Beniamino Accattoli
email: beniamino.accattoli@inria.fr

Giulio Guerrieri
email: g.guerrieri@bath.ac.uk

Maico Leberle
email: maico-carlos.leberle@inria.fr

Types by Need

A cornerstone of the theory of λ-calculus is that intersection types characterise termination properties. They are a flexible tool that can be adapted to various notions of termination, and that also induces adequate denotational models.

Since the seminal work of de Carvalho in 2007, it is known that multi types (i.e. non-idempotent intersection types) refine intersection types with quantitative information and a strong connection to linear logic. Typically, type derivations provide bounds for evaluation lengths, and minimal type derivations provide exact bounds.

De Carvalho studied call-by-name evaluation, and Kesner used his system to show the termination equivalence of call-by-need and call-byname. De Carvalho's system, however, cannot provide exact bounds on call-by-need evaluation lengths.

In this paper we develop a new multi type system for call-by-need. Our system produces exact bounds and induces a denotational model of callby-need, providing the first tight quantitative semantics of call-by-need.

Introduction

Duplications and erasures have always been considered as key phenomena in the λ-calculus-the λI-calculus, where erasures are forbidden, is an example of this. The advent of linear logic [START_REF] Girard | Linear logic[END_REF] gave them a new, prominent logical status. Forbidding erasure and duplication enables single-use resources, i.e. linearity, but limits expressivity, as every computation terminates in linear time. Their controlled reintroduction via the non-linear modality ! recovers the full expressive power of cut-elimination and allows a fine analysis of resource consumption. Duplication and erasure are therefore the key ingredients for logical expressivity, and-via Curry-Howard-for the expressivity of the λ-calculus. They are also essential to understand evaluation strategies.

In a λ-term there can be many β-redexes, that is, places where βreduction can be applied. In this sense, the λ-calculus is non-deterministic. Nondeterminism does not affect the result of evaluation, if any, but it affects whether evaluation terminates, and in how many steps. There are two natural deterministic evaluation strategies, call-by-name (shortened to CbN) and call-by-value (CbV), which have dual behaviour with respect to duplication and erasure.

Call-by-Name = Silly Duplication + Wise Erasure. CbN never evaluates arguments of β-redexes before the redexes themselves. As a consequence, it never evaluates in subterms that will be erased. This is wise, and makes CbN a normalising strategy, that is, a strategy that reaches a result whenever one exists 1 . A second consequence is that if the argument of the redex is duplicated then it may be evaluated more than once. This is silly, as it repeats work already done.

Call-by-Value = Wise Duplication + Silly Erasure. CbV, on the other hand, always evaluates arguments of β-redexes before the redexes themselves. Consequently, arguments are not re-evaluated-this is wise with respect to duplication-but they are also evaluated when they are going to be erased. For instance, on t := (λx.λy.y)Ω, where Ω is the famous looping λ-term, CbV evaluation diverges (it keeps evaluating Ω) while CbN converges in one β-step (simply erasing Ω). This CbV treatment of erasure is clearly as silly as the duplicated work of CbN.

Call-by-Need = Wise Duplication + Wise Erasure. It is natural to try to combine the advantages of both CbN and CbV. The strategy that is wise with respect to both duplications and erasures is usually called call-by-need (CbNeed), it was introduced by Wadsworth [START_REF] Wadsworth | Semantics and pragmatics of the lambda-calculus[END_REF], and dates back to the '70s. Despite being at the core of Haskell, one of the most-used functional programming languages, andin its strong variant-being at work in the kernel of Coq as designed by Barras [16], the theory of CbNeed is much less developed than that of CbN or CbV.

One of the reasons for this is that it cannot be defined inside the λ-calculus without some hacking. Manageable presentations of CbNeed indeed require firstclass sharing and micro-step operational semantics where variable occurrences are replaced one at a time (when needed), and not all at once as in the λ-calculus. Another reason is the less natural logical interpretation.

Linear Logic, Names, Values, and Needs. CbN and CbV have neat interpretations in linear logic. They correspond to two different representations of intuitionistic logic in linear logic, based on two different representations of implication2 .

The logical interpretation of CbNeed-studied by Maraist et al. in [START_REF] Maraist | Call-by-name, call-by-value, call-by-need and the linear lambda calculus[END_REF]-is less neat than those of CbN and CbV. Within linear logic, CbNeed is usually understood as corresponding to the CbV representation where erasures are generalised to all terms, not only those under the scope of a ! modality. So, it is seen as a sort of affine CbV. Such an interpretation however is unusual, because it does not match exactly with cut-elimination in linear logic, as for CbN and CbV.

Call-by-Need, Abstractly. The main theorem of the theory of CbNeed is that it is termination equivalent to CbN, that is, on a fixed term, CbNeed evaluation terminates if and only if CbN evaluation terminates, and, moreover, they essentially produce the same result (up to some technical details that are irrelevant here). This is due to the fact that both strategies avoid silly divergent sequences such as that of (λx.λy.y)Ω. Termination equivalence is an abstract theorem stating that CbNeed erases as wisely as CbN. Curiously, in the literature there are no abstract theorems reflecting the dual fact that CbNeed duplicates as wisely as CbV-we provide one, as a side contribution of this paper.

Call-by-Need and Denotational Semantics. CbNeed is then usually considered as a CbV optimisation of CbN. In particular, every denotational model of CbN is also a model of CbNeed, and adequacy-that is the fact that the denotation of t is not degenerated if and only if t terminates-transfers from CbN to CbNeed.

Denotational semantics is invariant by evaluation, and so is insensitive to evaluation lengths by definition. It then seems that denotational semantics cannot distinguish between CbN and CbNeed. The aim of this paper is, somewhat counter-intuitively, to separate CbN and CbNeed semantically. We develop a type system whose type judgements induce a model-this is typical of intersection type systems-and whose type derivations provide exact bounds for CbNeed evaluation-this is usually obtained via non-idempotent intersection types. Unsurprisingly, the design of the type system requires a delicate mix of erasure and duplication and builds on the linear logic understanding of CbN and CbV.

