
HAL Id: hal-02415766
https://hal.science/hal-02415766v1

Submitted on 17 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Crumbling Abstract Machines
Beniamino Accattoli, Andrea Condoluci, Giulio Guerrieri, Claudio Sacerdoti

Coen

To cite this version:
Beniamino Accattoli, Andrea Condoluci, Giulio Guerrieri, Claudio Sacerdoti Coen. Crumbling Ab-
stract Machines. PPDP 2019 - 21st International Symposium on Principles and Practice of Program-
ming Languages, Oct 2019, Porto, Portugal. �10.1145/3354166.3354169�. �hal-02415766�

https://hal.science/hal-02415766v1
https://hal.archives-ouvertes.fr

Crumbling Abstract Machines

Beniamino Accattoli

LIX

Inria & École Polytechnique

Palaiseau, France

beniamino.accattoli@inria.fr

Andrea Condoluci

Department of Computer Science and Engineering

University of Bologna

Bologna, Italy

andrea.condoluci@unibo.it

Giulio Guerrieri

Department of Computer Science

University of Bath

Bath, United Kingdom

g.guerrieri@bath.ac.uk

Claudio Sacerdoti Coen

Department of Computer Science and Engineering

University of Bologna

Bologna, Italy

claudio.sacerdoticoen@unibo.it

ABSTRACT
Extending the λ-calculus with a construct for sharing, such as let
expressions, enables a special representation of terms: iterated appli-

cations are decomposed by introducing sharing points in between

any two of them, reducing to the case where applications have only

values as immediate subterms.

This work studies how such a crumbled representation of terms

impacts on the design and the efficiency of abstract machines for

call-by-value evaluation. About the design, it removes the need

for data structures encoding the evaluation context, such as the

applicative stack and the dump, that get encoded in the environment.

About efficiency, we show that there is no slowdown, clarifying in

particular a point raised by Kennedy, about the potential inefficiency

of such a representation.

Moreover, we prove that everything smoothly scales up to the

delicate case of open terms, needed to implement proof assistants.

Along the way, we also point out that continuation-passing style

transformations—that may be alternatives to our representation—

do not scale up to the open case.

KEYWORDS
abstract machine, complexity, explicit substitution, lambda-calculus

ACM Reference Format:
Beniamino Accattoli, Andrea Condoluci, Giulio Guerrieri, and Claudio Sac-

erdoti Coen. 2019. Crumbling
Abstract Machines. In Principles and Practice

of Programming Languages 2019 (PPDP ’19), October 7–9, 2019, Porto, Portugal.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3354166.3354169

1 INTRODUCTION
This paper is about the extension of λ-calculus with explicit con-

structors for sharing. The simplest such construct is a let x = u in t

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PPDP ’19, October 7–9, 2019, Porto, Portugal
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7249-7/19/10. . . $15.00

https://doi.org/10.1145/3354166.3354169

expression, standing for t where x will be substituted by u, that we
also write more concisely as t[x�u] and call ES (for explicit sharing,
or explicit subsitution1). Thanks to ES, β-reduction can be decom-

posed into more atomic steps. The simplest decomposition splits

β-reduction as (λx .t)u →βES t[x�u] →ES t{x�u} where t{x�u}
is the meta-level substitution of u for the free occurrences of x in t .

It is well-known that ES are somewhat redundant, as they can

always be removed, by simply coding them as β-redexes. They
are however more than syntactic sugar, as they provide a simple

and yet remarkably effective tool to understand, implement, and

program with λ-calculi and functional programming languages.

From a logical point of view, ES are the proof terms corre-

sponding to the extension of natural deduction with a cut rule,

and the cut rule is the rule representing computation, according

to Curry-Howard. From an operational semantics point of view,

they allow elegant formulations of subtle strategies such as call-

by-need evaluation—various presentations of call-by-need use ES

[13, 25, 27, 28, 34, 35] and a particularly simple one is in Accat-

toli et al. [3]. From a programming point of view, they are part

of most functional languages we are aware of. From a rewriting

point of view, they enable proof techniques not available within

the λ-calculus (e.g. reducing a global rewriting properties such as

standardization to a local form, see Accattoli [1]). Finally, sharing

is used in all implementations of tools based on the λ-calculus to
circumvent size explosion, the degenerate behavior for which the

size of λ-terms may grow exponentially with the number of β-steps.

Crumbled forms. Once sharing is added to the λ-calculus, it en-
ables a representation of terms where a sharing point is associated

with every constructor of the term. Such a special form, roughly,

is obtained by (recursively) decomposing iterated applications by

introducing an ES in between any two of them. For instance, the

representation of the term (((λx .x(xx))y)((λz.z)y))y is

(w ′′y)[w ′′�w ′w][w ′�(λx .(xx ′)[x ′�xx])y][w�(λz.z)y]

Note that the transformation involves also function bodies (i.e.
λx .x(xx) turns into λx .(xx ′)[x ′�xx]), that ES are grouped together

1let expressions and explicit substitutions usually come with different operational

semantics: let expressions substitute in just one step, while explicit substitutions

substitute in many micro steps, percolating through the term structure. They follow

however the same typing principles. Moreover, explicit substitutions have many differ-

ent formulations. In this paper we see let expressions as yet another form of explicit

substitutions, and thus conflate the two terminologies.

https://doi.org/10.1145/3354166.3354169
https://doi.org/10.1145/3354166.3354169

PPDP ’19, October 7–9, 2019, Porto, Portugal Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

unless forbidden by abstractions, and that ES are flattened out, i.e.

they are not nested unless nesting is forced by abstractions.

This work studies such a representation, called crumbled as it

crumbles a term by means of ES. Our crumbling translation closely

resembles—while not being exactly the same—the transformation

into a(dministrative) normal form (shortened to ANF) introduced by

Flanagan et al. [18], building on work by Sabry and Felleisen [33],

itself a variant of the continuation-passing style (CPS) translation.
A delicate point is to preserve crumbled forms during evalua-

tion. ES often come together with commutation rules to move them

around the term structure. These rules are often used to unveil

redexes during evaluation or to preserve specific syntactic forms.

They may introduce significant overhead that, if not handled care-

fully, can even lead to asymptotic slowdowns as shown by Kennedy

[24]. One of the contributions of this work is to show that crumbled

forms can be evaluated and preserved with no need of commutation

rules, therefore avoiding Kennedy’s potential slowdown.

This paper. Our focus is on the impact of crumbled forms on the

design and asymptotic overhead of abstract machines with weak
evaluation (i.e. out of abstractions) on closed terms, and the scala-

bility to (possibly) open terms. Bounding the overhead of abstract

machines is a new trend, according to which the machine overhead

has to be proved polynomial or even linear in the number of β-
steps [2–5, 9, 11]. Open terms—that are not needed to implement

functional languages—are used to implement the more general and

subtle case of proof assistants. The two topics actually motivate

each other: the naive handling of open terms with the techniques

for functional languages gives abstract machines with exponential

overhead [9, 11], which pushes to develop more efficient machines.

We anticipate here the main results of the paper: crumbled forms

induce abstract machines for weak evaluation with less data struc-

tures and the transformation does not introduce any asymptotic

overhead. Moreover, these facts smoothly scale up to open terms.

Why study crumbled forms. Our interest in studying crumbled

forms comes precisely from the fact that they remove some data

structures from the design of abstract machines. The relevance of

this fact becomes evident when one tries to design abstract ma-

chines for strong evaluation (that is, evaluating under abstraction).

The study of such machines is extremely technical (see also section

Sect. 8) because they havemore data structures andmore transitions

than in the closed and open cases. The many additional transitions

are in particular due to the handling of the various data structures.

In call-by-name, the situation is still manageable [2, 4, 14, 19], but

in call-by-value/need the situation becomes quickly desperate—it

is not by chance that there is not a single strong abstract machine

for call-by-value/need in the literature.

This work is then preliminary to a detailed study of strong ab-

stract machines for call-by-value and call-by-need. The aim is to

explore the subtleties in frameworks that are well understood, such

as the closed and open call-by-value cases, and show that there are

no slowdowns in turning to a crumbled representation.

The next sub-sections continue the introduction with a lengthy

overview of the role of environments, the content of the paper,

the relationship with the ANF, the asymptotic study of abstract

machines, and related work.

1.1 Environments
ES are often grouped together instead of being scattered all over the

term, in finite sequences called environments. Abstract machines

typically rely on environments. Crumbled forms also rely on pack-

ing ES together, as pointed out before, but depart from the ordinary

case as environments may appear also under abstractions.

Crumbled Environments. The notion of environment induced by

crumbled forms, named here crumbled environments, is peculiar.
Crumbled environments indeed play a double role: they both store

delayed substitutions, as also do ordinary environments, and encode
evaluation contexts. In ordinary abstract machines, the evaluation

context is usually stored in data structures such as the applicative
stack or the dump. Roughly, they implement the search for the redex

in the ordinary applicative structure of terms. For crumbled forms,

the evaluation context is encoded in the crumbled environment,

and so the other structures disappear.

Operations on Crumbled Environments. There are two subtle im-

plementative aspects of crumbled environments, that set them apart

from ordinary ones. Ordinary environments are presented with a

sequential structure but they are only accessed randomly (that is,

not sequentially)—in other words, their sequential structure does

not play a role. Crumbled environments, as the ordinary ones, are

accessed randomly, to retrieve delayed substitutions, but they are

also explored sequentially—since they encode evaluation contexts—

in order to search for redexes. Therefore, their implementation has

to reflect the sequential structure.

The second subtlety is that crumbled machines also have to

concatenate environments, that is an operation never performed

by ordinary machines, and that has to be concretely implemented

as efficiently as possible, i.e. in constant time. That this point is

subtle is proved by the fact that Kennedy’s slowdown [24] amounts

to a quadratic overhead in evaluating terms in ANF due to the

concatenation of environments.

To address these points, we provide a prototype OCaml imple-

mentation of crumbled environments in in the appendix of [6], to

be compared with the one of global environments in Accattoli and

Barras [5], that does not concretely implement the sequential struc-

ture. In particular, our implementation concatenates environments

in constant time and does not suffer from Kennedy’s slowdown.

Essentially, Kennedy’s slowdown amounts to the fact that his im-

plementation concatenates ANF environments in linear rather than

constant time (see Section 9).

1.2 Content of the Paper
The Closed Case. First, we define crumbled forms and an abstract

machine evaluating them, the Crumble GLAM, and show that it

implements Plotkin’s closed small-step call-by-value (CbV for short)

λ-calculus (extended with conditionals, see below). Moreover, we

study the overhead of the machine, and show that it is linear in

the number of β-steps and in the size of the initial term, exactly

as the best machines for CbV executing ordinary terms. Therefore,

the crumbling transformation does not introduce any asymptotic

overhead. The study is detailed and based on a careful and delicate

spelling of the invariants of the machine. In particular, our approach

does not suffer from Kennedy’s potential slowdown.

Crumbling Abstract Machines PPDP ’19, October 7–9, 2019, Porto, Portugal

Open Terms. The second ingredient of the new trend of abstract

machines [2–5, 9, 11]—the first being complexity analyses—is study-

ing evaluation in presence of (possibly) open terms or even strong

evaluation (i.e. under abstraction), which is required in order to im-

plement proof assistants. Apart from few exceptions—Crégut [14],

Grégoire and Leroy [20], and García-Pérez et al. [19]—the literature

before the new wave mostly neglected these subtle cases, and none

of those three papers addressed complexity.

The open case, in which evaluation is weak but terms are possibly

open is strictly harder than the closed one, and close in spirit to the

strong case, but easier to study—it is for instance the one studied

by Grégoire and Leroy [20] when modeling (an old version of) the

abstract machine of the kernel of Coq.

