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ABSTRACT
The λ-calculus is a handy formalism to specify the evaluation of

higher-order programs. It is not very handy, however, when one

interprets the specification as an execution mechanism, because

terms can grow exponentially with the number of β-steps. This is
why implementations of functional languages and proof assistants

always rely on some form of sharing of subterms.

These frameworks however do not only evaluate λ-terms, they

also have to compare them for equality. In presence of sharing, one

is actually interested in equality of the underlying unshared λ-terms.

The literature contains algorithms for such a sharing equality, that
are polynomial in the sizes of the shared terms.

This paper improves the bounds in the literature by presenting

the first linear time algorithm. As others before us, we are inspired

by Paterson and Wegman’s algorithm for first-order unification, it-

self based on representing terms with sharing as DAGs, and sharing

equality as bisimulation of DAGs. Beyond the improved complexity,

a distinguishing point of our work is a dissection of the involved

concepts. In particular, we show that the algorithm computes the

smallest bisimulation between the given DAGs, if any.
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1 INTRODUCTION
Origin and Downfall of the Problem
For as strange as it may sound, the λ-calculus is not a good setting

for evaluating and representing higher-order programs. It is an

excellent specification framework, but—it is simply a matter of

fact—no tool based on the λ-calculus implements it as it is.
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Reasonable evaluation and sharing. Fix a dialect λX of the λ-
calculus with a deterministic evaluation strategy →X , and note

nfX (t) the normal form of t with respect to→X . If the λ-calculus
were a reasonable execution model then one would at least expect

that mechanizing an evaluation sequence t →n
X nfX (t) on random

access machines (RAM) would have a cost polynomial in the size of

t and in the number n of β-steps. In this way a program of λX eval-

uating in a polynomial number of steps can indeed be considered

as having polynomial cost.

Unfortunately, this is not the case, at least not literally. The prob-

lem is called size explosion: there are families of terms whose size

grows exponentially with the number of evaluation steps, obtained

by nesting duplications one inside the other—simply writing down

the result nfX (t) may then require cost exponential in n.
In many cases sharing is the cure because size explosion is caused

by an unnecessary duplications of subterms, that can be avoided

if such subterms are instead shared, and evaluation is modified

accordingly.

The idea is to introduce an intermediate setting λshX where λX
is refined with sharing (we are vague about sharing on purpose)

and evaluation in λX is simulated by some refinement→shX of

→X . A term with sharing t represents the ordinary term t

�

ob-

tained by unfolding the sharing in t—the key point is that t can
be exponentially smaller than t

�

. Evaluation in λshX produces a

shared normal form nfshX (t) that is a compact representation of

the ordinary result, that is, such that nfshX (t)

�

= nfX (t

�

). The

situation can then be refined as in the following diagram:

λX RAM

λshX

polynomial

polynomial polynomial

Let us explain it. One says that λX is reasonably implementable if
both the simulation of λX in λshX up to sharing and the mecha-

nization of λshX can be done in time polynomial in the size of the

initial term t and of the number n of β-steps. If λX is reasonably

implementable then it is possible to reason about it as if it were not

suffering of size explosion. The main consequence of such a schema

is that the number of β-steps in λX then becomes a reasonable

complexity measure—essentially the complexity class P defined in

λX coincides with the one defined by RAM or Turing machines.

The first result in this area appeared only in the nineties and

for a special case—Blelloch and Greiner showed that weak (that

is, not under abstraction) call-by-value evaluation is reasonably

implementable [10]. The strong case, where reduction is allowed

everywhere, has received a positive answer only in 2014, when Ac-

cattoli and Dal Lago have shown that leftmost-outermost evaluation

is reasonably implementable [6].
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Reasonable conversion and sharing. Some higher-order settings

need more than evaluation of a single term. They often also have to

check whether two terms t and s are X -convertible—for instance to

implement the equality predicate, as in OCaml, or for type checking

in settings using dependent types, typically in Coq. These frame-

works usually rely on a set of folklore and ad-hoc heuristics for

conversion, that quickly solve many frequent special cases. In the

general case, however, the only known algorithm is to first evaluate

t and s to their normal forms nfX (t) and nfX (s) and then check

nfX (t) and nfX (s) for equality—actually, for α-equivalence because
terms in the λ-calculus are identified up to α . One can then say

that conversion in λX is reasonable if checking nfX (t) =α nfX (s)
can be done in time polynomial in the sizes of t and s and in the

number of β steps to evaluate them.

Sharing is the cure for size explosion during evaluation, but what

about conversion? Size explosion forces reasonable evaluations

to produce shared results. Equality in λX unfortunately does not

trivially reduce to equality in λshX , because a single term admits

many different shared representations in general. Therefore, one

needs to be able to test sharing equality, that is to decide whether

t

�

=α s

�

given two shared terms t and s .
For conversion to be reasonable, sharing equality has to be

testable in time polynomial in the sizes of t and s . The obvious

algorithm that extracts the unfoldings t

�

and s

�

and then checks

α-equivalence is of course too naïve, because computing the un-

folding is exponential. The tricky point therefore is that sharing

equality has to be checked without unfolding the sharing.

In these terms, the question has first been addressed by Accattoli

and Dal Lago in [5], where they provide a quadratic algorithm for

sharing equality. Consequently, conversion is reasonable.

A closer look to the costs. Once established that strong evaluation
and conversion are both reasonable it is natural to wonder how

efficiently can they be implemented. Accattoli and Sacerdoti Coen

in [3] essentially show that strong evaluation can be implemented

within a bilinear overhead, i.e. with overhead linear in the size

of the initial term and in the number of β-steps. Their technique
has then been simplified by Accattoli and Guerrieri in [4]. Both

works actually address open evaluation, which is a bit simpler than

strong evaluation—the moral however is that evaluation is bilinear.

Consequently, the size of the computed result is bilinear.

The bottleneck for conversion then seemed to be Accattoli and

Dal Lago’s quadratic algorithm for sharing equality. The litera-

ture actually contains also other algorithms, studied with different

motivations or for slightly different problems, discussed among re-

lated works in the next section. None of these algorithms however

matches the complexity of evaluation.

In this paper we provide the first algorithm for sharing equality

that is linear in the size of the shared terms, improving over the

literature. Therefore, the complexity of sharing equality matches

the one of evaluation, providing a combined bilinear algorithm for

conversion, that is the real motivation behind this work.

Computing Sharing Equality
Sharing as DAGs. Sharing can be added to λ-terms in different

forms. In this paper we adopt a graphical approach. Roughly, a

λ-term can be seen as a (sort of) directed tree whose root is the

topmost constructor and whose leaves are the (free) variables. A

λ-term with sharing is more generally a Directed Acyclic Graph

(DAG). Sharing of a subterm t is then the fact that the root node n
of t has more than one parent.

This type of sharing is usually called horizontal or subterm shar-

ing, and it is essentially the same sharing as in calculi with explicit

substitution, environment-based abstract machines, or linear logic—

the details are different but all these approaches provide different

incarnations of the same notion of sharing. Other types of sharing

include so-called vertical sharing (µ, letrec), twisted sharing [11],

and sharing graphs [24]. The latter provide a much deeper form of

sharing than our DAGs, and are required by Lamping’s algorithm

for optimal reduction. To our knowledge, sharing equality for shar-

ing graphs has never been studied—it is not even known whether

it is reasonable.

Sharing equality as bisimilarity. When λ-terms with sharing are

represented as DAGs, a natural way of checking sharing equality is

to test DAGs for bisimilarity. Careful here: the transition system un-

der study is the one given by the directed edges of the DAG, and not

the one given by β-reduction steps, as in applicative bisimilarity—

our DAGs may have β-redexes but we do not reduce them in this

paper, that is an orthogonal issue, namely evaluation. Essentially,

two DAGs represent the same unfolded λ-term if they have the

same structural paths, just collapsed differently.