Multi Types. Our typing framework is given by multi types, which is an alternative name for non-idempotent intersection types3 . Multi types characterise termination properties exactly as intersection types, having moreover the advantages that they are closely related to (the relational semantics of) linear logic, their type derivations provide quantitative information about evaluation lengths, and the proof techniques are simpler-no need for the reducibility method.

The seminal work of de Carvalho [START_REF] De Carvalho | Execution time of λ-terms via denotational semantics and intersection types[END_REF] (appeared in 2007 but unpublished until 2018, see also [22]) showed how to use multi types to obtain exact bounds on evaluation lengths in CbN. Ehrhard adapted multi types to CbV [START_REF] Ehrhard | Collapsing non-idempotent intersection types[END_REF], and very recently Accattoli and Guerrieri adapted de Carvalho's study of exact bounds to Ehrhard's system and CbV evaluation [START_REF] Accattoli | Types of fireballs[END_REF]. Kesner used de Carvalho's CbN multi types to obtain a simple proof that CbNeed is termination equivalent to CbN [START_REF] Kesner | Reasoning about call-by-need by means of types[END_REF] (first proved with other techniques by Maraist, Odersky, and Wadler [START_REF] Maraist | The call-by-need lambda calculus[END_REF] and Ariola and Felleisen [START_REF] Ariola | The call-by-need lambda calculus[END_REF] in the nineties), and then Kesner and coauthors continued exploring the theory of CbNeed via CbN multi types [START_REF] Balabonski | Foundations of strong call by need[END_REF][START_REF] Barenbaum | Pattern matching and fixed points: resource types and strong call-by-need: extended abstract[END_REF][START_REF] Kesner | Call-by-need, neededness and all that[END_REF].

Kesner's use of CbN multi types to study CbNeed is qualitative, as it deals with termination and not with exact bounds. For a quantitative study of CbNeed, de Carvalho's CbN system cannot really be informative: CbN multi types provide bounds for CbNeed which cannot be exact because they already provide exact bounds for CbN, which generally takes more steps than CbNeed.

Multi Types by Need. In this paper we provide the first multi type system characterising CbNeed termination and whose minimal type derivations provide exact bounds for CbNeed evaluation lengths. The design of the type system is delicate, as we explain in Sect. 6. One of the key points is that, in contrast to Ehrhard's system for CbV [START_REF] Ehrhard | Collapsing non-idempotent intersection types[END_REF], multi types for CbNeed cannot be directly extracted by the relational semantics of linear logic, given that CbNeed does not have a clean representation in it. A by-product of our work is a new denotational semantics of CbNeed, the first one to precisely reflect its quantitative properties.

Beyond the result itself, the paper tries to stress how the key ingredients of our type system are taken from those for CbN and CbV and combined together. To this aim, we first present multi types for CbN and CbV, and only then we proceed to build the CbNeed system and prove its properties.

Along the way, we also prove the missing fundamental property of CbNeed, that is, that it duplicates as efficiently as CbV. The result dualizes the termination equivalence of CbN and CbNeed, which shows that CbNeed erases as wisely as CbN. Careful : the CbV system is correct but of course not complete with respect to CbNeed, because CbNeed may normalise when CbV diverges. The proof of the result is straightforward, because of our presentations of CbV and CbNeed. We adopt a liberal, non-deterministic formulation of CbV, and assuming (without loss of generality, see [START_REF] Accattoli | An abstract factorization theorem for explicit substitutions[END_REF]) that garbage collection is always postponed. These two ingredients turn CbNeed into a fragment of CbV, obtaining the new fundamental result as a corollary of correctness of CbV multi types for CbV evaluation.

Technical Development. The paper is extremely uniform, technically speaking. The three evaluations are presented as strategies of Accattoli and Kesner's Linear Substitution Calculus (shortened to LSC) [START_REF] Accattoli | An abstract factorization theorem for explicit substitutions[END_REF]6], a calculus with a simple but expressive form of explicit sharing. The LSC is strongly related to linear logic [2], and provides a neat and manageable presentation of CbNeed, introduced by Accattoli, Barenbaum, and Mazza in [3], and further developed by various authors in [START_REF] Accattoli | Environments and the complexity of abstract machines[END_REF][START_REF] Accattoli | The negligible and yet subtle cost of pattern matching[END_REF][START_REF] Accattoli | On the value of variables[END_REF][START_REF] Balabonski | Foundations of strong call by need[END_REF][START_REF] Barenbaum | Pattern matching and fixed points: resource types and strong call-by-need: extended abstract[END_REF][START_REF] Kesner | Reasoning about call-by-need by means of types[END_REF][START_REF] Kesner | Call-by-need, neededness and all that[END_REF]. Our type systems count evaluation steps by annotating typing rules in the exact same way, and the proofs of correctness and completeness all follow the exact same structure. While the results for CbN are very minor variations with respect to those in the literature [START_REF] Accattoli | Tight typings and split bounds[END_REF][START_REF] De Carvalho | Execution time of λ-terms via denotational semantics and intersection types[END_REF], those for CbV are the first ones with respect to a presentation of CbV with sharing.

As it is standard for CbNeed, we restrict our study to closed terms and weak evaluation (that is, out of abstractions). The main consequence of this fact is that normal forms are particularly simple (sometimes called answers in the literature). Compared with other recent works dealing with exact bounds such as Accattoli, Graham-Lengrand, and Kesner [START_REF] Accattoli | Tight typings and split bounds[END_REF] and Accattoli and Guerrieri [START_REF] Accattoli | Types of fireballs[END_REF] the main difference is that the size of normal forms is not taken into account by type derivations. This is because of the simple notions of normal forms in the closed and weak case, and not because the type systems are not accurate.