Open Call-by-Value. Open evaluation for CbV—shortened Open

CbV—is particularly subtle because, as it is well-known, Plotkin’s

operational semantics is not adequate when dealing with open

terms—see Accattoli and Guerrieri [8, 10]. Open CbV has been

studied deeply by Accattoli and Guerrieri [8, 9, 10], Accattoli and

Sacerdoti Coen [11], exploring different presentations, their rewrit-

ing, cost models, abstract machines, and denotational semantics.

One of the motivations of this work is to add a new piece to the

puzzle, by lifting the crumbling technique to the open case.

Our second contribution is to show that the crumbling technique

smoothly scales up to Open CbV. We provide an abstract machine,

the Open Crumble GLAM, and we show that it implements the
fireball calculus—the simplest presentation of Open CbV—and that,

as in the closed case, it only has a linear overhead. Two aspects of

this study are worth pointing out. First, the technical development

follows almost identically the one for the closed case, once the

subtler invariants of the new machine have been found. Second,

the substitution of abstractions on demand, a technical optimizations

typical of open/strong cases (introduced in Accattoli and Dal Lago

[7] and further studied in Accattoli and Guerrieri [9], Accattoli and

Sacerdoti Coen [11]), becomes superfluous as it is subsumed by the

crumbling transformation.

1.3 The Relationship with ANF
As long as one sticks to the untyped λ-calculus, crumbled forms

coincide with ANF. The ANF, we said, is a variant of the CPS trans-

formation. Roughly, the difference is that the ANF does not change

the type, when terms are typed (here we work without types).

Kennedy [24] pointed out two problems with the ANF. One is

the already discussed quadratic overhead, that does not affect our

approach. The second one is the fact that the ANF does not smoothly

scale up when the λ-calculus is extended to further constructs such
as conditionals or pattern matching. Essentially, the ANF requires

conditionals and pattern matching to be out of ES, that is, to never

have an expression such as s[x�(ifv then t elseu)]. Unfortunately,
these configurations can be created during evaluation. To preserve

the ANF, one is led to add so-called commuting conversions such as:

s[x�(ifv then t elseu)] → ifv then (s[x�t]) else (s[x�u]) (CC)

Clearly, there is an efficiency issue: the commutation causes the

duplication of the subterm s . A way out is to use a continuation-like

technique, which makes Kennedy conclude that then there is no

point in preferring ANF to CPS.

This is where our crumble representation departs from the ANF,

as we do not require conditionals and pattern matching to be out of

ES. Kennedy only studies the closed case. Our interest in open and

strong evaluation is to explore the theory of implementation needed

for proof assistants. In these settings, commutations of conditionals

and pattern matching such as those hinted at by Kennedy are not

valid: they are not validated by dependent type systems like those of

Coq or Agda. For example, the CC rule above when the conditional

is dependently typed breaks the property of subject reduction, as
typed terms reduce to ill-typed terms. Consider the term:

(x + 1)[x : (if true then nat else bool)�if true then 0 else false] : nat

that has type nat because the type of x is convertible to nat. By
applying rule CC, we obtain:

if true then ((x + 1)[x�0]) else ((x + 1)[x�false])

which is clearly ill-typed (in the underlined part).

The problem in the open case is actually more general, as not

even the CPS would work: its properties do not scale up to open

terms. In Section 9, indeed, we provide a counter-example to the

simulation property in the open case.
2

To sum up, neither commuting conversions nor the CPS trans-

formation can be used in our framework. Therefore, we accept that

conditionals and pattern matching may appear in ES (in contrast

to Kennedy) and so depart from the ANF.

In the paper we treat the cases of the closed and open CbV

calculi extended with conditionals. The essence of the study is

the crumbling of β-reduction, not the conditionals. Conditionals
are included only to stress the difference with respect to the ANF

(pattern matching can be handled analogously), but they do not

require a special treatment.

1.4 The Complexity of Abstract Machines
Asymptotic Bounds vs Benchmarking. The study of asymptotic

bounds for abstract machines is meant to complement the use of

benchmarking, by covering all possible cases, that certainly cannot

be covered via benchmarking.

The relevance of such a study is evident when one considers

open terms or strong evaluation. For strong evaluation, for instance,

for more than 25 years in the literature there has been only Cregut’s

abstract machines [14], which on size exploding families of terms

actually has exponential overhead (in the number of β-steps and
the size of the initial term). A polynomial machine, developed via a

careful asymptotic study, is in Accattoli [2]. Similarly, the abstract

machine for open terms described in Grégoire and Leroy [20] suffers

of exponential overhead on size exploding families (even if the

authors then in practice implement a slightly different machine

with polynomial overhead). The asymptotic study of this case is in

Accattoli and Guerrieri [9], Accattoli and Sacerdoti Coen [11].

Abstract machines vs compilation. Abstract machines and compi-

lation to machine language are two distinct techniques to execute a

program. Compilation is typically more efficient, but it only handles

the case where terms are closed and evaluation is weak, that is,

the one of functional languages. Strong evaluation is sometimes

2
Danvy and Filinski [17] claim that the CPS transformation scales up to open terms

(their Theorem 2). However, as we discuss in Section 9, they consider only Plotkin’s

operational semantics, which is not adequate for open terms.

PPDP ’19, October 7–9, 2019, Porto, Portugal Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

employed during compilation to optimize the compiled code, but

typically only on linear redexes where size and time explosions are

not an issue. Abstract machines are the only execution technique

implemented in interactive theorem provers based on dependent

types, that need strong evaluation.

Kennedy [24] argues that CPS-based translations are superior

to ANF also because the CPS makes join points explicit as contin-

uations, so that invocation of the continuation can be compiled

efficiently using jumps. The argument is only valid for compilation

and it does not affect abstract machines.

Garbage collection. We study abstract machines, which on pur-

pose ignore many details of concrete implementations such as

garbage collection, which is an orthogonal topic. In particular,

garbage collection is always at most polynomial, if not linear, so

its omission does not hide harmful blowups. As far as we know,

no abstract machine implemented in interactive theorem provers

performs garbage collection.

1.5 Related Work
Environments. In a recent work, Accattoli and Barras [5] com-

pare various kinds of environments, namely, global, local, and split,
from implementative and complexity points of view. The crumbling

transformation can be studied with respect to every style of envi-

ronment. Here we focus on crumbled global environments because

they are simpler and because we also consider the open case, where

all kinds of environment induce the same complexity.

Administrative Normal Forms. The literature on ANF is scarce.

Beyond the already cited original papers, Danvy has also studied

them and their relationship to CPS, but usually calling themmonadic
normal forms [15, 16, 23] because of their relationship with Moggi’s

monadic λ-calculus [29]. That terminology however sometimes

describes a more liberal notion of terms, for instance in Kennedy

[24], which is also another relevant piece in the literature on ANF.

All proofs and some supplementary material of our paper are in

the Appendix of [6], the long version of this paper.

2 THE PIF CALCULUS
The grammars and the small-step operational semantics of the Pif
calculus λifPlot, that is, Plotkin’s calculus λPlot [31] for Closed CbV

evaluation extended with booleans and an if-then-else construct,
plus error handling for clashing constructs, are in Fig. 1.

A term is either an application of two terms, an if-then-else, or
a value, which is in turn either a variable, a (λ-)abstraction, true,
false, or an error err. We distinguish values that are not variables,

notedv¬x and called practical values, following Accattoli and Sacer-
doti Coen [12]. The body of an abstraction λx .t is t and the bodies of
a conditional if t thenu else s are its two branchesu and s . Terms are

always identified up to α-equivalence and the set of free variables

of a term t is denoted by fv(t); t is closed if fv(t) = ∅, open other-

wise. We use t{x�u} for the term obtained by the capture-avoiding

substitution of u for each free occurrence of x in t .

Contexts. In general, contexts are denoted by C and are terms

with exactly one occurrence of a special constant ⟨·⟩ called the
hole, that is a placeholder for a removed subterm. In the paper we

Terms t ,u, s F v | tu | if t thenu else s
Values v F x | v¬x

Practical values v¬x F λx .t | true | false | err
Right v-context R F ⟨·⟩ | tR | Rv | if R thenu else s

Reduction Rules at Top Level

(λx .t)v 7→βv t{x�v}

if true then t elseu 7→ift t
if false then t elseu 7→iff u

if t thenu else s 7→ife err if t = λx .u or t = err
tu 7→@e err if t ∈ {true, false, err}

Contextual closure

R⟨t⟩ →a R⟨u⟩ if t 7→a u for a ∈ {βv , ift, iff, ife,@e}
→pif B →βv ∪ →ift ∪ →iff ∪ →ife ∪ →@e

Figure 1: Pif calculus λifPlot.

use various notions of contexts in different calculi—for λifPlot the
relevant notion is right (evaluation) v-context R (see Fig. 1). The

basic operation on (whatever notion of) contexts is the plugging
C ⟨t⟩ of a term t for the hole ⟨·⟩ in C: simply the hole is removed

and replaced by t , possibly capturing variables.

Evaluation. According to the definition of right v-context, CbV

evaluation →pif in λifPlot is weak, i.e. it does not reduce under λ-
abstractions and in the branches of an if-then-else. CbV evaluation

is defined for any (possibly open) term. But it is well-known that

this operational semantics is adequate only for closed terms, as first

noticed by Paolini and Ronchi Della Rocca [32], see also Accattoli

and Guerrieri [8, 10], Guerrieri [21] and Guerrieri et al. [22]. When

restricted to closed terms, λifPlot is called Closed (Conditional) CbV :
in this setting, evaluation can fire a β-redex (λx .t)u only if the

argument u is a closed value, i.e. a closed λ-abstraction, a boolean,
or err; and in the productionRv for the definition of right v-contexts,

v is always a closed value. Note that we work with right-to-left

evaluation—this is forced by the production Rv in the definition

of right evaluation v-contexts. In the closed case one could as well

work with left-to-right evaluation, the choice is inessential.

The error constant err is generated during evaluation by the two

cases of construct clashes: when the condition for an if-then-else
is an abstraction and when a boolean is applied to a term. Both

cases would be excluded by typing, but in our untyped setting

they are possible, and handled via errors. Similarly, errors are also

propagated when they appear as conditions for if-then-else and as

left terms of an application. These cases are handled by rules →ife
and→@e. Note that errors do not propagate when they occur as

arguments of applications: if the left sub-term of the application be-

comes an abstraction that erases the error then the error is handled
and it is not observable.

A key property of Plotkin’s Closed CbV is harmony: a closed

term is βv -normal if and only if it is a (closed) value i.e. a (closed)
λ-abstraction. Therefore, every closed term either diverges or it

evaluates to a (closed) λ-abstraction. Harmony extends to λifPlot.

Proposition 2.1 (Pif harmony). Let t be a closed term. t is→pif-
normal if and only if t is a value.

Crumbling Abstract Machines PPDP ’19, October 7–9, 2019, Porto, Portugal

3 CRUMBLED EVALUATION, INFORMALLY
Decomposing applications. The idea is to forbid the nesting of

non-value constructs such as applications and if-then-else without
losing expressive power. To ease the explanation, we focus on

nested applications and forget about if-then-else—they do not pose
any difficulty. Terms such as (tu)s or t(us) are then represented

as (λx .(xs))(tu) and (λx .(tx))(us) where x is a fresh variable. It is

usually preferred to use let expressions rather than introducing

β-redexes, so that one would rather write let x = tu in (xs) and
let x = us in (tx), or, with ES (aka environment entries),

(xs)[x�tu] and (tx)[x�us].