To be precise, sharing equality is based on what we call shar-
ing equivalences, that are bisimulations plus some additional re-

quirements about free variables and the requirement that they are

equivalence relations.

Binders, cycles, and domination. A key point of our problem is

the presence of binders, i.e. abstractions, and the fact that equality

on usual λ-terms is α-equivalence. Graphically, it is standard to

see abstractions as getting a backward edge from the variable they

bind—a way of representing scopes that dates back to Bourbaki in

Eléments de Théorie des Ensembles, but also supported by the strong

relationship between λ-calculus and linear logic proof nets.

In this approach, binders introduce a form of cycle in the λ-
graph: while two free variables are bisimilar only if they coincide,

two bound variables are bisimilar only when also their binders

are bisimilar, suggesting that λ-terms with sharing are, as directed

graphs, structurally closer to deterministic finite automata (DFA),

that may have cycles, than to DAGs. The problem with cycles is

that in general bisimilarity of DAGs cannot be checked in linear

time—Hopcroft and Karp’s algorithm [23], the best one, is only

pseudo-linear, that is, with an inverse Ackermann factor.

Technically speaking, the cycles induced by binders are not actual

cycles: unlike usual downward edges, backwards edges do not point

to subterms of a node, but are merely a graphical representation of

scopes. They are indeed characterized by a structural property called
domination—exploring the DAG from the root, one necessarily visits

the binder before the bound variable. Domination turns out to be

one of the key ingredients for a linear algorithm in presence of

binders.

Previous work. Sharing equality bears similarities with unifica-

tion, which are discussed in the next section. For what concerns
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sharing equality itself, in the literature there are only two algo-

rithms explicitly addressing it. First, the already cited quadratic

one by Accattoli and Dal Lago. Second, a O(n logn) algorithm by

Grabmayer and Rochel [22] (where n is the sum of the sizes of the

shared terms to compare, and the input of the algorithm is a graph),

obtained by a reduction to equivalence of DFAs and treating the

more general case of λ-terms with letrec.

Contributions: a theory and a 2-levels linear algorithm. This pa-
per is divided in two parts. The first part develops a re-usable,

self-contained, and clean theory of sharing equality, independent of

the algorithm that computes it. Some of its concepts are implicitly

used by other authors, but never emerged from the collective un-

conscious before (propagated queries in particular)—others instead

are new. A key point is that we bypass the use of α-equivalence
by relating sharing equalities on DAGs with λ-terms represented

in a locally nameless way [17]. In such an approach, bound names

are represented using de Bruijn indices, while free variables are

represented using names—thus α-equivalence collapses on equality.

The theory culminates with the sharing equality theorem, which

connects equality of λ-terms and sharing equivalences on shared

λ-terms, under suitable conditions.

The second part studies a linear algorithm for sharing equality

by adapting Paterson and Wegman’s (shortened to PW) linear algo-

rithm for first-order unification [28] to λ-terms with sharing. Our

algorithm is actually composed by a 2-levels, modular approach,

pushing further the modularity suggested—but not implemented—

in the nominal unification study by Calvès & Fernández in [15]:

• Blind check: a reformulation of PW from which we removed

the management of meta-variables for unification. It is used

as a first-order test on λ-terms with sharing, to check that the

unfolded terms have the same skeleton, ignoring variables.

• Variables check: a straightforward algorithm executed after

the previous one, testing α-equivalence by checking that

bisimilar bound variables have bisimilar binders and that

two different free variables are never equated.

The decomposition plus the correctness and the completeness of

the checks crucially rely on the theory developed in the first part.

The value of the paper. It is delicate to explain the value of our

work. Three contributions are clear: 1) the improved complexity

of the problem, 2) the consequent downfall on the complexity of

β-conversion, and 3) the isolation of a theory of sharing equality. At
the same time, however, our algorithm looks as an easy adaptation

of PW, and binders do not seem to play much of a role. Let us then

draw attention to the following points:

• Identification of the problem: the literature presents similar

studies and techniques, and yet we are the first to formulate

and study the problem per se (unification is different, and it

is usually not formulated on terms with sharing), directly (i.e.
without reducing it to DFAs, like in Grabmayer and Rochel),

and with a fine-grained look at the complexity (Accattoli

and Dal Lago only tried not to be exponential).

• The role of binders: the fact that binders can be treated straight-
forwardly is—we believe—an insight and not a weakness of

our work. Essentially, domination allows to reduce sharing

equality in presence of binders to the Blind check, under key

assumptions on the context in which terms are tested (see

queries, Sect. 4).
• Minimality. The set of shared representations of an ordinary

λ-term t is a lattice: the bottom element is t itself, the top
element is the (always existing) maximally sharing of t , and
for any two terms with sharing there exist inf and sup. Essen-
tially, Accattoli & Dal Lago and Grabmayer & Rochel address

sharing equality by computing the top elements of the lat-

tices of the two λ-terms with sharing, and then comparing

them for α-equivalence. We show that our Blind check—and

morally every PW-based algorithm—computes the sup of t
and s , that is, the term having all and only the sharing in t
or s , that is the smallest sharing equivalence between the

two DAGs. This insight, first pointed out in PW’s original

paper to characterize most general unifiers, is a prominent

concept in our theory of sharing equality as well.

• Proofs, invariants, and detailed development. We provide de-

tailed correctness, completeness, and linearity proofs, plus

a detailed treatment of the relationship between equality

on locally nameless λ-terms and sharing equivalences on λ-
graphs. Our work is therefore self-contained, but for the fact

that most of the theorems and their proofs have been omit-

ted from the body for lack of space. The complete technical

development can be found in the accompanying extended

version of this paper [18].

• Concrete implementation. We implemented our algorithm
1

and verified experimentally its linear time complexity. How-

ever, let us stress that despite providing an implementation

our aim is mainly theoretical. Namely, we are interested in

showing that sharing equality is linear (to obtain that con-

version is bilinear) and not only pseudo-linear, even though

other algorithms with super-linear asymptotic complexity

may perform better in practice.

2 RELATED PROBLEMS AND TECHNICAL
CHOICES

We suggest the reader to skip this section at a first reading.

Related problems. There are various problems that are closely re-

lated to sharing equality, and that are also treated with bisimilarity-

based algorithms. Let us list similarities and differences:

• First-order unification. On the one hand the problem is more

general, because unification roughly allows to substitute

variables with terms not present in the original DAGs, while

in sharing equality this is not possible. On the other hand, the

problem is less general, because it does not allow binders and

does not test α-equivalence. There are basically two linear

algorithm for first-order unification, Paterson andWegman’s

(PW) [28] and Martelli and Montanari’s (MM) [27]. Both rely

on sharing to be linear. PW even takes terms with sharing

as inputs, while MM deals with sharing in a less direct way,

except in its less known variant [26] that takes in input terms

shared using the Boyer-Moore technique [12].

• Nominal unification is unification up to α-equivalence (but
not up to β or η equivalence) of λ-calculi extended with name

1
The code is available on http://www.cs.unibo.it/~sacerdot/sharing_equivalence.tgz.

http://www.cs.unibo.it/~sacerdot/sharing_equivalence.tgz
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swapping, in the nominal tradition. It has first studied by

Urban, Pitts, and Gabbay [32] and efficient algorithms are

due to two groups, Calvès & Fernández and Levy & Villaret,

adapting PW and MM form first-order unification. It is very

close to sharing equality, but the known best algorithms [15,

25] are only quadratic. See [14] for a unifying presentation.