Related Work About CbNeed. Call-by-need was introduced by Wadsworth [START_REF] Wadsworth | Semantics and pragmatics of the lambda-calculus[END_REF] in the '70s. In the '90s, it was first reformulated as operational semantics by Launchbury [START_REF] Launchbury | A natural semantics for lazy evaluation[END_REF], Maraist, Odersky, and Wadler [START_REF] Maraist | The call-by-need lambda calculus[END_REF], and Ariola and Felleisen [START_REF] Ariola | The call-by-need lambda calculus[END_REF][START_REF] Ariola | The call-byneed lambda calculus[END_REF], and then implemented by Sestoft [START_REF] Sestoft | Deriving a lazy abstract machine[END_REF] and further studied by Kutzner and Schmidt-Schauß [START_REF] Kutzner | A non-deterministic call-by-need lambda calculus[END_REF]. More recent papers are Garcia, Lumsdaine, and Sabry [START_REF] Garcia | Lazy evaluation and delimited control[END_REF], Ariola, Herbelin, and Saurin [START_REF] Ariola | Classical call-by-need and duality[END_REF], Chang and Felleisen [START_REF] Chang | The call-by-need lambda calculus, revisited[END_REF], Danvy and Zerny [START_REF] Danvy | A synthetic operational account of call-by-need evaluation[END_REF], Downen et al. [33], Pédrot and Saurin [START_REF] Pédrot | Classical by-need[END_REF], and Balabonski et al. [START_REF] Balabonski | Foundations of strong call by need[END_REF].

Related Work About Multi Types. Intersection types are a standard tool to study λ-calculi-see Coppo and Dezani [START_REF] Coppo | A new type assignment for λ-terms[END_REF][START_REF] Coppo | An extension of the basic functionality theory for the λ-calculus[END_REF], Pottinger [START_REF] Pottinger | A type assignment for the strongly normalizable λ-terms[END_REF], and Krivine [START_REF] Krivine | Lambda-Calculus, Types and Models. Ellis Horwood Series in Computers and Their Applications[END_REF]. Nonidempotent intersection types, i.e. multi types, were first considered by Gardner [START_REF] Gardner | Discovering needed reductions using type theory[END_REF], and then by Kfoury [START_REF] Kfoury | A linearization of the lambda-calculus and consequences[END_REF], Neergaard and Mairson [START_REF] Neergaard | Types, potency, and idempotency: why nonlinearity and amnesia make a type system work[END_REF], and de Carvalho [START_REF] De Carvalho | Execution time of λ-terms via denotational semantics and intersection types[END_REF]-a survey is Bucciarelli, Kesner, and Ventura [START_REF] Bucciarelli | Non-idempotent intersection types for the lambda-calculus[END_REF].

Many recent works rely on multi types or relational semantics to study properties of programs and proofs. Beyond the cited ones, Diaz-Caro, Manzonetto, and Pagani [START_REF] Díaz-Caro | Call-by-value non-determinism in a linear logic type discipline[END_REF], Carraro and Guerrieri [START_REF] Carraro | A semantical and operational account of call-by-value solvability[END_REF], Ehrhard and Guerrieri [START_REF] Ehrhard | The bang calculus: an untyped lambda-calculus generalizing call-by-name and call-by-value[END_REF], and Guerrieri [39] deal with CbV, while Bernadet and Lengrand [START_REF] Bernadet | Non-idempotent intersection types and strong normalisation[END_REF], de Carvalho, Pagani, and Tortora de Falco [START_REF] De Carvalho | A semantic measure of the execution time in linear logic[END_REF] provide exact bounds. Further related work is by Bucciarelli, Ehrhard, and Manzonetto [START_REF] Bucciarelli | A relational semantics for parallelism and non-determinism in a functional setting[END_REF], de Carvalho and Tortora de Falco [START_REF] De Carvalho | A semantic account of strong normalization in linear logic[END_REF], Tsukada and Ong [START_REF] Tsukada | Plays as resource terms via non-idempotent intersection types[END_REF], Kesner and Vial [START_REF] Kesner | Types as resources for classical natural deduction[END_REF], Piccolo, Paolini and Ronchi Della Rocca [START_REF] Paolini | Essential and relational models[END_REF], Ong [START_REF] Ong | Quantitative semantics of the lambda calculus: some generalisations of the relational model[END_REF], Mazza, Pellissier, and Vial [START_REF] Mazza | Polyadic approximations, fibrations and intersection types[END_REF], Bucciarelli, Kesner and Ronchi Della Rocca [START_REF] Bucciarelli | Inhabitation for nonidempotent intersection types[END_REF]-this list is not exhaustive.

Proofs. Proofs are omitted. They can be found in the technical report [9].

Closed λ-Calculi

In this section we define the CbN, CbV, and CbNeed evaluation strategies. We present them in the context of the Accattoli and Kesner's linear substitution calculus (LSC) [START_REF] Accattoli | An abstract factorization theorem for explicit substitutions[END_REF]6]. We mainly follow the uniform presentation of these strategies given by Accattoli, Barenbaum,and Mazza [3]. The only difference is that we adopt a non-deterministic presentation of CbV, subsuming both the left-to-right and the right-to-left strategies in [3], that makes our results slightly more general. Such a non-determinism is harmless: not only CbV evaluation is confluent, it even has the diamond property, so that all evaluations have the same length. Moreover, the non-deterministic presentation, together with the postponement of erasing steps discussed below, allows us to see CbNeed as a fragment of CbV, which shall provide a free proof that CbNeed duplicates as wisely as CbV.