If the crumbling transformation · is applied to the whole term—

recursively on t , u and s in our examples—all applications have the

form vv ′
, i.e. they only involve values. If moreover CbV evaluation

is adopted, then such a crumbled form is stable by evaluation (re-

duction steps are naturally defined so that a crumbled form reduces

to a crumbled form), as variables can only be replaced by values.

Simulation and no evaluation contexts. Let us now have a look

at a slightly bigger example and discuss the recursive part of the

crumbling transformation. Let I = λx .x be the identity and consider

the term t B ((λy.yy)I)((I I)I) whose right-to-left evaluation is

t →βv ((λy.yy)I)(I I) →βv ((λy.yy)I)I

→βv (I I)I →βv I I →βv I

The crumbling transformation decomposes all applications, tak-

ing special care of grouping all the environment entries together,

flattening them out (that is, avoiding having them nested one into

the other), and reflecting the evaluation order in the arrangement

of the environment. For instance, the crumbled representation t of
the term t above is

t = (wz)[w�(λy.yy)I][z�xI][x�I I]

and evaluation takes always place at the end of the environment:

t →βv (wz)[w�(λy.yy)I][z�xI][x�I]

→[] (wz)[w�(λy.yy)I][z�I I]
→βv (wz)[w�(λy.yy)I][z�I]

→[] (wI)[w�(λy.yy)I] →βv (wI)[w�I I]

→βv (wI)[w�I] →[] I I →βv I

where the→βv steps correspond exactly to steps in the ordinary

evaluation of t and →[] steps simply eliminate the explicit substi-

tution when its content is a value. Note how the transformation

makes the redex always appear at the end of the environment,

so that the need for searching for it—together with the notion of

evaluation context—disappears.

Let us also introduce some terminology. Values and applications

of values are bites. The transformation, called crumbling translation,
turns a term into a pair, called crumble, of a bite and an environment.

Turning to micro-step evaluation. The previous example covers

what happens when the crumbling transformation is paired with

small-step evaluation. Abstract machines, however, employ a finer

mechanism that we like to call micro-step evaluation, where the

substitutions due to β-redexes are delayed and represented as new

environment entries, and moreover substitution is decomposed

as to act on one variable occurrence at a time. In particular, such

a more parsimonious evaluation never removes environment en-

tries because they might be useful later on—garbage collection is

assumed to be an orthogonal and independent process. To give

an idea of how micro steps work, let’s focus on the evaluation of

the subterm (wz)[w�(λy.yy)I] of our example (because micro-step

evaluations are long and tedious), that proceeds as follows:

(wz)[w�(λy .yy)I] →βv (wz)[w�yy][y�I] →[]

(wz)[w�yI][y�I] →[] (wz)[w�I I][y�I] →βv
(wz)[w�x][x�I][y�I] →[] (wz)[w�I][x�I][y�I] →[]

(I z)[w�I][x�I][y�I]

where →βv steps now introduce new environment entries. Now

the redex is not always at the end of the environment, but it is

always followed on the right by an environment whose entries

are all abstractions, so that the search for the next redex becomes

a straightforward visit from right to left of the environment—the

evaluation context has been coded inside the sequential structure

of the environment.

Abstraction bodies and the concatenation of environments. There
is a last point to explain. We adopt weak evaluation—that only

evaluates out of abstractions—but the crumbling transformation

also transforms the bodies of abstractions and the branches of

if-then-else into crumbles. Let us see another example. The crum-

bled representation of u B (λx .((xx)(xx)))(I I) then is

u = ((λx .((yz)[y�xx][z�xx]))w)[w�I I]

Micro-step evaluation goes as follows:

u →βv ((λx .((yz)[y�xx][z�xx]))w)[w�w ′][w ′�I]

→[] ((λx .((yz)[y�xx][z�xx]))w)[w�I][w ′�I]
→[] ((λx .((yz)[y�xx][z�xx]))I)[w�I][w ′�I].

At this point, the reduction of the β-redex (involving λx) has to
combine the crumble of the redex itself with the one of the body of

the abstraction, by concatenating the environment of the former

(here [w�I][w ′�I]) at the end of the environment of the latter

([y�xx][z�xx]), interposing the entry created by the redex itself

([x�I]), thus producing the new crumble:

(yz)[y�xx][z�xx][x�I][w�I][w ′�I].

The key conclusion is that evaluation needs to concatenate crum-

bled environments, which is an operation that ordinary abstract

machines instead never perform.

Note that transforming abstraction bodies may produce nested

ES, if the abstraction occurs in an ES. This is the only kind of nesting

of ES that is allowed.

4 THE CRUMBLING TRANSFORMATION
In this section we formally define the language of crumbled forms

and the crumbling transformation.

Crumbled forms. Terms are replaced by crumbles, which are

formed by a bite and an environment, where in turn

• a bite is either a crumbled value (i.e. a variable, a boolean,
an error, or an abstraction over a crumble), an application

of crumbled values, or a if-then-else on a crumbled value

whose alternatives are crumbles, and

• an environment is a finite sequence of explicit substitutions
of bites for variables.

PPDP ’19, October 7–9, 2019, Porto, Portugal Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

Formally, the definition is by mutual induction:

Bites b,b ′ F v | vw | ifv then c elsed

Crumbled values v,w F x | λx .c | true | false | err

Environments e, e ′ F ϵ | e[x�b]

Crumbles c,d F (b, e)

Bodies: the bodies of abstractions and if-then-else are them-

selves crumbles—the forthcoming crumbling transformation

is indeed strong, as it also transforms bodies.

Crumbles are not closures: the definition of crumbles may

remind one of closures in abstract machines with local envi-

ronments, but the two concepts are different. The environ-

ment e of a crumble (b, e), indeed, does not in general bind

all the free variables of the bite b.

We freely consider environments as lists extendable on both ends,

and whose concatenation is obtained by simple juxtaposition. Given

a crumble (b, e) and an environment e ′ the appending of e ′ to (b, e)
is (b, e) @ e ′ B (b, ee ′).

Free variables, α -renaming, and all that. All syntactic expressions
are not considered up to α-equivalence. Free variables are defined as
expected for bites. For environments and crumbles they are defined

as follows (via the auxiliary notion of domain of environments; this

is because global environments are used here):

dom(e[x�b]) B dom(e) ∪ {x} dom(ϵ) B ∅

dom((b, e)) B dom(e) fv(ϵ) B ∅

fv(e[x�b]) B (fv(e)∖ {x}) ∪ fv(b)

fv((b, e)) B (fv(b)∖ dom(e)) ∪ fv(e).

Let e = [x1�b1] . . . [xk�bk] be an environment: we denote the

lookup of xi in e by e(xi) B bi . We say that a crumble c or an

environment e are well-named if all the variables occurring on the

lhs of ES outside abstractions in c or e are pairwise distinct.

The crumbling translation. A term is turned into a crumble via

the following crumbling translation · , which uses an auxiliary

translation · from values into crumbled values.

x B x λx .t B λx .t true B true false B false err B err

v B (v, ϵ) vv ′ B (vv ′, ϵ)

tv B (xv, [x�b]e) (∗)

ut B ux @ ([x�b]e) (∗)

ifv thenu else s B (ifv thenu else s, ϵ)

if t thenu else s B (if x thenu else s, [x�b]e) (∗)

(∗) if t is not a value and t = (b, e), and x is fresh.

According to the definition, if u and t are not values, ut =
(yx , [y�b ′]e ′[x�e]) with t = (b, e), u = (b ′, e ′) and x ,y fresh.

Example 4.1. Let δ B λx .xx and I B λx .x : thus, I = λx .x =

λx .(x , ϵ) and δ = λx .xx = λx .(xx , ϵ) (since xx = (xx , ϵ)) and
δδ = (¯δ ¯δ , ϵ). Therefore,

δδ I = (zI , [z� ¯δ ¯δ])

= (zλx .(x , ϵ), [z�(λx .(xx , ϵ))λx .(xx , ϵ)])

δδ (xx) = (zw, [z� ¯δ ¯δ][w�xx])

= (zw, [z�(λx .(xx , ϵ))λx .(xx , ϵ)][w�xx]).

The crumbling translation · is not surjective: the crumble c B
(xx , [x�y]) is such that t , c for any term t .

Read back. There is a left inverse for the crumbling translation,

called read-back and defined by:

x↓ B x (λx .c)↓ B λx .c↓

true↓ B true false↓ B false

err↓ B err (vw)↓ B v↓w↓

(ifv then c elsed)↓ B ifv↓ then c↓ elsed↓
(b, e[x�b ′])↓ B (b, e)↓{x�b ′

↓
} (b, ϵ)↓ B b↓

Proposition 4.2 (Read-back and the crumbling transla-

tion). For every term t and every valuev , one has t ↓ = t andv↓ = v .

Remark 4.1 (Crumbling translation, free variables).

(1) For any term t and any value v , one has fv(t) = fv(t) and
fv(v) = fv(v); in particular, t is closed if and only if t is so.

(2) For any biteb and crumble c , fv(b↓) = fv(b) and fv(c↓) = fv(c).
(3) The crumbling translation commutes with the renaming of

free variables.

(4) The crumbling translation and the read-back map values to

values.

Crumbled contexts. For crumbled forms, we need contexts both
for environments and crumbles:

Environment contexts E B e[x�⟨·⟩]

Crumble contexts C B ⟨·⟩ | (b,E) .

Crumbles can be plugged into both notions of contexts. Let us point

out that the following definition of plugging is slightly unusual

as it does a little bit more than just replacing the hole, because

simply replacing would not provide a well-formed syntactic ob-

ject: plugging indeed extracts the environment from the plugged

crumble and concatenates it with the environment of the context.

Such an unusual operation—that may seem ad-hoc—is actually one

of the key technical points in order to obtain a clean proof of the

implementation theorem (see Section 5.2).

Definition 4.3 (Plugging in crumbled contexts). Let E = e[x�⟨·⟩]

be an environment context,C be a crumble context, and c = (b ′, e ′)
be a crumble. The plugging E⟨c⟩ of c in E and the plugging C ⟨c⟩ of
c in C are defined by

(e[x�⟨·⟩])⟨(b ′, e ′)⟩ B e[x�b ′]e ′ ⟨·⟩⟨c⟩ B c (b,E)⟨c⟩ B (b,E⟨c⟩)

Example 4.4. In Example 4.1 we have seen that δδ I =

(zλx .xϵ , [z�(λx .(xx)ϵ)λx .(xx)ϵ]), where we set bϵ B (b, ϵ) for
any bite b. We have that δδ I = C ⟨c⟩ with C B (zλx .xϵ , [z�⟨·⟩])

and c B ((λx .(xx)ϵ)λx .(xx)ϵ , ϵ).

Crumbling Abstract Machines PPDP ’19, October 7–9, 2019, Porto, Portugal

The notions of well-named, fv(·), and dom(·) can be naturally ex-

tended to crumble contexts. The definition of read back is extended

to crumble contexts by setting ⟨·⟩↓ B ⟨·⟩ and (b, e[x�⟨·⟩])↓ B
(b, e)↓{x�⟨·⟩}. Note however that the unfolding of a crumble con-

text is not necessarily a context, because the hole can be duplicated

or erased by the unfolding. For instance, let C B (x x , [x�⟨·⟩]).

Then C↓ = ⟨·⟩⟨·⟩ is not a context.

Lemma 4.5 provides the properties of the translation needed to

prove the invariants of machines in the next sections.