• Pattern unification. Miller’s pattern unification can also be

stripped down to test sharing equality. Qian presents a PW-

inspired algorithm, claiming linear complexity [29], that

seems to work only on unshared terms. We say claiming
because the algorithm is very involved and the proofs are far

from being clear. Moreover, according to Levy and Villaret in

[25]: it is really difficult to obtain a practical algorithm from
the proof described in [29]. We believe that is fair to say that

Qian’s work is hermetic (please try to read it!).

• Nominal matching. Calvès & Fernández in [16] present an

algorithm for nominal matching (a special case of unification)

that is linear, but only on unshared input terms.

• Equivalence of DFA. Automata do not have binders, and yet

they are structurally more general than λ-terms with sharing,

since they allow arbitrary directed cycles, not necessarily

dominated. As already pointed out, the best equivalence

algorithm is only pseudo-linear [23].

Algorithms for α-equivalence extended with further principles (e.g.
permutations of let expressions), but not up to sharing unfolding,

is studied by Schmidt-Schauß, Rau, and Sabel in [31].

Hash-consing. Hash-consing [19, 21] is a technique to share

purely functional data, traditionally realised through a hash ta-

ble [7]. It is a eager approach to conversion of λ-terms, in which

one keeps trace in a huge table of all the pairs of convertible terms

previously encountered. Our approach is somewhat dual or lazy,

as our technique does not record previous tests, only the current

equality problem is analysed. With hash consing, to check that

two terms are sharing equivalent it suffices to perform a lookup

in the hash table, but first the terms have to be hash-consed (i.e.
maximally shared), which requires quasilinear running times.

Technical choices. Our algorithm requires λ-terms to be repre-

sented as graphs. This choice is fair, since abstract machines with

global environments such as those described by Accattoli and Bar-

ras in [2] do manipulate similar representations, and thus produce

λ-graphs to be compared for sharing equality—moreover, it is es-

sentially the same representation induced by the translation of

λ-calculus into linear logic proof nets [1, 30] up to explicit sharing

nodes—namely ?-links—and explicit boxes. In this paper we do not

consider explicit sharing nodes (that in λ-calculus syntax corre-

spond to have sharing only on variables), but one can translate in

linear time between that representation to ours (and viceversa) by

collapsing these variables-as-sharing on their child if they are the

child of some other node. Our results could be adapted to this other

approach, but at the price of more technical definitions.

On the other hand, abstract machines with local environments

(e.g. Krivine asbtract machine), that typically rely on de Bruijn in-

dices, produce different representations where every subterm is

paired with an environment, representing a delayed substitution.

Those outputs cannot be directly compared for sharing equality,

they first have to be translated to a global environment representation—

the study of such a translation is future work.

3 PRELIMINARIES
In this section we introduce λ-graphs, the representation of λ-terms

with sharing that we consider in this paper. First of all we introduce

the usual λ-calculus without sharing.

λ-terms and equality. The syntax of λ-terms is usually defined

as follows:

(Named) Terms t , s ::= x | λx .t | t s

This representation of λ-terms is called named, since variables and
abstractions bear names. Equality on named terms is not just syntac-

tic equality, but α-equality: terms are identified up to the renaming

of bound variables, because for example the named terms λx .λy.x
and λy.λx .y should denote the same λ-term.

This is the standard representation of λ-terms, but reasoning

in presence of names is cumbersome, especially names for bound

variables as they force the introduction of α-equivalence classes.
Moreover nodes naturally bear no names, thus we prefer to avoid

assigning arbitrary variable names when performing the readback

of a node to a λ-term.

On closed λ-terms (terms with only bound variables), this sug-

gests a nameless approach: by using de Bruijn indices, variables
simply consist of an index, a natural number indicating the number

of abstractions that occur between the abstraction to which the

variable is bound and that variable occurrence. For example, the

named term λx .λy.x and the nameless term λλ1 denote the same λ-
term. The nameless representation can be extended to open λ-terms,

but it adds complications because for example different occurrences

of the same free variable unnaturally have different indices.

Since we are forced to work with open terms (because proof as-

sistants require them) the most comfortable representation and the

one we adopt in our proofs is the locally nameless representation
(see Charguéraud [17] for a thorough discussion). This represen-

tation combines named and nameless, by using de Bruijn indices

for bound variables (thus avoiding the need for α-equivalence),
and names for free variables. This representation of λ-terms is the

most faithful to our definition of λ-graphs: as we shall see, to com-

pare two bound variable nodes one compares their binders, but to

compare two free variable nodes one uses their identifier, which in

implementations is usually their memory address or a user-supplied

string.

The syntax of locally nameless (l.n.) terms is:

(l.n.) Terms t , s ::= i | a | t s | λt (i ∈ N, a ∈ A)

where i denotes a bound variable of de Bruijn index i (N is the set

of natural numbers), and a denotes a free variable of name a (A is

a set of atoms).
In the rest of the paper, we switch seamlessly between different

representations of λ-terms (without sharing): we use named terms

in examples, as they are more human-friendly, but locally nameless

terms in the technical parts, since much more elegant and short

proofs can be obtained by avoiding to reason explicitly on bound

names and α-equivalence.
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Figure 1: a) λ-term as a λ-tree, without sharing; b) λ-graph with sharing (same term of a); c) λ-graph breaking domination.

Terms as graphs, informally. Graphically, λ-terms can be seen as

syntax trees—please have a look at the example in Fig. 1(a). Note

that in all Fig. 1 we provide names to bound variables (both in the

graphs and in the terms below) only to make the examples more

understandable; as already mentioned, our upcoming notion of

λ-graph follows the locally nameless convention (as in Fig. 2).

As seen in the figure, we apply two tweaks relative to variable

nodes:

• Binding edges: bound variable nodes have a binding (dashed)
edge towards the abstraction node that binds them;

• Variables merging: all the nodes corresponding to the occur-

rences of a same variable are merged together, like the three

occurrences ofw in the example. In this way, the equality of

free variable nodes is just the physical equality of nodes.

Sharing is realized by simply allowing all nodes to have more

than one parent, as for instance the abstraction on y in Fig. 1(b) —

note that sharing can happen inside abstractions, e.g. λy.w is shared

under the abstraction on x .
Our notion of λ-terms with sharing is given in Theorem 7. It

is built in in two steps: we first introduce pre–λ-graphs, and later

define the required structural properties that make them λ-graphs.

Definition 1 (pre–λ-graphs). A pre–λ-graph is a directed graph
with three kind of nodes:
• Application: an application node is labelled with App and has
exactly two children, called left (

�
) and right (� ). We write

App(n,m) for a node labelled by App whose left child is n and
whose right child ism.
• Abstraction: an abstraction node is labelled with Abs and has
exactly one child, called its body (

�

). We write Abs(n) for a
node labelled by Abs with body n. We denote by l a generic
abstraction node.
• Variable: a variable node is labelled with Var, and may be free
or bound:
– A free variable node has no children, and is denoted by
Var(). We assume a function name(·) that assigns to every
free variable node n an atom name(n) ∈ A that uniquely
identifies it2: this identifier is going to be used later, when
defining the readback of nodes to λ-terms (cf. Theorem 9).

2
We also assume that the set of atoms A is such that the equality of atoms can be

tested in constant time.

– Abound variable node has exactly one child, called its binder
(⟳). Wewrite Var(l) for a node labelled by Varwith binder l .
The corresponding binding edge is represented with a dashed
line.