Terms and Contexts. The set of terms Λ lsc of the LSC is given by the grammar below, where t[x←s] is an explicit substitution (shortened to ES), that is a more compact notation for let x = s in t (intuitively, "t where x will be substituted by s" Contexts are terms with exactly one occurrence of the hole • , an additional constant. We shall use many different contexts. The most general ones are weak contexts W (i.e. not under abstractions). The (evaluation) contexts C, V and E-used to define CbN, CbV and CbNeed evaluation strategies, respectivelyare special cases of weak contexts (in fact, CbV contexts coincide with weak contexts, the consequences of that are discussed on p. 8). To define evaluation strategies, substitution contexts (i.e. lists of explicit substitutions) also play a role.

Weak contexts

W ::= • | W t | W [x←t] | tW | t[x←W] Substitution contexts S ::= • | S[x←t]
CbN contexts

C ::= • | Ct | C[x←t]
CbV contexts

V ::= W CbNeed contexts E ::= • | Et | E[x←t] | E x [x←E]
We write W t for the term obtained by replacing the hole • in context W by the term t. This plugging operation, as usual with contexts, can capture variables-for instance ((• t)[x←s]) x = (xt) [x←s]. We write W t when we want to stress that the context W does not capture the free variables of t.

Micro-step Semantics. The rewriting rules decompose the usual small-step semantics for λ-calculi, by substituting linearly one variable occurrence at the time, and only when such an occurrence is in evaluation position. We emphasise this fact saying that we adopt a micro-step semantics. We now give the definitions, examples of evaluation sequences follow right next.

Formally, a micro-step semantics is defined by first giving its root-steps and then taking the closure of root-steps under suitable contexts.

Multiplicative root-step S λx.t s → m S t[x←s]

Exponential CbN root-step

C x [x←t] → e cbn C t [x←t] Exponential CbV root-step V x [x←S v] → e cbv S V v [x←v] Exponential CbNeed root-step E x [x←S v] → e need S E v [x←v]
where, in the root-step → m (resp. → e cbv ; → e need), if S := [y 1 ←s 1] . . . [y n ←s n] for some n ∈ N, then fv(s) (resp. fv(V x); fv(E x)) and {y 1 , . . . , y n } are disjoint. This condition can always be fulfilled by α-equivalence.

The evaluation strategies -→ cbn for CbN, -→ cbv for CbV, and -→ need for CbNeed, are defined as the closure of root-steps under CbN, CbV and CbNeed evaluation contexts, respectively (so, all evaluation strategies do not reduce under abstractions, since all such contexts are weak):

CbN CbV CbNeed -→ m cbn := C → m -→ e cbn := C → e cbn -→ cbn := C → m ∪ → e cbn -→ m cbv := V → m -→ e cbv := V → e cbv -→ cbv := V → m ∪ → e cbv -→ m need := E → m -→ e need := E → e need -→ need := E → m ∪ → e need
where the notation -→ := W → means that, given a root-step →, the evaluation -→ is defined as follows: t -→s if and only if there are terms t and s and a context W such that t = W t and s = W s and t → s .

Note that evaluations -→ cbn , -→ cbv and -→ need can equivalently be defined as Erasing Steps. The reader may be surprised by our evaluation strategies, as none of them includes erasing steps, despite the absolute relevance of erasures pointed out in the introduction. There are no contradictions: in the LSC-in contrast to the λ-calculus-erasing steps can always be postponed (see [START_REF] Accattoli | An abstract factorization theorem for explicit substitutions[END_REF]), and so they are often simply omitted. This is actually close to programming language practice, as the garbage collector acts asynchronously with respect to the evaluation flow. For the sake of clarity let us spell out the erasing rules-they shall nonetheless be ignored in the rest of the paper. In CbN and CbNeed every term is erasable, so the root erasing step takes the following form

-→ m cbn ∪ - → e cbn , -→ m cbn ∪ - → e cbv and -→ m need ∪ - → e need ,
t[x←s] → gc t if x / ∈ fv(t)
and it is then closed by weak evaluation contexts.

In CbV only values are erasable; so, the root erasing step in CbV is:

t[x←S v] → gc S t if x / ∈ fv(t)
and it is then closed by weak evaluation contexts.

Example 1. A good example to observe the differences between CbN, CbV, and CbNeed is given by the term t := ((λx.λy.xx)(II))(II) where I := λz.z is the identity combinator. In CbN, it evaluates with 5 multiplicative steps and 5 exponential steps, as follows:

t -→ m cbn (λy.xx)[x←II](II) -→ m cbn (xx)[y←II][x←II] -→ e cbn ((II)x)[y←II][x←II] -→ m cbn (z[z←I]x)[y←II][x←II] -→ e cbn (I[z←I]x)[y←II][x←II] -→ m cbn w[w←x][z←I][y←II][x←II] -→ e cbn x[w←x][z←I][y←II][x←II] -→ e cbn (II)[w←x][z←I][y←II][x←II] -→ m cbn x [x ←I][

w←x][z←I][y←II][x←II] -→ e cbn I[x ←I][w←x][z←I][y←II][x←II]

In CbV, t evaluates with 5 multiplicative steps and 5 exponential steps, for instance from right to left, as follows:

t -→ m cbv (λx.λy.xx)(II)(z[z←I]) -→ e cbv (λx.λy.xx)(II)(I[z←I]) -→ m cbv (λx.λy.xx)(w[w←I])(I[z←I]) -→ e cbv (λx.λy.xx)(I[w←I])(I[z←I]) -→ m cbv (λy.xx)[x←I[w←I]](I[z←I]) -→ m cbv (xx)[y←I[z←I]][x←I[w←I]] -→ e cbv (xI)[y←I[z←I]][x←I][w←I] -→ e cbv (II)[y←I[z←I]][x←I][w←I] -→ m cbv x [x ←I][

y←I[z←I]][x←I][w←I] -→ e cbv I[x ←I][y←I[z←I]][x←I][w←I]

Note that the fact that CbN and CbV take the same number of steps is by chance, as they reduce different redexes: CbN never reduce the unneeded redex II associated to y, but it reduces twice the needed II redex associated to x, while CbV reduces both, but each one only once.