Lemma 4.5 (Properties of crumbling). For every term t :

(1) Freshness: t is well-named.
(2) Closure: if t is closed, then fv(t) = ∅.
(3) Disjointedness: dom(C) ∩ fv(b) = ∅ if t = C ⟨(b, e)⟩.
(4) Bodies: every body in t is the translation of a term.
(5) Contextual decoding: if t = C ⟨c⟩, thenC↓ is a right v-context.

5 THE CLOSED CASE
Here we show how to evaluate crumbled forms with a micro-step

operational semantics. We builds over the work of Accattoli and

co-authors, who employ the following terminology:

• Calculus: for a small-step semantics where both substitution

and search for the redex are meta-level operations;

• Linear calculus: for a micro-step semantics where substi-

tution is decomposed—the calculus has ES and possibly a

notion of environment if the ES are grouped together—but

the search for the redex is still meta-level and expressed via

evaluation contexts;

• Abstract machine: for a micro-step semantics where both

substitution and search for the redex are decomposed. The

search for redexes is handled via one or more stacks called

applicative stack, dump, frame, and so on; the management

of names is also explicit, i.e. not up-to α-equivalence.

The crumbling transformation blurs the distinction between a lin-

ear calculus and an abstract machine because it allows using the

sequential structure of the environment as the only stack needed

to search for redexes.

The operational semantics for crumbled forms we present next

is in the style of a linear calculus, because spelling out the straight-

forward search for redexes is not really informative. Nonetheless,

we do call it an abstract machine, because of the blurred distinction

in the crumble case and because we manage names explicitly. In

Section 7 we sketch the actual abstract machine (details are in [6]).

5.1 The Crumble GLAM
Transitions. To introduce the Crumble GLAM (GLAM stands for

Global Leroy Abstract Machine) we need some definitions. First,

environments and crumbles made out of practical values only are

defined and noted as follows:

v-environments ev F ϵ | ev [x�v¬x]

v-crumbles cv F (v¬x , ev)

Essentially, a v-environment stands for the already evaluated coda

of the environment described in the paragraph about micro-steps

in Sect. 3, while v-crumbles are fully evaluated crumbles (i.e. final
states of the machine), as we show below.

Second, given a crumble c we use cα for a crumble obtained by

α-renaming the names in the domain of c with fresh ones so that

cα is well-named.

The transitions act on crumbles whose environments are v-
environments. The top level transitions are:

((λx .c)v, ev) 7→βv (c @ [x�v])α @ ev

(if true then c elsed, ev) 7→ift c @ ev

(if false then c elsed, ev) 7→iff d @ ev

(ifv then c elsed, ev) 7→ife (err, ev) (1)

(vw, ev) 7→@e (err, ev) (2)

(x , ev) 7→subvar (ev (x), ev) (3)

(xv, ev) 7→subl (ev (x)v, ev) (3)

(if x then c elsed, ev) 7→subif (if ev (x) then c elsed, ev) (3)

(1) if v = λx .e or v = err
(2) if v ∈ {true, false, err}
(3) if x ∈ dom(ev)

Transitions are then closed by crumble contexts: for every a ∈

{βv , ift, iff, ife,@e, subvar , subl , subif} defineC ⟨c⟩ →a C ⟨d⟩ if c 7→a
d . The transition relation →Cr of the Crumble GLAM is defined as

the union of all these rules. Let us explain each transition:

• →βv : (forget about the α-renaming for the moment—see the

next paragraph) the rule removes a β-redex and introduces

an ES [x�v] instead of performing the meta-level substitu-

tion. Moreover, the environment of the body c of the abstrac-
tion and the external environment ev are concatenated (via

the appending operation @) interposing [x�v].
• Conditional and error transitions→ift,→iff,→ife,→@e: these

transitions simply mimics the analogous rules on the Pif

calculus, with no surprises.

• Substitution transitions →subl ,→suby ,→subif : the variable x

is substituted by the corresponding crumbled value in the

environment ev , if any. In the closed case, a forthcoming

invariant guarantees that ev (x) is always defined so that

side-condition (3) is actually always satisfied. There are no

rules to substitute on the right of an application (see below).

According to the definitions of plugging and top level transi-

tions, the transition relation follows right-to-left evaluation, as the
environment on the right of a redex is a v-environment (made of

practical values only), which means that it has already been eval-

uated (see the harmony property for Crumble GLAM in Prop. 5.3

below). Adopting right-to-left evaluation implies that the Crumble

GLAMdoes not need a rule→subr symmetrical to→subl , whose top

level shape would be (vx , ev) 7→er (v ev (x), ev) with x ∈ dom(ev):
indeed, if v is a variable then →subl applies to the same redex

(vx , ev), otherwise v is an abstraction and →βv applies to (vx , ev).

The cost and the place of α-renaming. Abstract machines with

global environments have to α-rename at some point, this is stan-

dard
3
. In our implementation, renaming is implemented as a copy

function. And the cost of renaming is under control because of

forthcoming invariants of the machine. This is all standard [5].

3
Local environments do allow to avoid renamings, but the simplification is an illusion,

as the price is payed elsewhere—see Accattoli and Barras [5]—there is no real way out.

PPDP ’19, October 7–9, 2019, Porto, Portugal Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

Often the burden of renaming/copying is put on the substitution

rules. It is less standard to put it on the βv -transition, as we do

here, but nothing changes. Last, a technical remark: in rule →βv
the α-renaming at top level has to pick names that are fresh also

with respect to the crumble context enclosing it. This point may

seem odd but it is necessary to avoid name clashes, and it is trivially

obtained in our concrete implementation, where variable names are

memory locations and picking a fresh name amounts to allocating

a new location, that is of course new globally.

Definition 5.1 (Reachable crumble). A crumble is reachable (by
the Crumble GLAM) if it is obtained by a sequence of transitions

starting from the translation t of a closed term t .

Unchaining abstractions. The substitution performed by the rule

→subvar may seem an unneeded optimization; quite the opposite,

it fixes an issue causing quadratic overhead in the machine. The

culprits are malicious chains of renamings, i.e. environments of the

form [x1�x2][x2�x3] · · · [xn�λy.c] substituting variables for vari-

ables and finally leading to an abstraction. Accattoli and Sacerdoti

Coen [11] showed that the key to linear overhead is to perform

substitution steps while going through the chain from right to left.

Example 5.2. Consider the crumble δδ = (δ δ , ϵ), where δ =
λx .(xx , ϵ); then:

δδ →βv (xx , [x�δ]) →subl (δ x , [x�δ])

→βv (yy, [y�x][x�δ]) →subvar (yy, [y�δ][x�δ]) →subl . . .

In Ex. 4.1 we introduced the crumble δδ I = (z I , [z�δ δ]) where

I = (λx .(x , ϵ)); in accordance with the crumble decomposition

shown in Ex. 4.4, we have:

δδ I →βv (z I , [z�xx][x�δ]) →subl (z I , [z�δ x][x�δ])

→βv (z I , [z�yy][y�x][x�δ])

→subl (z I , [z�yy][y�δ][x�δ]) →subl . . .

Consider now the open crumble

c B δδ (xx) = (zw, [z�δ δ][w�xx]).

The crumble c is normal because its only possible decomposition of

the formC ⟨(b, ev)⟩ is for ev = ϵ (as xx is not a practical value), and

no transitions apply to the rightmost entry [w�xx] since x is free.

The Crumble GLAM satisfies a harmony property.

Proposition 5.3 (Harmony for the Crumble GLAM). A closed
crumble c is normal if and only if it is a v-crumble.

5.2 The Implementation Theorem
To show that the Crumble GLAM correctly implements the Pif

calculus, we apply an abstract approach introduced by Accattoli

and Guerrieri [9], which we reuse as well in the following sections

for other crumble abstract machines and other evaluation strategies

of the λ-calculus.

The implementation theorem, abstractly. In Accattoli and Guerri-

eri [9] it is proven that, given

• a generic abstract machine M, which is a transitions relation
{M over a set of states that splits into

– principal transitions {p, that corresponds to the evalua-

tion steps on the calculus, and

– overhead transitions {o, that are specific of the machine,

• an evaluation strategy → in the λ-calculus, and
• a decoding (·)↓ of states of M into terms,

M correctly implements → via (·)↓ whenever (M,→, (·)↓) forms

an implementation system, i.e. whenever the following conditions
are fulfilled (where s and s ′ stand for generic states of M):

(1) Initialization: there is an encoding · of terms such that t ↓ = t ;

(2) Principal projection: s {p s
′
implies s↓ → s ′

↓
;

(3) Overhead transparency: s {o s
′
implies s↓ = s

′
↓
;

(4) Determinism:{M is deterministic;

(5) Halt:M final states (to which no transition applies) decode

to →-normal terms;

(6) Overhead Termination:{o terminates.

Our notion of implementation, tuned towards complexity analy-

ses, requires a perfect match between the number of steps of the

strategy and the number of principal transitions of the execution.

Theorem 5.4 (Machine implementation, [9]). If a machine M,
a strategy → on λ-terms and a decoding ·↓ form an implementation
system then:

(1) Executions to derivations: for any M-execution ρ : t {∗
M s

there is a →-derivation d : t →∗ s↓.
(2) Derivations to executions: for every →-derivation d : t →∗ u

there is an M-execution ρ : t {∗
M s such that s↓ = u.

(3) Principal matching: in both previous points the number |ρ |p
of principal transitions in ρ is exactly the length |d | of the
derivation d , i.e. |d | = |ρ |p.

The crumbling implementation system. The states of the Crum-

ble GLAM are crumbles. Its principal transitions are those labeled

with {βv , ift, iff, ife,@e}, while the overhead transitions are those

labeled with {subvar , subl , subif}. We can now show that the Crum-

ble GLAM, Pif evaluation →pif and the read-back (·)↓ form an im-

plementation system, that is, that the Crumble GLAM implements

the Pif calculus.

We are going to provide five of the six sufficient conditions

required by the implementation theorem (Thm. 5.4); the sixth one,

the termination of overhead transitions, is subsumed by the finer

complexity analysis in Subsect. 5.3.

The sufficient conditions, as usual, are proved by means of a few

invariants of the machine, given by Lemma 5.5 below. These invari-

ants are essentially the properties of the translation in Lemma 4.5

extended to all reachable crumbles. One of them—namely contex-
tual decoding—however, is weaker because reachable crumbles do

not necessarily have the same nice structure as the initial crumbles

obtained by translation of a term, as the next remark explains.

Remark 5.1. Even though not all crumble contexts unfold to con-

texts, crumble contexts obtained by decomposing crumbles given

by the translation of terms do (Lemma 4.5.5)—this is the contextual

decoding property. Unfortunately, it is not preserved by evaluation.

Consider the crumble c B (λx .x(xx)) I = ((λx .(xy, [y�xx]))I , ϵ)

with I = λz.(z, ϵ). Clearly, c = ⟨(λx .x(xx)) I ⟩ where ⟨·⟩↓ =

⟨·⟩ is a context. After one βv step, the crumble c reaches

Crumbling Abstract Machines PPDP ’19, October 7–9, 2019, Porto, Portugal

(xy, [y�xx][x�I]) = C ⟨(I , ϵ)⟩ for C B (xy, [y�xx][x�⟨·⟩]). But

C unfolds to C↓ = ⟨·⟩(⟨·⟩⟨·⟩), which is not a λ-context.

Lemma 5.5 (Invariants for the Crumble GLAM). For every
reachable crumble c in the Crumble GLAM:

(1) Freshness: c is well-named.
(2) Closure: fv(c) = ∅.
(3) Bodies: every body occurring in c is a subterm (up to renaming)

of the initial crumble.
(4) Weak contextual decoding: for every decompositionC ⟨(b, ev)⟩

where b is not a crumbled value, ifC ′′ is a prefix ofC thenC ′′
↓

is a right v-context.