Domination. Not every pre–λ-graph represents a λ-graph. For
instance, the graph in Fig. 1(c) does not, because the bound variable

x is visible outside the scope of its abstraction, since there is a path

to x from the application above the abstraction that does not pass

through the abstraction itself. One would say that such a graph

represents (λx .xx)(xx), but the variable x in xx and the one in

λx .xx =α λy.yy cannot be the same.

It is well-known that scopes corresponding to λ-terms are char-

acterized by a property borrowed from control-flow graphs called

domination (also called unique binding by Wadsworth [33], and

checkable in linear time [8, 13, 20]): given two nodes n andm of a

graph G, we say that n dominatesm when every path from a root

of G tom crosses n. To define this property formally, we first need

to define paths in a pre–λ-graph.

Notations for paths. Paths are a crucial concept, needed both to

define the readback to λ-terms and to state formally the properties

of λ-graphs of being acyclic and dominated.

A path in a graph is determined by a start node together with a

trace, i.e. a sequence of directions. The allowed directions are “

�
”,

“

�

”, and “
�
”: we are not going to consider paths that use binding

edges “⟳”, because these edges simply denote scoping and do not

actually point to subterms of (the readback of) a node.

Definition 2 (Paths, traces). We define traces as finite se-
quences of directions:

Directions d ::=
�
|

�

| �

Traces τ ::= ϵ | τ · d

Let n,m be nodes of a pre–λ-graph, and τ be a trace. We define in-
ductively the judgement “n τ m”, which reads “path from n tom (of
trace τ )”:

• Empty: n ϵ n.

• Abstraction: if n τ Abs(m), then n τ ·

�

m.

• Application: if n τ App(m1,m2), then n
τ ·

�

m1 and

n
τ ·�

m2.
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Figure 2: Examples of sharing equivalences and queries.

We just write n τ
if n τ m for some nodem when the endpoint

m is not relevant.

To state formally the requirements that make a pre–λ-graph a λ-
graph, we need two additional concepts: the roots of a pre–λ-graph,
and paths crossing a node.

Root nodes. pre–λ-graphs (and later λ-graphs) may have various

root nodes. What is maybe less expected, is that these roots may

share some parts of the graph. Consider Fig. 1(b), and imagine to

remove the root and its edges: the outcome is still a perfectly legal

pre–λ-graph. We admit these configurations because they actually

arise naturally in implementations, especially of proof assistants.

Definition 3 (Roots). Let r be a node of a pre–λ-graph G . r is a
root if and only if the only path with endnode r has empty trace.

Definition 4 (Path Crossing a Node). Let n,m be nodes of a
pre–λ-graph, and τ a trace such that n τ . We define inductively the
judgment “n τ crossesm”:
• if n τ m, then n τ crossesm
• if n τ crossesm and n τ ·d , then n τ ·d crossesm.

Definition 5 (Dominated pre–λ-graph). Let G be a pre–λ-
graph, and n,m be nodes ofG : we say thatm dominates n when every
path r τ n from a root node r crossesm.

We say thatG is dominatedwhen each bound variable node Var(l)
is dominatedd by its binder l .

Definition 6 (Acyclic pre–λ-graph). We say that a pre–λ-
graph G is acyclic when for every node n in G and every trace τ ,
n τ n if and only if τ = ϵ .

Our precise definition of λ-terms with sharing follows:

Definition 7 (λ-graphs). A pre–λ-graph G is a λ-graph if it
satisfies the following additional structural properties:
• Finite: G has a finite number of nodes.
• Acyclic: if binding edges are ignored, G is a DAG (Def. 6).
• Dominated: bound variable nodes are dominated by their
binder (Def. 5).

Readback. The sharing in a λ-graph can be unfolded by dupli-

cating shared sub-graphs, obtaining a λ-tree. We prefer however

to adopt another approach. We define a readback procedure as-

sociating a λ-term JrK (without sharing) to each root node r of

the λ-graph, in such a way that shared sub-graphs simply appear

multiple times. However, since we use de Bruijn indices for bound

variables, any node by itself does not uniquely identify a λ-term: in

fact, its readback depends on the path through which it is reached

from a root, also known as its access path [9]. That path determines

the abstraction nodes encountered, and thus the indices to assign

to bound variable nodes. We define formally index(l | n τ
), the

index of an abstraction node l according to a path n τ
crossing l

(recall that l , l ′ denote abstraction nodes):

Definition 8 (index(· | ·)). Let n, l be nodes of a λ-graph G,
and n τ a path crossing l . We define index(l | n τ

) by structural
induction on the derivation of the judgement “n τ crosses l”:

index(l | n τ l) B 0

index(l | n τ ·d l ′) B index(l | n τ
) + 1 if l , l ′

index(l | n τ ·d m) B index(l | n τ
) otherwise.

Definition 9 (Readback to λ-terms J·K). Let G be a λ-graph.
For every root r and path r τ n, we define the readback

q
r τ n

y
of n

relative to the access path r τ n, by cases on n:
(1)

q
r τ Var(l)

y
B i where i B index(l | r τ

).
(2)

q
r τ Var()

y
B a where a B name(n).

(3)

q
r τ Abs(m)

y
B λ

r
r

τ ·

�

m
z
.

(4)

q
r τ App(n1,n2)

y
B

s
r

τ ·
�

n1

{ s
r

τ ·�
n2

{
.

When τ = ϵ , we just write JrK instead of
q
r ϵ

y
.

Some remarks about Theorem 9:

• The hypothesis that r is a root node is necessary to ensure

that the readback

q
r τ

y
is a valid locally-nameless term. In

fact Point 1 of the definition uses index(l | r τ
), which is

well-defined only if r τ Var(l) crosses l . When r is a root
node, this is the case by domination (Theorem 5).

• The definition is recursive, but it is not immediately clear

what is the measure of termination. In fact, the readback

calls itself recursively on longer paths. Still, the definition

is well-posed because paths do not use binding edges, and

because λ-graphs are finite and acyclic (Theorem 6).

4 THE THEORY OF SHARING EQUALITY
Sharing equivalence. To formalize the idea that two different λ-

graphs unfold to the same λ-term, we introduce a general notion

of equivalence between nodes (sharing equivalence, Theorem 11)

whose intended meaning is that two related nodes have the same

readback. This notion shall rest on various requirements; the first

one is that only homogeneous nodes can be related:

Definition 10 (Homogeneous nodes [28]). Let n,m be nodes
of a λ-graph G. We say that n andm are homogeneous if they are
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Figure 3: Sharing equivalence rules on a λ-graph

both application nodes, or they are both abstraction nodes, or they are
both free variable nodes, or they are both bound variable nodes.

In the following, let us denote by R a generic binary relation

over the nodes of a λ-graph G . We call a relation R homogeneous if
it only relates pairs of homogeneous nodes, i.e. n R m implies that

n andm are homogeneous.

Another requirement for sharing equivalences is that they must

be closed under certain structural rules. More in general, in the rest

of this paper we are going to characterize various kinds of relations

as being closed under different sets of rules, which can all be found

in Figure 3:

• Equivalence rules: rules • ���� are the usual rules that

characterize equivalence relations, respectively reflexivity,

symmetry, and transitivity.

• Bisimulation rules:
– Downward propagation rules: rules

� � �
are down-

ward propagation rules on the λ-graph. The rules
�

and

�
state that if two application nodes are related, then

also their corresponding left and right children should be

related. The rule

�
states that if two abstraction nodes

are related, then also their bodies should be related.

– Scoping rule: the rule ⟳ states that if two bound variable

nodes are related, then also their binders should be related.

The last requirement for a sharing equivalence is the handling of

free variable nodes: a sharing equivalence shall not equate two dif-

ferent free variable nodes, cf. the requirementOpen in the upcoming

definition.

