘‘the 
mean are approximately equal to.. .” and ‘‘the variance lies in the range.. .” are typical when 
handling real mechanical data and by virtue of their subjective nature they deal with fuzzy 
uncertainties[11]; the adoption of the probabilistic approach can result in very challenging 
evaluations. In this scenario, the fuzzy set theory offers a way to approximating the 
uncertainty distribution in the form of the confidence interval through fuzzy membership 
functions. These are equivalent representations for the characterization of the linguistic, vague 
and missing data uncertainties.  
The work reported so far in the literature with the best of the author's knowledge, is limited to 
wave propagation in elastic media and random media with probability method. In this work, a 
possibilistic method developed for the fuzzy uncertainty modeling and propagation in 
conjunction with WFEM and named as FWFEM (fuzzy wave finite element method). The 
approach was presented for a very simplified test-case 1D periodic bar and beam model with 



1171

R. P. Singh, M. Ichchou, O. Bareille, F. Franco, S. De Rosa 

 3 

fuzzy uncertainty. It is modeled using triangular membership function and uncertainty bound 
are computed with fuzzy arithmetic steps and α-cut method. The results of FWFEM 
formulation are compared to those obtained from MCS. 

2 FORMULATION OF FWFEM 

Firstly the definition of the fuzzy membership function is revisited [12].  Let U is a classical 
set of objects, it is called the universe. The generic elements of U are denoted u. Then the 
membership in a classical subset A of U can be viewed as a characteristic function A from U 
to {0, 1} such that 

1, if
( )

0, ifA

u A
u

u A


 
=                 (1) 

The set {0, 1} is called a valuation set. A set A is called a fuzzy set if the valuation set is 
allowed to be the real interval [0, 1]. The fuzzy set A is characterized by the set of pairs  

 [ , ( )],AA u u u U=    

where  ( )A u  is called the grade of the membership function.  

Figure 1: Triangular membership function 

α - Cuts: When an element . The α-cut Aα of A, which is a fuzzy set of crisp values U 
and is the original set of membership values greater than some threshold α [0 1].  

If triangular fuzzy set A shown in Fig.1 is denoted by A= < a, b, d > then the α-cuts of the A 
can be shown as: 

 ( ), ( ) , [01]a b c d d b  + − − −              (2) 
To propagate the fuzzy uncertainty in the dynamic model, the α-cut method is adopted. In this 
method, fuzzy membership function is descritized to different iInterval using α-cut level 
concept. For each α-cut, the interval analysis is performed with Sobol sequence to get the 
máximum and mínimum bound of the response.  
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One dimensional periodic media obtained by formulating the unit cell and then repeating in 
the propagation direction. Then, the study of this media can be converted into a study of unit 
cell based on the Floquet-Bloch theorem [13]. The schematic representation is shown in Fig. 
2.  
 
 
 
 
 
 
 
 
 
 
The WFEM is used to study the behavior of periodic media. This is extended to apply the 
WFEM for the fuzzy uncertainty modeling. This starts with consideration of the fuzzy 
membership function as a supplementary dimension through the fuzzy arithmetic using fuzzy 
set theory. Which start from the discretization of one sub-element of length (d). This 
discretization leads to fuzzy dynamic equilibrium of any substructure. The imprecise or vague 
variables are modeled using the triangular membership function, such that the dynamical 
equilibrium is expressed as: 

 
(3) 

The  (.) symbol denotes the fuzzy arithmetic.  
The dynamic stiffness matrix is condensed into the left and right side denoted by L and R 
respectively. 

 
 

(4) 

By defining two state vectors in the left and right side of each element and are related by 
symplectic matrix S as: 

 (5) 
Where  

 
Then using the periodicity and Bloch’s theorem, spectral eigenvalue problem is expressed as 

 
                                                        (6) 

The solution of the above equation leads to identify the propagation constant and mode 
shapes. The considered structure is dissipative and the wave classified as incident ( ) 
and reflected ones ( ). Considering the above classification the wave basis 𝜱𝜱 
composed by eigenvectors in following form: 

A  B   A     B 

Cell k   Cell k+1 

 
  

 
  

Figure 2: Schematic representation of periodic structure 
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        (7) 

Where q and F are the displacement and force component of eigenvectors with  
, , , of  the size of  matrices. 

To obtain the harmonic responce, The amplitude of wave at the first element obained using 

 
Projection of kinematic variable on wave basis and compute the displacement at the mth 
element by relation 

   (8) 

3 RESULTS 

This section shows the validation of FWFEM formulation presented in the previous section. 
The analysis is performed for the periodic rod and beam. Periodic rod and beam consist of 
section A of length  and section B of length   with different materials as depicted in the     
Fig. 3. Firstly, the longitudinal wave studied for the band gap and frequency response 
function (FRF) then flexural wave in the beam is studied. 

3.1 Periodic rod with fuzzy uncertainty 

In this subsection, the FWFEM is used to study the effect of fuzzy parametric uncertainty on 
the band diagram and FRF of a longitudinal wave in the periodic rod. The section of periodic  

rod namely A and B made of aluminum and steel respectively. The length of section A is  
and section B is  with 1m each with circular cross section of radius of 0.0644m.  
To validate FWFEM results, a comparison made between the result from the proposed 
method and upper and lower bound obtained from MCS. 
The uncertainty effect is studied considering fuzzy uncertain material properties modeled with 
triangular fuzzy membership function with lower and upper variation fixed at ±10 percent of 
the nominal value. The considered frequency range for the numerical experiment from 1 Hz 
up to 5500 Hz. This frequency range considered to get the four complete band gap. The MCS 

A  B 

Unit cell 

 
  

 
  Figure 3: Symmetric unit cell 
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with 10000 samples is used to get the reference wave characteristics lower and upper bound 
of wave number.  
  