Freshness and closure are invariants needed to ensure the basic

functioning of the machine. The bodies invariant corresponds to

what is often called subterm invariant: it is the key invariant for

complexity analyses, as it allows to bound the size of duplicated

subterms (that are always abstractions) using the size of the initial

term. Usually, it is only needed for complexity analyses, while here

it is needed for the implementation theorem too (namely, only for

the proof of the weak contextual decoding invariant). The weak

contextual decoding invariant is crucial to show that principal tran-

sitions of the Crumble GLAM project on evaluation steps in λifPlot.

Theorem 5.6 (Implementation). Let c be a crumble reachable
by the Crumble GLAM.

(1) Initialization: t ↓ = t for every term t .
(2) Principal projection: if c →a d then c↓ →a d↓, for any rule

a ∈ {βv , ift, iff, ife,@e}.
(3) Overhead transparency: if c →a d then c↓ = d↓ for any rule

a ∈ {subvar , subl , subif}.
(4) Determinism: the transition →Cr is deterministic.
(5) Halt: if c is→Cr-normal then c↓ is→pif-normal.
(6) Overhead termination: →a terminates, for any rule a ∈

{subvar , subl , subif}.

Therefore, the Crumble GLAM, Pif evaluation →pif , and the read-
back (·)↓ form an implementation system.

5.3 Complexity for the closed case
To estimate the cost of the Crumble GLAM, we provide first an

upper bound on the number of overhead transitions—namely the

substitution ones subvar , subl , and subif—in an execution ρ as a

function of the number |ρ |p of principal transitions. Thenwe discuss
the cost of implementing single transitions. Last, by composing the

two analyses we obtain the total cost, that is linear in the number

of principal transitions and in the size of the initial term/crumble,

that is, the machine is bilinear.

Number of transitions: non-renaming substitutions. Let ρ : c0 →∗
Cr

c be an execution (i.e. a sequence of transitions) in the Crumble

GLAM and let |ρ |p, |ρ |subvar , |ρ |subl , |ρ |subif be the number of prin-

cipal, subvar , subl , and subif transitions in ρ, respectively. Clearly,
a subl transition can only be immediately followed by a βv or

a @e transition (since →Cr is deterministic), and so |ρ |subl ≤

|ρ |βv +|ρ |@e+1. Similarly, a subif transition is immediately followed

by a ift, a iff or a ife transition. Therefore, |ρ |subl + |ρ |subif ≤ |ρ |p+1.

Number of transitions: renaming steps. The analysis for |ρ |subvar
is subtler. A variable crumble is a crumble of the form (x , e). The
number of subvar transitions is bounded by the number of variable

crumbles out of bodies appearing in evaluation position along an

execution ρ : c0 →∗
Cr c . These can be due to the following reasons:

(1) Static: variable crumbles out of bodies in the initial state c0;

(2) Dynamic: variable crumbles obtained dynamically. In turn,

these are divided into (see also the discussion after Prop. 5.7):

(a) Copy: variable crumbles occurring in the bodies of abstrac-

tions and if-then-else (and thus frozen) that become active

because the construct is evaluated and the body exposed;

(b) Creation: variable crumbles that cannot be traced back to

variable crumbles appearing in prefixes of the execution.

We now show that the crumbling translation does not produce

any variable crumbles out of bodies, but one, if the original term is

itself a variable. Therefore, the contribution of point 1 is at most

1. We need a measure, counting variable crumbles out of bodies.

Note that a variable crumble (x , e) appearing in a crumble contextC
rather takes the form [y�x]e , which is why the following measure

counts the substitutions containing only a variable.

|b |var B 0 if b is not a variable

|x |var B 1 |(b, e)|var B |b |var + |e |var

|ϵ |var B 0 |e[x�b]|var B |e |var + |b |var .

Proposition 5.7. Let t be a term and v a value. Then:
(1) |t |var ≤ 1; and |t |var = 1 if and only if t is a variable;
(2) |v |var ≤ 1; and |v |var = 1 if and only if v is a variable.

Let us now discuss the variable crumbles of point 2.a (dynamic

copy). By the bodies invariant (Lemma 5.5.3), these pairs appear in a

body of the initial crumble. By the bodies property of the crumbling

translation (Lemma 4.5.4), all these bodies are the translation of a

term, and—by using Prop. 5.7 again—we obtain that each such body

contributes at most with one variable crumble. Since each body is

exposed by one→βv or→ift or→iff transition, we have that the

variable crumbles of point 2.a are bounded by |ρ |p.
Last, we bound the number of variable crumbles at point 2.b

(dynamic creation). There is only one rule that can create a new

variable crumble (and exactly one), namely →βv when the argu-

ment of the β-redex is a variable. For instance,

((λx .(xx , ϵ))y, [y�λz.z]) →βv (xx , [x�y][y�λz.z])

where the created variable crumble is (y, [y�λz.z]). Then the num-

ber of variable crumbles at point 2.b is bounded by the number of

→βv transitions, itself bounded by |ρ |p.
The following lemma sums up the previous discussions

Lemma 5.8. Let ρ : c0 →∗
Cr c be a Crumble GLAM execution.

(1) Linear number of non-renamings substitutions: |ρ |subl +
|ρ |subif ≤ |ρ |p + 1.

(2) Linear number of renamings: |ρ |subvar ≤ 2|ρ |p + 1.
(3) Linear number of substitutions: |ρ |subl + |ρ |subvar + |ρ |subif ≤

3|ρ |p + 2.

Cost of single transitions. Performing a single transition → in

the Crumble GLAM consists of four operations:

(1) Search: locating the next redex;

PPDP ’19, October 7–9, 2019, Porto, Portugal Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

(2) Unplugging: splitting the crumble to be reduced into a crum-

ble contextC and the crumble c that is the redex at top level;

(3) Rewriting: applying a rewriting rule to the crumble c , obtain-
ing a new crumble d ;

(4) Plugging: putting the new crumble back into the crumble

context obtaining C ⟨d⟩.

The search for redexes is embedded into the definition of the

rules, via the contextual closure. The technical definition of plug-

ging and unplugging of crumbles into a crumble context is quite

involved and, if implemented literally, is not constant time.

To ease the reasoning, in this section we assume that search

and (un)plugging have negligible cost and show that the total cost

of rewriting is bilinear. In Section 7 we sketch a slight variant

of the Crumble GLAM, the Pointed Crumble GLAM, that adds a

transition for searching redexes and removes the need for plugging

and unplugging (details are in [6]). A further analysis of the Pointed

Crumble GLAM shows that the total cost of search and (un)plugging

is bilinear and thus negligible, justifying the results of this section.

Cost of single transitions: βv transitions. We denote by |t |, |c |,
|e | and |b | the size of terms, crumbles, environments and bites,

respectively, defined as follows:

|x | B 1 |tu | B |t | + |u | + 1

|true| = |false| B 1 |λx .t | B |t | + 1

|if t thenu else s | B |t | + |u | + |s | + 1 |err| B 1

|ϵ | B 0 |e[x�b]| B |e | + |b |

|(b, e)| B |b | + |e |.

The cost of each βv transition (that needs to perform a copy of the

crumble in the abstraction in order α-rename it) is bound by the

size of the copied crumble. By the bodies invariant (Lemma 5.5.3)

the abstraction is the α-renaming of one the abstractions already

present in the initial crumble. Therefore the cost of a βv transition is

bound by the size of the initial crumble. The next lemma shows that

the size of the initial crumble is linear in the size of the initial term

translating to the crumble. Therefore, the cost of a βv transition is

linear by the size of the initial term.

Lemma 5.9 (Size of translated terms). Let t be a term and v a
value. Then |t | ≤ 5|t | and |v | ≤ 5|v |.

Cost of single transitions: substitutions. The cost of subl , subvar ,
and subif transitions depends on the choice of data structures for

implementing the machine. Following the literature on global en-

vironment machines [5], we assume the global environment to be

implemented as a store and variable occurrences to be implemented

as pointers into the store, so that lookup in the environment can be

performed in constant time on a Random Access Machine (RAM).

As for the cost of actually performing the replacement of x with

ev (x) in the subvar , subl and subif rules, it can be done in constant

time by copying the pointer to ev (x). This is possible because the
actual copy, corresponding to α-renaming, is done in the βv step.

Thus, single substitution transitions have constant cost.

Cost of single transitions: conditionals and errors. It is immediate

that—if one excludes plugging and unplugging—these transitions

have constant cost.

Terms t ,u F . . . (as in λifPlot, see Figure 1)

Values v F . . . (as in λifPlot, see Figure 1)

Fireballs f F v | i
Inert terms i F x f | i f | if x then t elseu

| if i then t elseu
Right f-context R F ⟨·⟩ | tR | Rf | if R thenu else s

Reduction Rules at Top Level

(λx .t)i 7→βi t{x�i} 7→βv , 7→ift, 7→iff, 7→ife, 7→@e as in λifPlot

Contextual closure

R⟨t⟩ →a R⟨u⟩ if t 7→a u for a ∈ {βv , βi , ift, iff, ife,@e}

→βf B →βv ∪ →βi →cβf B
⋃
a∈{βf , ift, iff, ife,@e} →a

Figure 2: The conditional fireball calculus λiffire.

Cost of executions. Summing up all the analyses in this section

we obtain the following theorem.

Theorem 5.10 (The Crumble GLAM is bilinear up to search

and (un)plugging). For any closed term t and any Crumble GLAM
execution ρ : t →∗

Cr c , the cost of implementing ρ on a RAM is
O((|ρ |p + 1) · |t |) plus the cost of plugging and unplugging.

OCaml implementation. In Section 7we sketch the Pointed Crum-

ble GLAM, a refinement of the Crumble GLAM making explicit

the search for redexes and removing the need for (un)plugging,

and having the same complexity: the cost for searching redexes and
(un)plugging is negligible. More details and an implementation in

OCaml of the Pointed Crumble GLAM can be found in the appen-

dix of [6], together with the code that implements the crumbling

translation. There we also discuss a parsimonious choice of data

structures for the implementation of pointed environments.

6 THE OPEN CASE
6.1 The Fireball Calculus
In this section we recall the fireball calculus λfire, the simplest

presentation of Open CbV, and extend it with conditionals. The

extension is completely modular. For the issues of Plotkin’s setting

with respect to open terms and for alternative presentations of

Open CbV, we refer the reader to Accattoli and Guerrieri [8, 10].

The fireball calculus was introduced without a name and studied

first by Paolini and Ronchi Della Rocca [30], Ronchi Della Rocca

and Paolini [32]. It has then been rediscovered by Grégoire and

Leroy [20] to improve the implementation of Coq, and later by

Accattoli and Sacerdoti Coen [11] to study cost models, where it

was also named. We present it following Accattoli and Sacerdoti

Coen [11], changing only inessential, cosmetic details.

The fireball calculus. The conditional fireball calculus λiffire is

defined in Fig. 2. The conditional part is exactly as in the closed

case. The idea is that the values of the Pif calculus are generalized

to fireballs, by adding inert terms. Fireballs (noted f) and inert

terms (noted i) are defined by mutual induction (in Fig. 2). For

instance, x and λx .y are fireballs as values, while y(λx .x), xy, and
(z(λx .x))(zz)(λy.(zy)) are fireballs as inert terms.