We are now ready to define sharing equivalences:

Definition 11 ((Blind) sharing eqivalences). Let ≡ be a
binary relation over the nodes of a λ-graph G.

• ≡ is a blind sharing equivalence if:
– Equivalence: ≡ is an equivalence relation;
– Blind bisimulation: ≡ is homogeneous and closed under the
rules

� � � of Figure 3.
• ≡ is a sharing equivalence if:
– Equivalence: ≡ is an equivalence relation;
– Bisimulation: ≡ is homogeneous and closed under the rules� � � ⟳ of Figure 3.
– Open: v ≡ w implies v = w for every free variable nodes
v,w .

Equivalently, ≡ is a sharing equivalence if it is a blind sharing equiv-
alence and it also satisfies the following conditions on variable nodes:

the open requirement for free variable nodes, and the closure under
⟳ for bound variable nodes.

Example. Consider Fig. 2(a). The green (horizontal) waves are an

economical representation of a sharing equivalence—nodes in the

same class are connected by a green path, and reflexive/transitive

waves are omitted.

Remark 12. (Blind) sharing equivalences are closed by intersection,
so that if there exists a (blind) sharing equivalence on a λ-graph then
there is a smallest one.

The requirements for a sharing equivalence ≡ on a λ-graph G
essentially ensure that G quotiented by ≡ has itself the structure

of a λ-graph. Note that blind sharing equivalences are not enough,

because without the scoping rule, binders are not unique up to ≡—it

is nonetheless possible to prove that paths up to≡ are acyclic, which

is going to be one of the key properties to prove the completeness

of the Blind check.

Remark 13. Let ≡ be a blind sharing equivalence on a λ-graph G .
Then:

(1) Acyclicity up to ≡: paths upto ≡ in G are acyclic.
(2) Sharing equivalences as λ-graphs: if ≡ also satisfies the name

conditions then G/≡ is a λ-graph.

For instance, Fig. 2(b) shows the λ-graph corresponding to the

quotient of the one of Fig. 2(a) by the sharing equivalence induced

by the green waves.

Sharing equivalences do capture equality of readbacks, as we

shall show, in the following sense (this is a sketch given to guide the

reader towards the proper relationship, formalized by Theorem 18

at the end of this section):

• sharing to α : if n ≡m then JnK = JmK;
• α to sharing: if JnK = JmK then there exists a sharing equiva-

lence ≡ such that n ≡m.

(Spreaded) queries. According to the sketch we just provided,

to check the sharing equality of two terms with sharing, i.e. two
λ-graphs with roots n andm, it is enough to compute the smallest

sharing equivalence ≡ such that n ≡ m, if it exists, and failing

otherwise. This is what our algorithm does. At the same time,

however, it is slightly more general: it may test more than two

nodes at the same time, i.e. all the pairs of nodes contained in a

query.

Definition 14 (Query). A query Q over a λ-graph G is a binary
relation over the root nodes of G.
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The simplest case is when there are only two roots n and m
and the query contains only n Q m (depicted as a blue wave in

Fig. 2(a))—from now on however we work with a generic query Q,

which may relate nodes that are roots of not necessarily disjoint

or even distinct λ-graphs; our focus is on the smallest sharing

equivalence containing Q.

Let us be more precise. Every query Q induces a number of

other equality requests obtained by closing Q with respect to the

equivalence and propagation clauses that every sharing equivalence

has to satisfy. In other words, every query induces a spreaded query.

Definition 15 (Spreading R#). Let R be a binary relation over
the nodes of a λ-graphG . The spreadingR# induced byR is the binary
relation on the nodes of G inductively defined by closing R under the
rules • ����

� � � of Figure 3.

Example. The spreading Q# of the (blue) query Q in Fig. 2(a) is

the (reflexive and transitive closure) of the green waves.

Blind universality of Q#. Note that the spreaded query Q# is

defined without knowing if there exists a (blind) sharing equiva-

lence containing the query Q—there might very well be none (if

the nodes are not sharing equivalent). It turns out that the spreaded

query Q# is itself a blind sharing equivalence, whenever there exists

a blind sharing equivalence containing the query Q. In that case,

unsurprisingly, Q# is also the smallest blind sharing equivalence

containing the query Q.

Proposition 16 (Blind universality of Q#). Let Q be a query.
If there exists a blind sharing equivalence ≡ containing Q then:

(1) The spreaded query Q# is contained in ≡, i.e. Q# ⊆ ≡.
(2) Q# is the smallest blind sharing equivalence containing Q.

Cycles up to Q#. Let us apply Theorem 13(1) to Q#, and take

the contrapositive statement: if paths up to Q# are cyclic then

Q# is not a blind sharing equivalence. The Blind Check in Sect. 6

indeed fails as soon as it finds a cycle up to Q#. Note, now, that

Q# satisfies the equivalence and bisimulation requirements for a

blind sharing equivalence by definition. The only way in which it

might not be such an equivalence then, is if it is not homogeneous.

Said differently, there is in principle no need to check for cycles, it

is enough to test for homogeneity. We are going to do it anyway,

because cycles provide earlier failures—there are also other practical

reasons to do so, to be discussed in Sect. 6.

Universality of the spreaded query Q#. Here it lies the key con-

ceptual point in extending the linearity of Paterson and Wegman’s

algorithm to binders and working up to α-equivalence of bound
variables.

In general the spreading R# of a binary relation R may not be a

sharing equivalence, even though a sharing equivalence containing

R exists. Consider for instance the relation R in Fig. 2(d): R coin-

cides with its spreadingR# (up to reflexivity), which is not a sharing

equivalence because it does not include the Abs-nodes above the
original query—note that spreading only happens downwards. To

obtain a sharing equivalence one has to also include the Abs-nodes
(Fig. 2(e)). The example does not show it, but in general then one has

to start over spreading the new relation (eventually having to add

other Abs-nodes found in the process, and so on). These iterations

are obviously problematic in order to keep linear the complexity of

the procedure—a key point of Paterson and Wegman’s algorithm is

that every node is processed only once.

What makes possible to extend their algorithm to binders is that

the query is context-free, i.e. it is not in the scope of any abstraction,

which is the case since it involves only pairs of roots, that therefore

are above all abstractions as in Fig. 2(c). Then—remarkably—there

is no need to iterate the propagation of the query. Said differently,

if the relation Q is context-free then Q# is universal.

The structural property of λ-graphs guaranteeing the absence of
iterations for context-free queries is domination. Domination asks

that to reach a bound variable from outside its scope one necessarily

needs to first pass through its binder. The intuition is that if one

starts with a context-free query then there is no need to iterate

because binders are necessarily visited before the variables while

propagating the query downwards.

Let us stress, however, that it is not evident that domination

is enough. In fact, domination is about one bound variable and

its only binder. For sharing equivalence instead one deals with a

class of equivalent variables and a class of binders—said differently,

domination is given in a setting without queries, and is not obvious

that it gets along well with them. The fact that domination on single

binders is enough for spreaded queries to be universal requires

indeed a non-trivial proof and it is a somewhat surprising fact.

Proposition 17 (Universality of Q#). Let Q be a query over a
λ-graph G . If there exists a sharing equivalence ≡ containing Q, then
the spreaded query Q# is the smallest sharing equivalence containing
Q.

The proof of this proposition is in [18, Appendix A], where it

is obtained as a corollary of other results connecting equality of

λ-terms and sharing equivalences, that also rely crucially on the

the fact that queries only relate roots. It can also be proved directly,

but it requires a very similar reasoning, which is why we rather

prove it indirectly.

The sharing equality theorem. We have now introduced all the

needed concepts to state the precise connection between the equal-

ity of λ-terms, queries, and sharing equivalences, which is the main

result of our abstract study of sharing equality.