In CbNeed, t evaluates in 4 multiplicative steps and 4 exponential steps.

t -→ m need (λy.xx)[x←II](II) -→ m need (xx)[y←II][x←II] -→ m need (xx)[y←II][x←z[z←I]] -→ e need (xx)[y←II][x←I[z←I]] -→ e need (Ix)[y←II][x←I][z←I] -→ m need (w[w←x])[y←II][x←I][z←I]
-

→ e need w[w←I][y←II][x←I][z←I] -→ e need I[w←I][y←II][x←I][z←I]

CbV Diamond Property. CbV contexts coincide with weak ones. As a consequence, our presentation of CbV is non-deterministic, as for instance one can have

x[x←I](y[y←I]) m cbv ← (II)(y[y←I]) -→ e cbv (II)(I[y←I])
but it is easily seen that diagrams can be closed in exactly one step (if the two reducts are different). For instance,

x[x←I](y[y←I]) -→ e cbv x[x←I](I[y←I]) m cbv ← (II)(I[y←I])

Moreover, the kind of steps is preserved, as the example illustrates. This is an instance of the strong form of confluence called diamond property. A consequence is that either all evaluation sequences normalise or all diverge, and if they normalise they have all the same length and the same number of steps of each kind. Roughly, the diamond property is a form of relaxed determinism. In particular, it makes sense to talk about the number of multiplicative/exponential steps to normal form, independently of the evaluation sequence. The proof of the property is an omitted routine check of diagrams. The simple structure of normal forms is the main point where the restriction to closed calculi plays a role in this paper.

Normal

From the syntactic characterization of normal forms (Proposition 1) it follows immediately that among closed terms, normal forms for CbN and CbNeed coincide, while normal forms for CbV are a subset of them. Such a subset is proper since the closed term I[x←δδ] (where I := λz.z and δ := λy.yy) is normal for CbN and CbNeed but not for CbV (and it cannot normalise in CbV).

Preliminaries About Multi Types

In this section we define basic notions about multi types, type contexts, and (type) judgements that are shared by the three typing systems of the paper.

Multi-sets. The type systems are based on two layers of types, defined in a mutually recursive way, linear types L and finite multi-sets M of linear types. The intuition is that a linear type L corresponds to a single use of a term, and that an argument t is typed with a multi-set M of n linear types if it is going to end up (at most) n times in evaluation position, with respect to the strategy associated with the type system. The three systems differ on the definition of linear types, that is therefore not specified here, while all adopt the same notion of finite multi-set M of linear types (named multi type), that we now introduce: Type Contexts. A type context Γ is a (total) map from variables to multi types such that only finitely many variables are not mapped to 0. The domain of Γ is the set dom(Γ

) := {x | Γ (x) = 0}. The type context Γ is empty if dom(Γ) = ∅.
Multi-set union is extended to type contexts point-wise, i.e. (Γ Π)(x) := Γ (x) Π(x) for each variable x. This notion is extended to a finite family of type contexts as expected, so that i∈J Γ i denotes a finite union of type contexts-it stands for the empty context when J = ∅. A type context Γ is denoted by Judgements. Type judgements are of the form Γ (m,e) t : L or Γ (m,e) t : M (noted also (m,e) t : L and (m,e) t : M , respectively, when Γ is the empty context), where the indices m and e are natural numbers whose intended meaning is that t evaluates to normal form in m multiplicative steps and e exponential steps, with respect to the evaluation strategy associated with the type system. To make clear in which type systems the judgement is derived, we write Φ cbn Γ (m,e) t : L if Φ is a derivation in the CbN system ending in the judgement Γ (m,e) t : L, and similarly for CbV and CbNeed.

x 1 : M 1 , . . . , x n : M n (for some n ∈ N) if dom(Γ) ⊆ {x 1 , . . . , x n } and Γ (x i) = M i for all 1 ≤ i ≤ n. Given two type contexts Γ and Π such that dom(Γ) ∩ dom(Π) = ∅, the type context Γ, Π is defined by (Γ, Π)(x) := Γ (x) if x ∈ dom(Γ), (Γ, Π)(x) := Π(x) if x ∈ dom(Π), and (Γ, Π)(x) := 0 otherwise. x : [L] (0,1) x : L ax (0,0) λx.t : normal normal Γ, x : M (m,e) t : L Γ (m,e) λx.t : M L fun (Πi (m i ,e i) t : Li)i∈J i∈J Πi (i∈J m i , i∈J e i) t : [Li]i∈J many Γ (m,e) t : M L Π (m ,e) s : M Γ Π (m+m +1,e+e) ts : L app Γ, x : M (m,e) t : L Π (m ,e) s : M Γ Π (m+m ,e+e) t[x←s] : L ES

Types by Name

In this section we introduce the CbN multi type system, together with intuitions about multi types. We also prove that derivations provide exact bounds on CbN evaluation sequences, and define the induced denotational model.

CbN Types. The system is essentially a reformulation of de Carvalho's system R [START_REF] De Carvalho | Execution time of λ-terms via denotational semantics and intersection types[END_REF], itself being a type-based presentation of the relational model of the CbN λ-calculus induced by relational model of linear logic via the CbN translation of λ-calculus into linear logic. Definitions: -CbN linear types are given by the following grammar: -The many rule: it has as many premises as the elements in the (possibly empty) set of indices J. When J = ∅, the rule has no premises, and it types t with the empty multi type 0. The many rule is needed to derive the right premises of the rules app and ES, that have a multi type M on their righthand side. Essentially, it corresponds to the promotion rule of linear logic, that, in the CbN representation of the λ-calculus, is indeed used for typing the right subterm of applications and the content of explicit substitutions.

-The size of a derivation Φ cbn Γ (m,e) t : L is the sum m + e of the indices.

A quick look to the typing rules shows that indices on typing judgements are not needed, as m can be recovered as the number of app rules, and e as the number of ax rules. It is however handy to note them explicitly.