The main feature of inert terms is that they are open, normal, and

that when plugged in a context they cannot create a redex, hence

the name “inert”. Essentially, they are the neutral terms of Open

Crumbling Abstract Machines PPDP ’19, October 7–9, 2019, Porto, Portugal

CbV. In Grégoire and Leroy’s presentation [20], inert terms are

called accumulators and fireballs are simply called values. Variables

are, morally, both values and inert terms. In Accattoli and Sacerdoti

Coen [11] theywere considered as inert terms, while here, for minor

technical reasons we prefer to consider them as values and not as

inert terms—the change is inessential.

Evaluation rules. First, CbV β-reduction is replaced by call-by-
fireball β-reduction→βf : the β-rule can fire, lighting the argument,

only if the argument is a fireball (fireball is a catchier version of

fire-able term). We actually distinguish two sub-rules: the usual

one that lights values, noted →βv , and a new one that lights inert
terms, noted→βi (see Fig. 2). Second, we include all the rules about

conditionals and errors, exactly as before, obtaining the evaluation

relation →cβf . Note that evaluation is weak: it does not reduce in
abstraction nor if-then-else bodies.

We endow the calculus with the (deterministic) right-to-left eval-

uation strategy, defined via right f-contexts R—note the production
Rf , forcing the right-to-left order. A more general calculus (without

conditionals) is defined in Accattoli and Guerrieri [8], for which

the right-to-left strategy is shown to be complete. We omit details

about the rewriting theory of the fireball calculus because our focus

here is on implementations.

Example 6.1. Wehave (λz.z(yz))(λx .x) →βf (λx .x)(y (λx .x)) →βf
y (λx .x), where the final term y (λx .x) is a fireball (and βf -normal).

Properties. As discussed in Sect. 5, Closed CbV enjoys harmony

(Prop. 2.1). The fireball calculus λfire satisfies an analogous property

in the open setting by replacing abstractions with fireballs; we

here further extend it to conditionals (Prop. 6.2.1 below). The key

property of inert terms is summarized by Prop. 6.2.2: substitution

of inert terms does not create or erase cβf -redexes, and hence can

always be avoided. It plays a role in the design of the open abstract

machine of the next section.

Proposition 6.2 (Properties of λiffire). Let t ,u be terms.

(1) Open harmony: t is cβf -normal if and only if t is a fireball.
(2) Inert substitutions and evaluation commute: Let i be an inert

term. Then t →cβf u if and only if t{x�i} →cβf u{x�i}.

6.2 The Open Crumble GLAM
Here we extend the Crumble GLAM defined in Sect. 5 to the case of

open terms, implementing Open (Conditional) CbV, i.e. the condi-
tional fireball calculus λiffire: in this way we obtain theOpen Crumble
GLAM. The extension impacts on the core λ-calculus, while condi-
tionals are essentially orthogonal to the issues of open terms.

Evaluated environments. First, we need to discuss the environ-

ments under which evaluation takes place. In the open case, v-
crumbles and v-environments generalize to f -crumbles and f -
environments, and are denoted as follows:

f -crumbles: cf f -environments: ef

Recall that in the Crumble GLAM the already evaluated coda of

the environment is made out only of practical values. Unfortunately,

a syntactic characterization of f -environments (and f -crumbles) is

more involved than the simple definition of v-environments.

In the Crumble GLAM, to check whether a bite b is in nor-

mal form with respect to a v-environment ev , it suffices to check

whether b is a practical value. In the open case, looking at the syn-

tactic structure of the term is not enough: some applications are

now normal, for example the bite y x is normal with respect to

the environment e B [x�I], but not all of them are normal, for

instance (x y, [x�I]) →subl (I y, [x�I]) as in the closed case (exact

definitions are given below). Because of this additional complica-

tion, we are going to define f -environments directly in terms of

their ’semantics’, i.e. of their read-back to terms. Intuitively, fully

evaluated f -environments should correspond to substitutions of

fully evaluated terms in λiffire. And since by harmony normal forms

in λiffire are simply fireballs, it suffices to request that the read-back

of every entry in a f -environment is a fireball.

Let us now define f -environments formally: ef is a f -environment
(resp. cf is a f -crumble) if for any environment context E (resp. any

crumble context C) and any crumble c such that ef = E⟨c⟩ (resp.
cf = C ⟨c⟩) the following two conditions hold:

(1) Read-back to fireballs: c↓ is a fireball, and
(2) Unchaining practical values: if c↓ is a practical value, then

c = (v, e) for some practical value v and some e .

The second requirement forbids v to be a variable and is crucial

for capturing the correct behavior of the substitution rule →subvar ,

which removes the malicious chains of substitutions (of variables

for variables) discussed in Sect. 5.

Transitions. The transitions of the Open Crumble GLAM:

((λx .c)v, ef) 7→βf (c @ [x�v])α @ ef

(if true then c elsed, ef) 7→ift c @ ef

(if false then c elsed, ef) 7→iff d @ ef

(ifv then c elsed, ef) 7→ife (err, ef) (1)

(vw, ef) 7→@e (err, ef) (2)

(x , ef) 7→subvar (ef (x), ef) (3)

(xv, ef) 7→subl (ef (x)v, ef) (3)

(if x then c elsed, ef) 7→subif (if ef (x) then c elsed, ef) (3)

(1) if v = λx .e or v = err
(2) if v ∈ {true, false, err}
(3) if x ∈ dom(ef)

Top level transitions are then closed by crumble con-

texts by setting C ⟨c⟩ →a C ⟨d⟩ if c 7→a d for a ∈

{βv , subvar , subl , subif , ift, iff, ife,@e}. The transition rela-

tion→oCr of the Open Crumble GLAM is defined as the union of

all these rules. A principal transition of the Open Crumble GLAM

is a transition →a for any rule a ∈ {βf , ift, iff, ife,@e}.
There are only two differences with the transitions of the Crum-

ble GLAM. First,→βv is now noted 7→βf and yet it is identical to

the one in the closed case (the comments about α-renaming given

in Sect. 5 still hold). This is because there is a subtle difference: the

argument of the β-redex may be a variable (which is a value) sub-

stituted by a inert term in the environment, thus becoming a →βi
step (and not a →βv step) when read-back in λiffire. Second, there is
a slightly different side condition for the substitution transitions: it

requires not only that a variable is defined in ef (like in the closed

PPDP ’19, October 7–9, 2019, Porto, Portugal Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

case), but also that the corresponding term in the environment is a

practical value (and not an inert term nor a variable).

Note that the substitution transitions substitute values only. The

environment ef may contain also bites that are variables or appli-

cations, but these bites are not substituted: this choice is justified

by the property of λiffire stated in Prop. 6.2.2. Besides, avoiding the

substitution of inert terms is a prerequisite for efficiency of the

machine, that would otherwise be subjected to an exponential over-

head due to size explosion, see for example Accattoli and Guerrieri

[9], Accattoli and Sacerdoti Coen [11].

The harmony between evaluation rules and the syntactic defini-

tion of normal forms is witnessed by the following property.

Proposition 6.3 (Harmony for the Open Crumble GLAM).

A crumble c is oCr-normal if and only if it is a f -crumble.

Example 6.4. Recall that δ = (λx .xx , ϵ). In Example 5.2 we noted

that the (open) crumble δδ (xx) was stuck in the Crumble GLAM.

Now instead it correctly reduces, never reaching a normal form:

δδ (xx) = (zw, [z�δ δ][w�xx])

→βv (zw, [z�yy][y�δ][w�xx])

→subl (zw, [z�δ y][y�δ][w�xx]) → · · ·

Implementation Theorem. The proof of the implementation theo-

rem for the Open Crumble GLAM follows the same structure as for

the Crumble GLAM in Subsect. 5.2, relying on similar but subtler

invariants that can be found in the appendix of [6].

Theorem 6.5 (Implementation). Let c be a crumble that is reach-
able by the Open Crumble GLAM.

(1) Initialization: t ↓ = t

(2) Principal projection: if c →a d then c↓ →a d↓ for a ∈

{βf , ift, iff, ife,@e}.
(3) Overhead transparency: if c →a d then c↓ = d↓ for any rule

a ∈ {subvar , subl , subif}.
(4) Determinism: the transition →oCr is deterministic.
(5) Halt: if c is→oCr-normal then c↓ is →cβf -normal.
(6) Overhead termination: →a terminates, for any rule a ∈

{subvar , subl , subif}.
Therefore, the Open Crumble GLAM, the right-to-left conditional fire-
ball evaluation→cβf and the read-back (·)↓ form an implementation
system.

Complexity. The complexity analysis is identical to the one

in Subsect. 5.3. Indeed, once the search for the next redex and

(un)plugging are neglected, the two machines only differ by the

additional O(1) side condition for the substitution transitions.

Theorem 6.6 (The Open Crumble GLAM is bilinear up to

search and (un)plugging). For any term t and any Open Crumble
GLAM execution d : t →∗

oCr c , the cost of implementing ρ on a RAM
is O((|ρ |p + 1) · |t |) plus the cost of plugging and unplugging.

OCaml implementation. Following the same pattern of the closed

case, in Section 7 we introduce a machine making explicit the search

for redexes and removing the need of (un)plugging, so as to show

that their cost is negligible. The OCaml code implementing this

further machine is in the appendix of [6], along with a detailed

discussion of the adopted data structures. The code for the open and

closed machines is identical but for five lines: three implement the

additional check for practical values in the substitution transitions,

the others consider also inert terms in the search transition.

7 THE (OPEN) POINTED CRUMBLE GLAM
In the abstract machines considered so far the search for the next re-
dex is implicit in definition of the evaluation rules, as it corresponds

to applying rules to crumbles with already evaluated environments

and to factoring out the crumble context.

Here we sketch how to make the search explicit by introducing

a variant of the Crumble GLAM called Pointed Crumble GLAM.

The new search transitions have constant cost and the machine is

bilinear—the detailed study is in the appendix of [6].

Pointed crumbles and pointed environments. The key idea behind

the Pointed Crumble GLAM is to avoid (un)plugging in the rules

by letting them act on pointed crumbles, i.e. on crumbles where

a pointer marks explicitly the dividing point between the evalu-

ated coda and the crumbled term of the currently active crum-

ble. A pointed crumble (b, e[x�b ′] ¦ ev) represents the crumble

C ⟨(b ′, ev)⟩, whereC = (b, e[x�⟨·⟩]) is the crumble context, (b ′, ev)
is the active crumble, and ev is the evaluated coda. If (b ′, ev) is
a Crumble GLAM a-redex (for rule a ∈ {βv , subvar , subl }), the
Pointed Crumble GLAM shall reduce according to the correspond-

ing a-transition that also takes care of setting (in O(1)) the pointer
to the rightmost unevaluated crumble. Otherwise, by harmony

(Prop. 5.3), b ′ must be a crumbled value v and therefore the pointer

is moved (in O(1)) one step to the left, looking for the next redex,

via the search transition (b, e[x�v]¦ev) →sea (b, e ¦ [x�v]ev).
Unfortunately, there is an annoying technical issue. Not all

pointed configurations are of the form (b, [x�b ′] ¦ ev): the con-

figurations (b,¦ ev) must be also taken into account and reduced

if b is not a crumbled value. However, there is no simple way to

describe transitions that act uniformly on configurations (b,¦ev)
and (b, e[x�b ′]¦ev) without duplicating the rules or without re-

introducing a notion of contextual closure. To solve the issue, we

abandon pointed crumbles and adopt pointed environments instead.

A pointed environment ([x�b]e ¦ev) is just a representation of

a pointed crumble (b, e ¦ev). The leftmost variable x in a pointed

environment can be understood as the name given to the machine

output. It plays a role similar to the outermost λ-abstraction intro-

duced by CPS translations, that binds the continuation that is fed

with the output of the evaluation. In particular, a normal pointed

environment (¦ [x�v]ev) represents the normal crumble (v, ev).