Theorem 18 (Sharing eqality). Let Q be a query over a λ-
graph G. Q# is a sharing equivalence if and only if JnK = JmK for
every nodes n,m such that n Q m.

Despite the—we hope—quite intuitive nature of the theorem, its

proof is delicate and requires a number of further concepts and

lemmas, developed in [18, Appendices A–B]. The key point is find-

ing an invariant expressing how queries on roots propagate under

abstractions and interact with domination, until they eventually

satisfy the name conditions for a sharing equivalence, and vice

versa.

Let us conclude the section by stressing a subtlety of Theorem 18.

Consider Fig. 2(c)—with that query the statement is satisfied. Con-

sider Fig. 2(d)—that relation is not a valid query because it does not

relate root nodes, and in fact the statement would fail because the

readback of the two queried nodes are not the same and not even

well-defined. Consider the relation R in Fig. 2(e)—now R and R#

coincide (up to reflexivity) and R# is a sharing equivalence, but the
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theorem (correctly) fails, because not all queried pairs of nodes are

equivalent, as in Fig. 2(d).

5 ALGORITHMS FOR SHARING EQUALITY
From now on, we focus on the algorithmic side of sharing equality.

By the universality of spreaded queries Q# (Proposition 17),

checking the satisfability of a query Q boils down to compute

Q#, and then check that it is a sharing equivalence: the fact that

the requirements on variables are modular to the blind sharing

requirement is one of our main contributions. Indeed it is possible

to check sharing equality in two phases:

(1) Blind Check: building Q# and at the same time checking that

it is a blind sharing equivalence, i.e. that it is homogeneous;

(2) Variables Check: verifing that Q# is a sharing equivalence by
checking the conditions for free and bound variable nodes.

Of course, the difficulty is doing it in linear time, and it essentially

lies in the Blind Check.

The rest of this part presents two algorithms, the Blind Check

(Algorithm 1) and the Variables Check (Algorithm 2), with proofs

of correctness and completeness, and complexity analyses. The

second algorithm is actually straightforward. Be careful, however:

the algorithm for the Variables Check is trivial just because the

subtleties of this part have been isolated in the previous section.

6 THE BLIND CHECK
In this section we introduce the basic concepts for the Blind Check,

plus the algorithm itself.

Our algorithm is a simple adaptation of Paterson and Wegman’s,

and it relies on the same key ideas in order to be linear. With respect

to PW original algorithm, our reformulation does not rely on their

notions of dead/alive nodes used to keep track of the nodes already

processed; in addition it is not destructive, i.e. it does not remove

edges and nodes from the graph, hence it is more suitable for use

in computer tools where the λ-terms to be checked for equality

need not be destroyed. Another contribution in this part is a formal

proof of correctness and completeness, obtained via the isolation

of properties of program runs.

Intuitions for the Blind Check. Paterson and Wegman’s algorithm

is based on a tricky, linear time visit of the λ-graph. It addresses
two main efficiency issues:

(1) The spreaded query is quadratic: the number of pairs in the

spreaded queryQ# can be quadratic in the size of the λ-graph.
An equivalence class of cardinality n has indeed Ω(n2) pairs
for the relation—this is true for every equivalence relation.

This point is addressed by rather computing a linear relation

=c generating Q#, based on keeping a canonical element for
every sharing equivalence class.

(2) Merging equivalence classes: merging equivalence classes is

an operation that, for as efficient as it may be, it is not a

costant time operation. The trickiness of the visit of the

λ-graph is indeed meant to guarantee that, if the query is

satisfiable, one never needs to merge two equivalence classes,

but only to add single elements to classes.

More specifically, the ideas behind Algorithm 1 are:

Algorithm 1: The BlindCheck Algorithm

Data: an initial state

Result: Fail or a final state

1 Procedure BlindCheck()
2 for every node n do
3 if canonic(n) undefined then

BuildEquivalenceClass(n)

4 Procedure BuildEquivalenceClass(c)
5 canonic(c) B c

6 building(c) B true

7 queue(c) B {c}

8 while queue(c) is non-empty do
9 n B queue(c).pop()

10 for every parentm of n do
11 case canonic(m) of
12 undefined ⇒ BuildEquivalenceClass(m)

13 c ′⇒ if building(c ′) then fail

14 for every ∼neighbourm of n do
15 case canonic(m) of
16 undefined ⇒ EnqueueAndPropagate(m, c)
17 c ′⇒ if c ′ , c then fail

18 building(c) B false

19 Procedure EnqueueAndPropagate(m, c)
20 casem , c of
21 Abs(m′) , Abs(c ′)⇒ create edgem′ ∼ c ′

22 App(m1,m2) , App(c1, c2)⇒
23 create edgesm1 ∼ c1 andm2 ∼ c2
24 Var(l) , Var(l ′) ⇒ ()
25 Var() , Var() ⇒ ()
26 _ , _ ⇒ fail

27 canonic(m) B c

28 queue(c).push(m)

• Top-down recursive exploration: the algorithm can start on

any node, not necessarily a root. However, when processing

a node n the algorithm first makes a recursive call on the

parents of n that have not been visited yet. This is done to

avoid the risk of reprocessing n later because of some new

equality requests on n coming from a parent processed after

n.
• Query edges: the query is represented through additional

undirected query edges between nodes, and it is propagated

on child nodes by adding further query edges. The query

is propagated carefully, on-demand. The fully propagated

query is never computed, because, as explained, in general

its size is quadratic in the number of nodes.

• Canonic edges: when a node is visited, it is assigned a canonic
node that is a representative of its sharing equivalence class.

This is represented via a directed canonic edge, which is im-

plemented as a pointer.
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• Building flag: each node has a boolean “building” flag that is

used only by canonic representatives and notes the state of

construction of their equivalence class. When undefined, it

means that that node is not currently designated as canonic;

when true, it means that the equivalence class of that canonic

is still being computed; when false, it signals that the equiv-

alence class has been completely computed.

• Failures and cycles: the algorithm fails in three cases. First,

when it finds two nodes in the same class that are not ho-

mogeneous (Line 26), because then the approximation of Q#

that it is computing cannot be a blind sharing equivalence.

The two other cases (on Line 13 and Line 17) the algorithm

uses the fact that the canonic edge is already present to infer

that it found a cycle up to Q#, and so, again Q# cannot be a

blind sharing equivalence (please read again the paragraph

after Proposition 16).

• Building a class: calling BuildEquivalenceClass(n) boils
down to

(1) collect without duplicates all the nodes in the intended

sharing equivalence class of n, that is, the nodes related to
n by a sequence of query edges. This is done by the while
loop at Line 14, that first collects the nodes queried with n
and then iterates on the nodes queried with them. These

nodes are inserted in a queue;

(2) set n as the canonical element of its class, by setting the

canonical edge of every node in the class (including n) to
n;

(3) propagate the query on the children (in case n is a Lam
or a App node), by adding query edges between the cor-

responding children of every node in the class and their

canonic.

(4) Pushing a node in the queue, setting its canonic, and prop-

agating the query on its children is done by the procedure

EnqueueAndPropagate.
• Linearity: let us now come back to the two efficiency issues

we mentioned before:

– Merging classes: the recursive calls are done in order to

guarantee that when a node is processed all the query

edges for its sharing class are already available, so that the

class shall not be extended nor merged with other classes

later on during the visit of the λ-graph.
– Propagating the query: the query is propagated only after
having set the canonics of the current sharing equivalence

class. To explain, consider a class of k nodes, which in

general can be defined by Ω(k2) query edges. Note that

after canonization, the class is represented using only k−1
canonic edges, and thus the algorithm propagates only

O(k) query edges—this is why the number of query edges

is kept linear in the number of the nodes (assuming that

the original query itself was linear). If instead one would

propagate query edges before canonizing the class, then
the number of query edges may grow quadratically.