Subtleties and Easy Facts. Let us overview some facts about our presentation of the type system. 1. Introduction and destruction of multi-sets: multi-set are introduced on the right by the many rule and on the left by ax. Moreover, on the left they are summed by app and ES.

Vacuous abstractions: the abstraction rule fun can always abstract a variable

x; note that if M = 0, then Γ, x : M is equal to Γ . 3. Relevance: No weakening is allowed in axioms. An easy induction on type derivations shows that Lemma 1 (Type contexts and variable occurrences for CbN). Let Φ cbn Γ (m,e) t : L be a derivation. If x ∈ fv(t) then x / ∈ dom(Γ).

Lemma 1 implies that derivations of closed terms have empty type context. Note that there can be free variables of t not in dom(Γ): the ones only occurring in subterms not touched by the evaluation strategy.

Key Ingredients. Two key points of the CbN system that play a role in the design of the CbNeed one in Sect. 6 are: 1. Erasable terms and 0: the empty multi type 0 is the type of erasable terms. Indeed, abstractions that erase their argument-whose paradigmatic example is λx.y-can only be typed with 0 L, because of Lemma 1. Note that in CbN every term-even diverging ones-can be typed with 0 by rule many (taking 0 premises), because, correctly, in CbN every term can be erased. 2. Adequacy and linear types: all CbN typing rules but many assign linear types.

And many is used only as right premise of the rules app and ES, to derive M . It is with respect to linear types, in fact, that the adequacy of the system is going to be proved: a term is CbN normalising if and only if it is typable with a linear type, given by Theorems 1 and 2 below.

Tight Derivations. A term may have several derivations, indexed by different pairs (m, e). They always provide upper bounds on CbN evaluation lengths. The interesting aspect of our type systems, however, is that there is a simple description of a class of derivations that provide exact bounds for these quantities, as we shall show. Their definition relies on the normal type constant.

Definition 1 (Tight derivations for CbN).

A derivation Φ cbn Γ (m,e) t:L is tight (for CbN) if L = normal and Γ is empty.

Example 2. Let us return to the term t := ((λx.λy.xx)(II))(II) used in Example 1 for explaining the difference in reduction lengths among the different strategies. We now give a derivation for it in the CbN type system.

First, let us shorten normal to n. Then, we define Φ as the following derivation for the subterm λx.λy.xx of t: 1) x : n ax 1) x : [n]

x : [[n] n] (0,1) x : [n] n ax x : [n] (0,
x : [n] (0,
many x : [n, [n] n] (1,2) xx : n app x : [n, [n] n] (1,2) λy.xx : 0 n fun (1,2) λx.λy.xx : [n, [n] n] (0 n) fun
Now, we need two derivations for II, one of type n, given by Ψ as follows z :

[n] (0,1) z : n ax (0,1) λz.z : [n] n fun (0,0) λw.w : n normal (0,0) λw.w : [n] many

(1,1) II : n app and one of type [n] n, given by Ξ as follows

z : [[n] n] (0,1) z : [n] n ax (0,1) λz.z : [[n] n] ([n] n) fun w : [n] (0,1) w : n ax (0,1) λw.w : [n] n fun (0,1) λw.w : [[n] n] many (1,2) II : [n] n app
Finally, we put Φ, Ψ and Ξ together in the following derivation Θ for t = (s(II))(II), where s := λx.λy.xx and n

[n] := [n] n Φ (1,2) s : [n, n [n]] (0 n) Ψ (1,1) II : n Ξ (1,2) II : n [n] many (2,3) II : [n, n [n]
] app (4,5) s(II) : 0 n many (0,0) II : 0 app (5,5) (s(II))(II) : n Note that Θ is a tight derivation and the indices [START_REF] Accattoli | The negligible and yet subtle cost of pattern matching[END_REF][START_REF] Accattoli | The negligible and yet subtle cost of pattern matching[END_REF] correspond to the number of m cbn -steps and e cbn -steps, respectively, from t to its cbn-normal form, as shown in Example 1. Theorem 1 below shows that this is not by chance: tight derivations for CbN are minimal and provide exact bounds to evaluation lengths in CbN.

The next two subsections prove the two halves of the properties of the CbN type system, namely correctness and completeness.

CbN Correctness

Correctness is the fact that every typable term is CbN normalising. In our setting it comes with additional quantitative information: the indices m and e of a derivation Φ cbn Γ (m,e) t : L provide upper bounds on the length of the CbN evaluation of t, that are exact when the derivation is tight.

The proof technique is standard. Moreover, the correctness theorems for CbV and CbNeed in the next sections follow exactly the same structure. The proof relies on a quantitative subject reduction property showing that m decreases by exactly one at each m cbn -step, and similarly for e and e cbn -steps. In turn, subject reduction relies on a linear substitution lemma. Last, correctness for tight derivations requires a further property of normal forms.

Let us point out that correctness is stated with respect to closed terms only, but the auxiliary results have to deal with open terms, since they are proved by inductions (over predicates defined by induction) over the structure of terms.

Linear Substitution. The linear substitution lemma states that substituting over a variable occurrence as in the exponential rule consumes exactly one linear type and decreases of one the exponential index e.

Lemma 2 (CbN linear substitution). If Φ cbn Γ, x : M (m,e) C x : L then there is a splitting M = [L] N such that for every derivation Ψ cbn Π (m ,e) t : L there is a derivation Φ cbn Γ Π, x : N (m+m ,e+e -1) C t : L.

The proof is by induction over CbN evaluation contexts.

Quantitative Subject Reduction.

A key point of multi types is that the size of type derivations shrinks after every evaluation step, which is what allows to bound evaluation lengths. Remarkably, the size (defined as the sum of the indices) shrinks by exactly 1 at every evaluation step.