Formal definition of pointed environments and transitions. Pointed
environments are defined as e¦B e ¦e ′ for any non-pointed envi-

ronments e and e ′ where at least one among e or e ′ is non-empty.

The translation ι(·) embeds crumbles into pointed environments:

ι(b, e) B [x�b]e¦ϵ , where x is any variable fresh in b and e .
The transition rules of the Pointed Crumble GLAM are:

e[x�(λy.c)v]¦ev →βv e[x�b]e ′[z�v]¦ev (i)

e[y�x]¦ev →subvar e[y�ev (x)]¦ev (ii)

e[y�xv]¦ev →subl e[y�ev (x)v]¦ev (ii)

e[x�b]¦ev →sea e ¦ [x�b]ev (iii)

where (we omitted the rules for conditionals, for the sake of brevity)

Crumbling Abstract Machines PPDP ’19, October 7–9, 2019, Porto, Portugal

i. λz.(b, e ′) B (λy.c)α with (e[x�b]e ′[z�v]¦ev) well-named;

ii. if x ∈ dom(ev);
iii. if none of the other rules is applicable, i.e. when b is an abstrac-

tion or when b is x or xv but x is not defined in ev .

In the appendix of [6], we prove that the Pointed Crumble GLAM

simulates the Crumble GLAM following exactly the same schema

already used in the paper, namely they form an implementation

system. We also provide the complexity analysis, and smoothly lift

everything to the open case, by studying the Open Pointed Crumble
GLAM (which simulates the Open Crumble GLAM and whose tran-

sition function is noted→poCr). We obtain the following result, that

sums up the study in this paper (Point 2 is a corollary of Point 1).

Theorem 7.1 (TheOpen (Pointed) Crumble GLAM is bilinear).

Let t be a term.

(1) for any Open Pointed Crumble GLAM execution ρ : ι(t) →∗
poCr

e¦, the cost of implementing ρ on a RAM is O((|ρ |p + 1) · |t |).
(2) for any Open Crumble GLAM execution ρ : t →∗

oCr c , the cost
of implementing ρ on a RAM is O((|ρ |p + 1) · |t |).

8 EXTENSIONS
Left-to-right CbV. The (right-to-left) Crumble GLAM can also

implement a left-to-right strategy for the Pif calculus. The only

change concerns the crumbling transformation, that on applications

has to put the environment coming from the (transformation of the)

left subterm on the right of the one coming from the right subterm.

Call-by-need. The crumbling technique applies also to call-by-

need machines. There are however a few differences. First, the

machine does no longer explore sequentially the environment from

right-to-left, it rather starts on the left and then jumps back and

forth, by need. Then the definition of evaluation contexts is trickier,

especially in the open case.

Strong CbV. Simply designing an abstract machine for strong

reduction is relatively easy. However the easy machines are not

bilinear, and not even polynomial.

The needed optimizations to make them reasonable (i.e. polyno-

mial or bilinear) are clear, they are the same at work in the open

case (or in the call-by-name case):

(1) substitute only abstraction and not inert terms, and

(2) do not substitute abstractions on variable occurrences that

are not applied.

These principles however have different consequences in different

settings. In particular, (2) implies that some abstraction are kept

shared forever, and a strong CbV approach has to evaluate them

(while the open setting does not) and only once, thus it has to

evaluate them while they are shared, adding a call-by-need flavor.

There are two difficulties. First, the specification of the search

for redexes, that becomes involved and requires many machine

transitions—the crumbling technique is meant to help here. Second,

the proof of correctness of the machine.

All proofs of correctness in the literature (including those in

this paper) are simulations up to sharing based on a bijection of

β-redexes (or principal steps) between the abstract machine and

the λ-calculus strategy (one half of the bijection is the principal

projection property of implementation systems in Section 5.2, the

other half is implied by the other properties).

The evaluation under shared abstraction required by CbV strong

evaluation breaks the usual bijection of β-redexes (as one β-
transition of themachine is mapped tomany β-steps on the calculus,
and not necessarily those of a standard strategy), thus forbidding

to employ the standard technique for proving correctness.

The new proof technique for correctness for reasonable strong

CbV and the intricacies of the search for redexes in the strong case,

do deserve to be studied carefully, and are thus left to future work.

9 COMMENTS ON RELATEDWORKS
Here we discuss Kennedy’s potential slowdown and provide a coun-

terexample to the scalability of the CPS translation to open terms.

Kennedy. Kennedy [24] compares three different calculi: a

monadic calculus, which has ES, a calculus of administrative nor-

mal forms (ANFs) and the image of a CPS transformation. In the

monadic calculus βv -redexes can be hidden by ES which need to

be commuted to reveal the βv -redex. Kennedy shows an example

(see Fig. 3) where the number of commutations is not bounded

linearly by the number of βv -steps and blames the inefficiency of

his compiler on that. In his example, the number of commutations

is quadratic in the number of βv -steps, since the ith βv -step is

immediately followed by i commutation steps.

ANFs are just canonical shapes of monadic terms where the top-

most term and the body of each abstraction is a crumble, i.e. a term
together with a list of ES that map variables to terms (instead of

crumbles). Kennedy rightly observes that ANFs are not preserved

by standard βv -reduction, and thus, after each βv -step, some com-

mutative steps are required to reach the ANF shape. Kennedy too

hastily concludes that the quadratic blowup also affects the ANF

calculus, since its quadratic example stands in the ANF fragment.

However, Kennedy misses the fact that the ES in ANFs form a

list and that the commutations steps altogether just implement the

append of two lists. Since append can be implemented in constant

time, the complexity of evaluation in the ANF calculus is just linear

(and not quadratic) in the number of βv -steps. This is the same

complexity we achieved for the Crumble and Open Crumble GLAM.

Danvy and Filinski. In Danvy and Filinski [17] the CPS trans-

formation is shown to scale up to open terms (their Theorem 2).

On open terms, however, they consider Plotkin’s CbV operational

semantics λPlot, which is not adequate (it is adequate only for closed
terms, see Accattoli and Guerrieri [8, 10] and Guerrieri [21]). When

one considers one of the equivalent adequate CbV semantics in

Accattoli and Guerrieri [8, 10] for the open case, for instance the

fireball calculus λfire, then the properties of the CPS no longer hold,

in particular it does not commute with evaluation, as the following

example shows. Take the following open term t B (λx .λy.y)(zz)v ,
where v is a value, say a distinguished variable. In λPlot the term t
is βv -normal, but in λfire we have:

t B (λx .λy.y)(zz)v →βf (λy.y)v →βf v

Now, consider the CPS translation cps(t) of t , according to the

definition in Danvy and Filinski [17]. We use λ for standard (“dy-

namic”, in Danvy’s terminology) abstraction, and Λ and @ for

“static” abstraction and “static” prefix application, respectively. If a

PPDP ’19, October 7–9, 2019, Porto, Portugal Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen

t B (z1x0)[z1�λx1.by1[y1�z2x1]][z2�λx2.by2[y2�z3x2]] . . . [zn�λxn .byn [yn�bxn]]

(→βv →
let
) (→βv→

2

let
) · · · (→βv→

i
let
)

(z1x0)[z1�λx1.by1[y1�z2x1]][z2�λx2.by2[y2�z3x2]] . . .

. . . [zn−i−1�λxn−i−1.byn−i−1[yn−i−1�zn−ixn−i−1]][zn−i�λxn−i .byn−i [yn−i�byn−i+1][yn−i+1�byn−i+2] . . . [yn�bxn−i]]

→βv
(z1x0)[z1�λx1.by1[y1�z2x1]][z2�λx2.by2[y2�z3x2]] . . .

. . . [zn−i−1�λxn−i−1.byn−i−1[yn−i−1�byn−i [yn−i�byn−i+1][yn−i+1�byn−i+2] . . . [yn�bxn−i−1]]]

→i+1

let

(z1x0)[z1�λx1.by1[y1�z2x1]][z2�λx2.by2[y2�z3x2]] . . .

. . . [zn−i−1�λxn−i−1.byn−i−1[yn−i−1�byn−i][yn−i�byn−i+1] . . . [yn�bxn−i−1]]

Figure 3: Kennedy’s example of evaluation in the monadic calculus where the number of commutation steps is quadratic in
the number of βv -steps (→i stands for the composition of i →-steps). The ith βv -step (which can reduce under abstractions)
is immediately followed by i commutation steps →let that just append two lists of substitutions moving one substitution at
a time. Thus, to reach a normal form one needs n βv -steps and n(n + 1)/2 let-steps. In the Crumble and Open Crumble GLAM
instead, the commutation steps are integrated in the βv -rule simply by appending the two lists in constant time.

generalized version of Theorem 2 in Danvy and Filinski [17] held in

the open case, one would expect that @(cps(t))I (where I B λz.z)
evaluates to v , as v is a value. But, even using an unrestricted β-
reduction that goes under abstraction as evaluation, we obtain (we

reduce all static redexes first, followed by all dynamic redexes):

@(cps(t))I

= (Λk .@(Λx .@(Λy.@y(λw .λa.@(Λb .@b(λc .λd .@(Λe .@ec)(Λe .de)))

(Λb .ab)))(Λy.@(Λj .@(Λa.@az)(Λa.@(Λb .@bz)(Λb .(ab)(λc .@jc))))

(Λw .(yw)(λa.@xa))))(Λx .@(Λy.@yv)(Λy.(xy)(λw .@Kw))))I

→∗
β (zz)(λx .((λy.λw .w(λa.λb .ba))x)(λy.yv(λw .Iw)))

→∗
β (zz)(λx .v)

where (zz)(λx .v) is not even β-equivalent tov . The CPS translation—
like Plotkin’s calculus—gets stuck trying to evaluate zz, whereas
the term reduces to v in the fireball calculus.

Summing up, we are not claiming that Theorem 2 in Danvy and

Filinski [17] is false, but just that it does not mean that their CPS

transformation scales up to open terms: to prove scalability, one

should use an adequate CbV evaluation for open terms (such as the

one of the fireball calculus), instead of Plotkin’s one. Our counter-

example shows that Danvy’s and Filinski’s CPS does not scale up to

open terms with an adequate CbV operational semantics for them.

This problem affects also other CPS translations, such as the

ones defined by Plotkin [31] or by Lassen [26]. Likely, this is the

reason why Lassen [26] states his Theorem 4.6 (the analogous of

Theorem 2 in Danvy and Filinski [17]) only for closed terms.

10 CONCLUSIONS
This paper studies abstract machines working on crumbled forms

with respect to design, efficiency, scalability, and implementations,

putting emphasis on the role played by environments and provid-

ing a detailed technical development. In particular, we study the

crumble setting on top of global environments—in future work we

would like to explore the more technical case of local environments.

At the level of design, switching to crumbled forms removes the

need for machine data structures such as the applicative stack or

the dump, as they are encoded in crumbled environments.

At the level of efficiency, the evaluation of crumbled forms does

not require any overhead: crumble abstract machines are linear in

the number of steps of the calculus and in the size of the initial term,

exactly as ordinary abstract machines with global environments.

At the level of scalability, everything—including the complexity—

smoothly scales up from the closed case, relevant for programming

languages, to the more delicate case of open terms, needed to imple-

ment proof assistants. As shown in Section 9, CPS translations do

not smoothly scale up to the open case (contrary to what claimed

by Danvy and Filinski [17]), so that our work shows an advantage

of the crumbling transformation in this setting.

At the level of implementations, we stress the different opera-

tions on crumbled environments (sequential access and concate-

nation) and provide a concrete implementation, which does not

suffer from the potential slowdown of crumbled forms pointed out

by Kennedy [24] (see Section 9).