States. As explained, the algorithm needs to enrich λ-graphs
with a few additional concepts, namely canonic edges, query edges,
building flags, queues, and execution stack, all grouped under the

notion of program state.

A state S of the algorithm is either Fail or a tuple

(G, undir, canonic, building, queue, active)

where G is a λ-graph, and the remaining data structures have the

following properties:

• Undirected query edges (∼): undir is a multiset of undirected
query edges, pairing nodes that are expected to be placed by

the algorithm in the same sharing equivalence class. Undi-

rected loops are admitted and there may be multiple oc-

currences of an undirected edge between two nodes. More

precisely, for every undirected edge between n andm with

multiplicty k in the state, both (n,m) and (m,n) belong with

multiplicity k to undir. We denote by ∼ the binary relation

over G such that n ∼m iff the edge (n,m) belongs to undir.
• Canonic edges (c): nodes may have one additional canonic
directed edge pointing to the computed canonical repre-

sentative of that node. The partial function mapping each

node to its canonical representative (if defined) is noted c.
We then write c(n) = m if the canonical of n is m, and

c(n) = undefined otherwise. By abuse of notation, we also

consider c a binary relation on G, where n c m iff c(n) =m.

• Building flags (b): nodes may have an additional boolean flag

building that signals whether an equivalence class has or

has not been constructed yet. The partial function mapping

each node to its building flag (if defined) is noted b. We then

write b(n) = true | false if the building flag of n is defined,

and b(n) = undefined otherwise.

• Queues (q): nodes have a queue data structure that is used
only on canonic representatives, and contains the nodes of

the class that are going to be processed next. The partial

function mapping each node to its queue (if defined) is noted

q.
• Active Calls (active): a program state contains informa-

tion on the execution stack of the algorithm, including

the active procedures, local variables, and current execu-

tion line. We leave the concept of execution stack infor-

mal; we only define more formally active, which records

the order of visit of equivalence classes that are under

construction, and that is essential in the proof of com-

pleteness of the algorithm. active is an abstraction of

the implicit execution stack of active calls to the proce-

dure BuildEquivalenceClass where only (part of) the ac-

tivation frames for BuildEquivalenceClass(c) are repre-
sented. Formally, active is simply a sequence of nodes of

the λ-graph, and active = [c1, . . . , cK ] if and only if:

– Active: BuildEquivalenceClass(c1), . . . ,

BuildEquivalenceClass(cK) are exactly the calls

to BuildEquivalenceClass that are currently active, i.e.
have been called before S, but have not yet returned;

– Call Order: for every 0 < i < j ≤ K ,
BuildEquivalenceClass(ci) was called before

BuildEquivalenceClass(c j).

Moreover we introduce the following concepts:

• Program transition: the change of state caused by the execu-

tion of a piece of code. For the sake of readability, we avoid a

technical definition of transitions; roughly, a transition is the
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execution of a line of code, as they appear numbered in the

algorithm itself. When the line is a while loop, a transition

is an iteration of the body, or the exit from the loop; when

the line is a if-then-else, a transition is entering one of

the branches according to the condition; and so on.

• Fail state: Fail is the state reached after executing a fail
instruction; it has no attributes and no transitions.

• Initial state S0: a non-Fail state with the following attributes:
– Initial ∼edges: simply the initial query, i.e. ∼ B Q.
– Initial assignments: c(n), b(n), and q(n) are undefined for

every node n of G.
– Initial transition: the first transition is a call to

BlindCheck().
• Program run: a sequence of program states starting from S0

obtained by consecutive transitions.

• Reachable: a state which is the last state of a program run.

• Failing: a reachable state that transitions to Fail.
• Final: a non-Fail reachable state that has no further transi-

tions.

Details about how the additional structures of enriched λ-graphs
are implemented are given in Sect. 6.2, where the complexity of the

algorithm is analysed.

6.1 Correctness and Completeness
Here we prove that Algorithm 1 correctly and completely solves

the blind sharing equivalence problem, that is, it checks whether

the spreaded query is a blind sharing equivalence.

The proofs rely on a number of general properties of program

runs and reachable states. The full statements and proofs are in [18,

Appendix D], grouped according to the concepts that they analyze.

Clearly the first step is showing that the mechanism of equivalence

classes is correct, i.e. that for every node n and every program run:

• canonic(n) is assigned at most once;

• canonic(n) is never assigned to undefined;

• if canonic(n) is assigned to a node c , then canonic(c) is
assigned to c itself.

The first two points guarantee that nodes never change equiva-

lence class, i.e. that when a node is assigned to an equivalence

class, it stays so for the rest of the execution of the algorithm;

the third point ensures that a canonic node is actually a represen-

tative of its own class. Other important properties concern data

structures used by the algorithm—for example, queues and the op-

erations of enqueing/dequeuing—or loops—like the visit of parents

and ∼neighbours of a node. With respect to queues, it is relevant

to note that a node is never enqued twice (fact useful as well when

proving the linear-time complexity of the algorithm), and that the

queue of a canonic c only contains nodes of canonic assigned to c .
The loop on Line 10 visits the parents of a node n by calling

BuildEquivalenceClass on each parent. After the execution of

the loop:

• Parent classes built: all equivalence classes of the parents of
n are completely built;

• Finalization of ∼neighbours: the set of ∼neighbours of n is

not going to change during the program run.

Finally, the loop on Line 14 visits the ∼neighbours of a node

n, and for every siblingm it enforces that n andm have the same

canonic assigned: hence after the loop all query edges with endnode

n are subsumed by the canonic assignment.

Correctness. We prove that whenever Algorithm 1 terminates

successfully with final state Sf from an initial query Q, then Q# is

homogeneous, and therefore a blind sharing equivalence. Addition-

ally, we show that the canonic assignment is a succint representa-

tion of Q#, i.e. that for all nodes n,m: n Q# m if and only if n andm
have the same canonic assigned in Sf . The following are the most

important properties to prove correctness:

• Blind bisimulation upto: in all reachable states, c is a blind

bisimulation upto (∼ ∪ =).

• Undirected query edges approximate the spreaded query: in all

reachable states, Q ⊆ ∼ ⊆ Q#.

• The canonic assignment respects the ∼ constraints: in all reach-

able states, c ⊆ ∼∗

• Eventually, all query edges are visited: in all final states, all

query edges are subsumed by the canonic assignment, i.e.
∼ ⊆ c∗.

In every reachable state, we define =c as the equivalence relation

over the λ-graph that equates two nodes whenever their canonic

representatives are both defined and coincide. The lemmas above

basically state that during the execution of the algorithm, =c is a

blind sharing equivalence up to the query edges, and that ∼ can

indeed be seen as an approximation of the spreaded query Q#. At

the end of the algorithm, ∼ and c actually represent the same (up

to the (·)∗ closure) relation =c, which is then exactly the spreaded

query:

Proposition 19 (Correctness). In every final state Sf :

• Succint representation: (=c) = (Q
#),

• Blind check: Q# is homogeneous, and therefore a blind sharing
equivalence.

Completeness. Completeness is the fact that whenever Algo-

rithm 1 fails, Q# is not a blind sharing equivalence. Recall that

the algorithm can fail only while executing the following three

lines of code:

• On Line 13 during BuildEquivalenceClass, when a node

n is being processed and it has a parent whose equivalence

class is still being built;

• On Line 17 during BuildEquivalenceClass, when a node

n is being processed and it has a ∼neighbour belonging to a

difference equivalence class;

• On Line 26 during EnqueueAndPropagate(m,c), when the

algorithm is trying two relate the nodesm and c which are

not homogeneous.