Proposition 2 (Quantitative subject reduction for CbN). Let Φ cbn Γ (m,e) t : L be a derivation. 1. Multiplicative: if t -→ m cbn s then m ≥ 1 and there exists a derivation Ψ cbn Γ (m-1,e) s : L. 2. Exponential: if t -→ e cbn s then e ≥ 1 and there exists a derivation Ψ cbn Γ (m,e-1) s : L.

The proof is by induction on t -→ m cbn s and t -→ e cbn s, using the linear substitution lemma for the root exponential step.

Tightness and Normal Forms. Since the indices are always non-negative, quantitative subject reduction (Proposition 2) implies that they bound evaluation lengths. The bound is not necessarily exact, as derivations of normal forms can have strictly positive indices. If they are tight, however, they are indexed by (0, 0), as we now show. The proof of this fact (by induction on the predicate normal) requires a slightly different statement, for the induction to go through.

Proposition 3 (normal typing of normal forms for CbN).

Let t be such that normal(t), and Φ cbn Γ (m,e) t : normal be a derivation. Then Γ is empty, and so Φ is tight, and m = e = 0.

The Tight Correctness Theorem. The theorem is then proved by a straightforward induction on the evaluation length relying on quantitative subject reduction (Proposition 2) for the inductive case, and the properties of tight typings for normal forms (Proposition 3) for the base case. Note that Theorem 1 implicitly states that tight derivations have minimal size among derivations.

CbN Completeness

Completeness is the fact that every CbN normalising term has a (tight) type derivation. As for correctness, the completeness theorem is always obtained via three intermediate steps, dual to those for correctness.

Normal Forms. The first step is to prove (by induction on the predicate normal) that every normal form is typable, and is actually typable with a tight derivation.

Proposition 4 (Normal forms are tightly typable for CbN).

Let t be such that normal(t). Then there is tight derivation Φ cbn (0,0) t : normal.

Linear Removal. In order to prove subject expansion, we have to first show that typability can also be pulled back along substitutions, via a linear removal lemma dual to the linear substitution lemma.

Lemma 3 (Linear removal for CbN). Let Φ cbn Γ, x : M (m,e) C s : L, where x / ∈ fv(s). Then there exist -a linear type L and two type contexts Γ and Π, -a derivation Φ cbn Γ (m ,e) s : L , and -a derivation

Ψ cbn Π, x : M [L] (m ,e) C x : L such that -Type contexts: Γ = Γ Π.
-Indices: (m, e) = (m + m , e + e -1).

Quantitative Subject Expansion. This property is the dual of subject reduction.

Proposition 5 (Quantitative subject expansion for CbN).

Let Φ cbn Γ (m,e) s : L be a derivation. 1. Multiplicative: if t -→ m cbn s then there is a derivation Ψ cbn Γ (m+1,e) t : L. 2. Exponential: if t -→ e cbn s then there is a derivation Ψ cbn Γ (m,e+1) t : L.

The proof is by induction on t -→ m cbn s and t -→ e cbn s, using the linear removal lemma for the root exponential step.

The Tight Completeness Theorem. The theorem is proved by a straightforward induction on the evaluation length relying on quantitative subject expansion (Proposition 5) in the inductive case, and the existence of tight typings for normal forms (Proposition 4) in the base case.

Theorem 2 (CbN tight completeness). Let t be a closed term. If d : t -→ * cbn s and normal(s) then there is a tight derivation Φ cbn (|d|m,|d|e) t : normal.

Back to Erasing Steps. Our system can be easily adapted to measure also garbage collection steps (the CbN erasing rule is just before Example 1). First, a new, third index g on judgements is necessary. Second, one needs to distinguish the erasing and non-erasing cases of the app and ES rules, discriminated by the 0 type. For instance, the ES rules are (the app rules are similar):

Γ (m,e,g) t : L Γ(x) = 0 Γ (m,e,g+1) t[x←s] : L ESgc Γ, x : M (m,e,g) t : L Π (m ,e ,g) s : M M = 0 Γ Π (m+m ,e+e ,g+g) t[x←s] : L ES
The right premise of rule ES gc has been removed because the only way to introduce 0 is via a many rule with no premises. The index g bounds to the number of erasing steps. In the closed case, however, the bound cannot be, in general, exact. Variables typed with 0 by Γ do not exactly match variables not appearing in the typed term (that is the condition triggering the erasing step), because a variable typed with 0 may appear in the body of abstractions typed with the normal rule, as such bodies are not typed.

It is reasonable to assume that exact bounds for erasing steps can only by provided by a type system characterising strong evaluation, whose typing rules have to inspect abstraction bodies. These erasing typing rules are nonetheless going to play a role in the design of the CbNeed system in Sect. 6.

CbN Model

The idea to build the denotational model from the multi type system is that the interpretation (or semantics) of a term is simply the set of its type assignments, i.e. the set of its derivable types together with their type contexts. More precisely, let t be a term and x 1 , . . . , x n (with n ≥ 0) be pairwise distinct variables. If fv(t) ⊆ {x 1 , . . . , x n }, we say that the list In fact, adequacy also holds with respect to open terms. The issue in that case is that the characterisation of tight derivations is more involved, see Accattoli, Graham-Lengrand and Kesner's [START_REF] Accattoli | Tight typings and split bounds[END_REF]. Said differently, weaker correctness and completeness theorems without exact bounds also hold in the open case. The same is true for the CbV and CbNeed systems of the next sections.

x = (x 1 , . . . , x n) is suitable for t. If x = (x 1 , . . . , x n) is suitable for t, the (relational) semantics of t for x is [[t]] CbN x := {((M 1 , . . . , M n), L) | ∃ Φ cbn x 1 : M 1 , . . . , x n : M n (m,

Types by Value

Here we introduce Ehrhard's CbV multi type system [START_REF] Ehrhard | Collapsing non-idempotent intersection types[END_REF] adapted to our presentation of CbV in the LSC, and prove its properties. The system is similar, and yet in many aspects dual, to the CbN one, in particular the grammar of types is different. Linear types for CbV are defined by: CbV linear types L, L ::= M N Multi(-sets) types are defined as in Sect. 3, relatively to CbV linear types. Note that linear types now have a multi type both as source and as target, and that the normal constant is absent-in CbV, its role is played by 0.