In future work we plan to apply our results to the design of

abstract machines for strong call-by-value and call-by-need eval-

uation. Preliminary results suggest that the simplification to the

code noticed in the open case is preserved and even amplified in

the harder case of strong evaluation.

Acknowledgments. This work has been partially funded by the

ANR JCJC grant COCA HOLA (ANR-16-CE40-004-01) and by the

EPSRC grant EP/R029121/1 “Typed Lambda-Calculi with Sharing

and Unsharing”.

REFERENCES
[1] Beniamino Accattoli. 2012. An Abstract Factorization Theorem for Explicit Substi-

tutions. In 23rd International Conference on Rewriting Techniques and Applications,
RTA 2012 (LIPIcs), Vol. 15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

6–21. https://doi.org/10.4230/LIPIcs.RTA.2012.6

[2] Beniamino Accattoli. 2016. The Useful MAM, a Reasonable Implementation

of the Strong λ-Calculus. In Logic, Language, Information, and Computation -

https://doi.org/10.4230/LIPIcs.RTA.2012.6

Crumbling Abstract Machines PPDP ’19, October 7–9, 2019, Porto, Portugal

23rd International Workshop, WoLLIC 2016 (Lecture Notes in Computer Science),
Vol. 9803. Springer, 1–21. https://doi.org/10.1007/978-3-662-52921-8_1

[3] Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. 2014. Distilling

abstract machines. In 19th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2014. ACM, 363–376. https://doi.org/10.1145/2628136.2628154

[4] Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. 2015. A Strong

Distillery. In Programming Languages and Systems - 13th Asian Symposium,
APLAS 2015 (Lecture Notes in Computer Science), Vol. 9458. Springer, 231–250.
https://doi.org/10.1007/978-3-319-26529-2_13

[5] Beniamino Accattoli and Bruno Barras. 2017. Environments and the Complexity

of Abstract Machines. In 19th International Symposium on Principles and Practice
of Declarative Programming, PPDP 2017. ACM, 4–16. https://doi.org/10.1145/

3131851.3131855

[6] Beniamino Accattoli, Andrea Condoluci, Giulio Guerrieri, and Claudio Sacer-

doti Coen. 2019. Crumbling Abstract Machines (Extended Version). CoRR
abs/1907.06057 (2019).

[7] Beniamino Accattoli and Ugo Dal Lago. 2016. (Leftmost-Outermost) Beta Re-

duction is Invariant, Indeed. Logical Methods in Computer Science 12, 1 (2016).
https://doi.org/10.2168/LMCS-12(1:4)2016

[8] Beniamino Accattoli and Giulio Guerrieri. 2016. Open Call-by-Value. In Program-
ming Languages and Systems - 14th Asian Symposium, APLAS 2016 (Lecture Notes
in Computer Science), Vol. 10017. Springer, 206–226. https://doi.org/10.1007/978-

3-319-47958-3_12

[9] Beniamino Accattoli and Giulio Guerrieri. 2017. Implementing Open Call-by-

Value. In Fundamentals of Software Engineering - 7th International Conference,
FSEN 2017 (Lecture Notes in Computer Science), Vol. 10522. Springer, 1–19. https:

//doi.org/10.1007/978-3-319-68972-2_1

[10] Beniamino Accattoli and Giulio Guerrieri. 2018. Types of Fireballs. In Program-
ming Languages and Systems - 16th Asian Symposium, APLAS 2018 (Lecture Notes
in Computer Science), Vol. 11275. Springer, 45–66. https://doi.org/10.1007/978-3-

030-02768-1_3

[11] Beniamino Accattoli and Claudio Sacerdoti Coen. 2015. On the Relative Use-

fulness of Fireballs. In 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015. IEEE Computer Society, 141–155. https://doi.org/10.1109/

LICS.2015.23

[12] Beniamino Accattoli and Claudio Sacerdoti Coen. 2017. On the value of variables.

Information and Computation 255 (2017), 224–242. https://doi.org/10.1016/j.ic.

2017.01.003

[13] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip

Wadler. 1995. The Call-by-Need Lambda Calculus. In 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL’95. ACM Press, 233–

246. https://doi.org/10.1145/199448.199507

[14] Pierre Crégut. 1990. An Abstract Machine for Lambda-Terms Normalization. In

LISP and Functional Programming. 333–340. https://doi.org/10.1145/91556.91681

[15] Olivier Danvy. 1994. Back to Direct Style. Science of Computer Programming 22,

3 (1994), 183–195. https://doi.org/10.1016/0167-6423(94)00003-4

[16] Olivier Danvy. 2003. A New One-Pass Transformation into Monadic Normal

Form. In Compiler Construction, 12th International Conference, CC 2003 (Lecture
Notes in Computer Science), Vol. 2622. Springer, 77–89. https://doi.org/10.1007/3-

540-36579-6_6

[17] Olivier Danvy and Andrzej Filinski. 1992. Representing Control: A Study of the

CPS Transformation. Mathematical Structures in Computer Science 2, 4 (1992),
361–391. https://doi.org/10.1017/S0960129500001535

[18] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The

essence of compiling with continuations (with retrospective). In 20 Years of the
ACM SIGPLAN Conference on Programming Language Design and Implementation
1979-1999, A Selection, PLDI 1993. ACM, 502–514. https://doi.org/10.1145/989393.

989443

[19] Álvaro García-Pérez, Pablo Nogueira, and Juan JoséMoreno-Navarro. 2013. Deriv-

ing the full-reducing Krivine machine from the small-step operational semantics

of normal order. In 15th International Symposium on Principles and Practice of
Declarative Programming, PPDP’13. ACM, 85–96. https://doi.org/10.1145/2505879.

2505887

[20] Benjamin Grégoire and Xavier Leroy. 2002. A compiled implementation of strong

reduction. In Proceedings of the Seventh ACM SIGPLAN International Conference
on Functional Programming, ICFP ’02. ACM, 235–246. https://doi.org/10.1145/

581478.581501

[21] Giulio Guerrieri. 2019. Towards a Semantic Measure of the Execution Time in

Call-by-Value lambda-Calculus. In Proceedings Twelfth Workshop on Developments
in Computational Models and Ninth Workshop on Intersection Types and Related
Systems, DCM/ITRS 2018. (EPTCS), Vol. 293. 57–72. https://doi.org/10.4204/EPTCS.
293.5

[22] Giulio Guerrieri, Luca Paolini, and Simona Ronchi Della Rocca. 2017. Standardiza-

tion and Conservativity of a Refined Call-by-Value lambda-Calculus. Logical Meth-
ods in Computer Science 13, 4 (2017). https://doi.org/10.23638/LMCS-13(4:29)2017

[23] John Hatcliff and Olivier Danvy. 1994. A Generic Account of Continuation-

Passing Styles. In 21st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 1994. ACM Press, 458–471. https://doi.org/10.1145/

174675.178053

[24] Andrew Kennedy. 2007. Compiling with continuations, continued. In Proceedings
of the 12th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2007. ACM, 177–190. https://doi.org/10.1145/1291151.1291179

[25] Arne Kutzner and Manfred Schmidt-Schauß. 1998. A Non-Deterministic Call-

by-Need Lambda Calculus. In Third ACM SIGPLAN International Conference on
Functional Programming, ICFP 1998. ACM, 324–335. https://doi.org/10.1145/

289423.289462

[26] Søren B. Lassen. 2005. Eager Normal Form Bisimulation. In 20th IEEE Symposium
on Logic in Computer Scienc, LICS 2005. IEEE Computer Society, 345–354. https:

//doi.org/10.1109/LICS.2005.15

[27] John Launchbury. 1993. A Natural Semantics for Lazy Evaluation. In Twentieth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1993. ACM Press, 144–154. https://doi.org/10.1145/158511.158618

[28] JohnMaraist, Martin Odersky, and PhilipWadler. 1998. The Call-by-Need Lambda

Calculus. Journal of Functional Programming 8, 3 (1998), 275–317.

[29] Eugenio Moggi. 1991. Notions of Computation and Monads. Information and
Computation 93, 1 (1991), 55–92. https://doi.org/10.1016/0890-5401(91)90052-4

[30] Luca Paolini and Simona Ronchi Della Rocca. 1999. Call-by-value Solvability.

ITA 33, 6 (1999), 507–534. https://doi.org/10.1051/ita:1999130

[31] Gordon D. Plotkin. 1975. Call-by-Name, Call-by-Value and the lambda-Calculus.

Theoretical Computer Science 1, 2 (1975), 125–159. https://doi.org/10.1016/0304-

3975(75)90017-1

[32] Simona Ronchi Della Rocca and Luca Paolini. 2004. The Parametric λ-Calculus – A
Metamodel for Computation. Springer. https://doi.org/10.1007/978-3-662-10394-4

[33] Amr Sabry and Matthias Felleisen. 1993. Reasoning about Programs in

Continuation-Passing Style. Lisp and Symbolic Computation 6, 3-4 (1993), 289–

360.

[34] Peter Sestoft. 1997. Deriving a Lazy Abstract Machine. Journal of Functional
Programming 7, 3 (1997), 231–264.

[35] Christopher P.Wadsworth. 1971. Semantics and pragmatics of the lambda-calculus.
PhD Thesis. Oxford. Chapter 4.

https://doi.org/10.1007/978-3-662-52921-8_1
https://doi.org/10.1145/2628136.2628154
https://doi.org/10.1007/978-3-319-26529-2_13
https://doi.org/10.1145/3131851.3131855
https://doi.org/10.1145/3131851.3131855
https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/978-3-319-68972-2_1
https://doi.org/10.1007/978-3-319-68972-2_1
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1109/LICS.2015.23
https://doi.org/10.1109/LICS.2015.23
https://doi.org/10.1016/j.ic.2017.01.003
https://doi.org/10.1016/j.ic.2017.01.003
https://doi.org/10.1145/199448.199507
https://doi.org/10.1145/91556.91681
https://doi.org/10.1016/0167-6423(94)00003-4
https://doi.org/10.1007/3-540-36579-6_6
https://doi.org/10.1007/3-540-36579-6_6
https://doi.org/10.1017/S0960129500001535
https://doi.org/10.1145/989393.989443
https://doi.org/10.1145/989393.989443
https://doi.org/10.1145/2505879.2505887
https://doi.org/10.1145/2505879.2505887
https://doi.org/10.1145/581478.581501
https://doi.org/10.1145/581478.581501
https://doi.org/10.4204/EPTCS.293.5
https://doi.org/10.4204/EPTCS.293.5
https://doi.org/10.23638/LMCS-13(4:29)2017
https://doi.org/10.1145/174675.178053
https://doi.org/10.1145/174675.178053
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1145/289423.289462
https://doi.org/10.1145/289423.289462
https://doi.org/10.1109/LICS.2005.15
https://doi.org/10.1109/LICS.2005.15
https://doi.org/10.1145/158511.158618
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1007/978-3-662-10394-4

	Abstract
	1 Introduction
	1.1 Environments
	1.2 Content of the Paper
	1.3 The Relationship with ANF
	1.4 The Complexity of Abstract Machines
	1.5 Related Work

	2 The Pif Calculus
	3 Crumbled Evaluation, Informally
	4 The Crumbling Transformation
	5 The Closed Case
	5.1 The Crumble GLAM
	5.2 The Implementation Theorem
	5.3 Complexity for the closed case

	6 The Open Case
	6.1 The Fireball Calculus
	6.2 The Open Crumble GLAM

	7 The (Open) Pointed Crumble GLAM
	8 Extensions
	9 Comments on Related Works
	10 Conclusions
	References