While in the latter case (Line 26) the failure of the homogeneous

condition is more evident, in the first two cases it is more subtle. In

fact, when the homogeneous condition fails on Line 13 and Line 17

it is not because we explicitly found two related nodes that are not

homogeneous, but because Q# does not satisfy an indirect property

that is necessary for Q# to be homogenous (see below). In these

cases the algorithm fails early, even though it has not visited yet

the actual pair of nodes that are not homogeneous.
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To justify the early failures we use active, which basically

records the equivalence classes that the algorithm is build-

ing in a given state, sorted according to the order of calls to

BuildEquivalenceClass. Nodes in active respect a certain strict

order: if active = [c1, . . . , cK ], then c1 ≺ c2 ≺ . . . ≺ cK (for the

formal definition of ≺ see [18, Appendix D]), where n ≺ m implies

that the equivalence class of n is a child of the one of m in the

quotient graph. The algorithm fails on Line 13 and Line 17 because

it found a cyclic chain of nodes related by ≺, therefore finding a

cycle in the quotient graph. By Theorem 13, there cannot exist any

blind sharing equivalence containing the initial query in this case.

Proposition 20 (Completeness). If Algorithm 1 fails, then Q# is
not a blind sharing equivalence, and therefore by the blind universality
of Q# (Theorem 16), there does not exist any blind sharing equivalence
containing the initial query Q.

6.2 Linearity
In this section we show that Algorithm 1 always terminates, and

it does so in time linear in the size of the λ-graph and the initial

query.

Low-level assumptions. In order to analyse the complexity of the

algorithm we have to spell out some details about an hypothetical

implementation on a RAM of the data structures used by the Blind

check.

• Nodes: since Line 2 of the algorithm needs to iterate on all

nodes of the λ-graph, we assume an array of pointers to all

the nodes of the graph.

• Directed edges: these edges—despite being directed—have to

be traversed in both directions, typically to recurse over the

parents of a node. We then assume that every node has an

array of pointers to its parents.

• Undirected query edges: query edges are undirected and are

dynamically created; in addition, the algorithm needs to it-

erate on all ∼neighbours of a node. In order to obtain the

right complexity, every node simply maintains a linked list

of its ∼neighbours, in such a way that when a new undi-

rected edge (n,m) is created, then n is pushed on the list of

∼neighbours ofm, andm on the one of n.
• Canonical assignment is obtained by a pointer to a node

(possibly undefined) in the data structure for nodes.

• Building flags are just implemented via a boolean on each

node.

• Queues do not need to be recorded in the data structure for

nodes, as they can be equivalently coded as local variables.

Let us call atomic the following operations performed by the

check: finding the first node, finding the next node given the previ-

ous node, finding the first parent of a node, finding the next parent

of a node given the previous parent, checking and setting canonics,

checking and setting building flags, getting the next query edge on

a given node, traversing a query edge, adding a query edge between

two nodes, pushing to a queue, and popping an element off of a

queue.

Lemma 21 (Atomic operations are constant). The atomic
operations of the Blind check are all implementable in constant time
on a RAM.

We prove termination and linearity of Algorithm 1 via a global

estimation of the number of transitions in a program run. The

difficult part is to estimate the number of transitions execut-

ing lines of BuildEquivalenceClass, since it contains multiple

nested loops. First of all, we note that in every program run

BuildEquivalenceClass is called at most once for each node. Also

the body of the while loop on Line 8 is executed in total at most once

for each node, because in every program run each node is enqueued

at most once. The loop on Line 10 is not problematic because the

parents of a node do not change during a program run. Estimating

the number of iterations of the loop on Line 14, which iterates over

the ∼neighbours of a node n, seems much more involved because

the code inside the loop may create new query edges; however as

already discussed the ∼neighbours of n do not change after the

parents of n are visited on Line 10. The last insight for linearity is

to recall that the algorithm parsimoniously propagates query edges

only between a node and its canonic: as a consequence, in every

reachable state, |undir| is linear in the size of Q and the number

of nodes in the λ-graph:

Proposition 22 (Bound on undir). Let Q be a query over a
λ-graph G as in input to Algorithm 1. In every reachable state S,
|undir| ≤ 2 × |Q| + 4 × |N | (where |N | is the number of nodes ofG).

Let |G | denote the size of a λ-graph G, i.e. the number of nodes

and edges of G. Then:

Proposition 23 (Linear-time termination). Let S0 be an ini-
tial state of the algorithm, with a query Q over a λ-graph G. Then
the Blind check terminates in a number of transitions linear in |G |
and |Q|.

7 THE VARIABLES CHECK
Our second algorithm (Algorithm 2) takes in input the output of

the Blind check, that is, a blind sharing equivalence on a λ-graphG
represented via canonic edges, and checks whether the Var-nodes
ofG satisfy the variables conditions for a sharing equivalence—free

variable nodes at line 7, and bound variable nodes at line 9.

The Variables check is based on the fact that to compare a node

with all those in its class it is enough to compare it with the canon-

ical representative of the class—note that this fact is used twice, for

the Var-nodes and for their binders. The check fails in two cases,

either when checking a free variable node (in this case Q# is not

an open relation) or when checking a bound variable node (in this

case Q# is not closed under ⟳ ).

Theorem 24 (Correctness & completeness of the Variables

check).

Let Q be a query over a λ-graph G passing the Blind check, and let c
be the canonic assignment produced by that check.
• (Completeness) If the Variables check fails then there are no
sharing equivalences containing Q,
• (Correctness) otherwise =c is the smallest sharing equivalence
containing Q.

Moreover, the Variables check clearly terminates in time linear in the
size of G.

Composing Theorem 19, Theorem 20, Theorem 23, and Theo-

rem 24, we obtain the second main result of the paper.
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Algorithm 2: Variables Check

Data: canonic(·) representation of Q#

Result: is Q# a sharing equivalence?

1 Procedure VarCheck()
33 foreach Var-node v do
4 w ← canonic(v)

5 if v , w then
77 if binder(v) or binder(w) is undefined
8 then fail // free Var-nodes

9 else if
canonic(binder(v)) , canonic(binder(w))
then fail // bound Var-nodes

10 end
11 end

Theorem 25 (Sharing eqality is linear). Let Q be a query
over a λ-graph G. The sharing equality algorithm obtained by com-
bining Algorithm 1 and Algorithm 2 runs in time linear in the sizes of
G and Q, and it succeeds if and only if there exists a sharing equiva-
lence containing Q. Moreover, if it succeeds, it outputs a concrete (and
linear) representation of the smallest such sharing equivalence.

Finally, composing with the sharing equality theorem (Theo-

rem 18) one obtains that the algorithm indeed tests the equality of

the readbacks of the query, as expected.

8 CONCLUSIONS
We presented the first linear-time algorithm to check the sharing

equivalence of λ-graphs. Following our development of the theory

of sharing equality, we split the algorithm in two parts: a first part

performing a check on the DAG structure of λ-graphs, and the

second part checking the additional requirements on variables and

scopes. The paper is accompanied by a technical report with formal

proofs of correctness, completeness, and termination in linear time.

The motivation for this work stemmed from our previous works

on the evaluation of λ-terms: abstract machines can reduce a λ-
term to normal form in time bilinear in the size of the term and the

number of evaluation steps, if λ-terms are represented in memory

as λ-graphs. When combining bilinear evaluation through abstract

machines and the sharing equality algorithm presented here, one

obtains a bilinear algorithm for conversion. As a consequence, αβ-
conversion can be implemented with only bilinear overhead.
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