In FWFEM formulation, stiffness and mass matrix of the two-node rod elements are 
considered. 
The global stiffness and mass matrices formed with 100 elements in the unit cell of periodic 
rod in the MATLAB environment.  The input material and geometric properties are shown in 
Table 1. It is to be mentioned that the material properties are choosen artibiary for the test 
case. 

Table 1: Geometric parameters and material properties of periodic rod 

 
 
 
 
 
 
 
 
 
 
 
The variation of fuzzy Young’s modulus of section A (material 1) and section B (material 2) 
is considered as furnished in Fig.4.   
FWFEM result at α-cut=0 (largest interval) in terms of upper and lower bounds of the wave 
number is compared with sampling upper and lower bound with 5000 samples. The 
comparison is shown in Fig.5. The results are in good agreement. The band gap envelops for 
each value of the fuzzy elasticity in every α-cut can be extracted shown in Fig.6. It is visible 
that the effect of uncertainty (at the fixed level of uncertainty) on band gap bound is 
increasing with increasing frequency. The variation bound of the wave number at α-cut=0 is 
shown in Fig.7 and it can be inferred that the response membership function is not always 
symmetric about mean/crisp value. The upper bound of wave number is more sensitive to the 
uncertain elasticity. 

Geometrical and Material property Nominal value 
Rod length (A) 1 m 
Rod length (B) 1 m 
Radius of rod 0.0644 m 
Young’s modulus (A)  210 Gpa 
Young’s modulus (B)  70 Gpa 
Mass density (A) 7800 kg/m3 
Mass density (B) 2700 kg/m3 
Loss factor (A) and (B) 0.001 
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Figure 4: Membership function for the fuzzy parameter 

 
 

Figure 5: Upper and lower bound comparison 
 
 The FRF of a periodic rod of the finite extent of 20 m excited by unit force on the left end is 
furnished in Fig. 8 indicating the upper and lower bounds comparison at α-cut=0 (maximum 
bound). In Fig. 9 fuzzy bound of the FRF for the different value of α-cut is plotted. It can be 
seen that as the value of α-cut increase the fuzzy bound of FRF also decreases and finally at 
α=1, without any simulation bound as expected, α=1 represent the deterministic value. 
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3.2 Periodic beam with fuzzy uncertainty 

In this subsection, the study of the fuzzy uncertainty effect on the flexural wave in the 
periodic beam is performed. For numerical simulation, Euler-Bernoulli beam theory is 
considered. The input material and geometrical properties are listed in Table 2.  
For the fuzzy uncertainty propagation, the elasticity of material 1and material 2 is fuzzified 
using triangular membership function and shown in Fig.4. 
   
A two-node beam element with two degrees of freedom per node is considered. The global 
matrices (stiffness and mass) formed with 20 elements in the unit cell of the periodic beam in 
the MATLAB environment with input material and geometric properties given in Table 2. 
FWFEM result at α-cut=0 is computed and compared with upper and lower bound obtained 
with MCS sampling (10000 samples) of the WFEM result and shown in Fig. 10. The 
frequency range of computation is 1-2000 Hz. The results are in good agreement. The 
variation bound of the wave number at a different frequency for the 11 α-cut levels is shown 
in Fig.11. it showed that at the same level of the α-cut upper bound of wave number is more 
sensitive to the uncertain elasticity. 

Table 2: Geometric parameters and material properties of the periodic beam 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Geometry/Property Value 
Beam length 0.5m 
Height of beam 0.003m 
Width of beam 0.003m 
Young’s modulus (A) 210 Gpa 
Young’s modulus (B) 70 Gpa 
Mass density (A) 7800 kg/m3 
Mass density (B) 2700 kg/m3 
Loss factor (A) and (B) 0.01 
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Figure 6: Band gap bound 
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Figure 7: Variation bound of wave number at 11 α-cut level 

.  
Figure 8: Upper and lower bound comparison of FRF 
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Figure 9: Fuzzy bound of FRF for the different value of α-cut 

Figure 10: Upper and lower bound comparison 
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The FRF bound is shown in Fig. 12 representatives the bound at the different α-cut level. As            
α-cut value increase the fuzzy bound of FRF is expected to decrease.  same can be seen from     
Fig. 13 as the value of membership increase the fuzzy bound is decreasing and lowest at 
α=0.9. 
For the computation cost comparison, elapsed time for the MCS and FWFEM obtained using 
homemade WFEM code which exploits the resources of the workstation with following 
characteristics, Intel® Core™i7 7820 HQ CPU@2.90GHz with 32 GB RAM and data storage 
using solid state drive. The comparison is presented in Table 3. 

Table 3: Elapsed time comparison 
 

Figure 11: Variation bound of wave number at 11 α-cut level 

CONCLUSION 

This paper provides a computationally inexpensive possibilistic numerical method for 
uncertainty propagation in 1D periodic media in conjunction with WFEM. This study 
proposes a new approach to predict uncertainty bounds of the band gap and FRF of periodic 

 WFEM MCS  (10000 Samples) FWFEM(11 α-cut 
evaluation) 

Elapse time (Seconds) 3840 234 
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rod and beam with fuzzy variations. The uncertainty quantification of wave number and 
frequency response function with fuzzy variables are derived using WFEM.  
The approach was presented for very simplified test-cases, but it is found to be more efficient 
when compared with the conventional MCS approach in terms of computational cost. The 
present study can be extended for the future investigation for the complex unit cell and a large number 
of fuzzy variables.  

 
Figure 12: Fuzzy bound of FRF for the different value of alpha-cut 
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