The typing rules are in Fig. 2. It is a type-based presentation of the relational model of the CbV λ-calculus induced by relational model of linear logic via the CbV translation of λ-calculus into linear logic. Some remarks: -Right-hand types: all rules but fun assign a multi type to the term on the right-hand side, and not a linear type as in CbN. -Abstractions and many: the many rule has a restricted form with respect to the CbN one, it can only be applied to abstractions, that in turn are the only terms that can be typed with a linear type. -Indices: note as the indices are however incremented (on ax and app) and summed (in many and ES) exactly as in the CbN system.

Intuitions: The Empty Type 0. The empty multi-set type 0 plays a special role in CbV. As in CbN, it is the type of terms that can be erased, but, in contrast to CbN, not every term is erasable in CbV.

In the CbN multi type system every term, even a diverging one, is typable with 0. On the one hand, this is correct, because in CbN every term can be erased, and erased terms can also be divergent, because they are never evaluated. On the other hand, adequacy is formulated with respect to non-empty types: a term terminates if and only if it is typable with a non-empty type.

In CbV, instead, terms have to be evaluated before being erased; and, of course, their evaluation has to terminate. Thus, terminating terms and erasable terms coincide. Since the multi type system is meant to characterise terminating terms, in CbV a term is typable if and only if it is typable with 0, as we shall prove in this section. Then the empty type is not a degenerate type excluded for adequacy from the interesting types of a term, as in CbN, it rather is the type, characterising (adequate) typability altogether. And this is also the reason for the absence of the constant normal-one way to see it is that in CbV normal = 0.

Note that, in particular, in a type judgement Γ t : M the type context Γ may give the empty type to a variable x occurring in t, as for instance in the axiom x : 0

x : 0-this may seem very strange to people familiar with CbN multi types. We hope that instead, according to the provided intuition that 0 is the type of termination, it would rather seem natural.

Definition 2 (Tight derivation for CbV). A derivation

Φ cbv Γ (m,e) t : M is tight (for CbV) if M = 0 and Γ is empty.
Example 3. Let's consider again the term t := ((λx.λy.xx)(II))(II) of Example 1 (where I := λz.z), for which a CbN tight derivation was given in Example 2, and let us type it in the CbV system with a tight derivation.

We define the following derivation Φ 1 for the subterm s := λx.λy.xx of t

x : [0 0] (0, 1) x : [0 0] ax x : 0 (0,1) x : 0 ax

x : [0 0] (1,2) xx : 0 app x : [0 0] (1,2) λy.xx : 0 0 fun x : [0 0] (1,2) λy.xx : [0 0] many (1,2) s : [0 0] [0 0] fun (1,2) s : [[0 0] [0 0]] many Note that [0 0] 0 = [0 0
], which explains the shape of the type context in the conclusion of the app rule. Next, we define the derivation Φ 2 as follows

z : [0 0] (0,1) z : [0 0] ax (0,1) λz.z : [0 0] [0 0] fun (0,1) λz.z : [[0 0] [0 0]
] many w : 0 (0,1) w : 0 ax (0,1) λw.w : 0 0 fun (0,1) λw.w : [0 0] many (1,2) II : [0 0] app and the derivation Φ 3 as follows

x : 0 (0,1) x : 0 ax (0,1) λx .x : 0 0 fun (0,1) λx .x : [0 0] many (0,0) I : 0 many

(1,1) II : 0 app Finally, we put Φ 1 , Φ 2 and Φ 3 together in the following derivation Φ for t

Φ 1 (1,2) s : [[0 0] [0 0]] Φ 2 (1,2) II : [0 0] app (3,4) (λx.λy.xx)(II) : [0 0] Φ 3
(1,1) II : 0 app (5,5) ((λx.λy.xx)(II))(II) : 0 Note that Φ is a tight derivation and the indices [START_REF] Accattoli | The negligible and yet subtle cost of pattern matching[END_REF][START_REF] Accattoli | The negligible and yet subtle cost of pattern matching[END_REF] correspond to the number of m cbv -steps and e cbv -steps, respectively, from t to its cbv-normal form, as shown in Example 1. Theorem 3 below shows that this is not by chance: tight derivations for CbV are minimal and provide exact bounds to evaluation lengths in CbV.

Correctness (i.e. typability implies normalisability) and completeness (i.e. normalisability implies typability) of the CbV type system with respect to CbV evaluation (together with quantitative information about evaluation lengths) follow exactly the same pattern of the CbN case, mutatis mutandis.

CbV Correctness

Lemma 4 (CbV linear substitution). Let Φ cbv Γ, x : M (m,e) V x : N and v be a value. There is a splitting M = O P such that, for any derivation Ψ cbv Π (m ,e) v : O, there is a derivation Φ cbv Γ Π, x : P (m+m ,e+e -1) V v : N . Proposition 6 (Quantitative subject reduction for CbV). Let Φ cbv Γ (m,e) t : M be a derivation. 1. Multiplicative: if t -→ m cbv t then m ≥ 1 and there exists a derivation Φ cbv Γ (m-1,e) t : M . 2. Exponential: if t -→ e cbv t then e ≥ 1 and there exists a derivation Φ cbv Γ (m,e-1) t : M .

Proposition 7 (Tight typings for normal forms for CbV).

Let Φ cbv Γ (m,e) t : 0 be a derivation, with normal cbv (t). Then Γ is empty, and so Φ is tight, and m = e = 0.

Theorem 3 (CbV tight correctness). Let t be a closed term. If Φ cbv Γ (m,e) t : M then there is s such that d : t -→ * cbv s, with normal cbv (s), |d| m ≤ m and |d| e ≤ e. Moreover, if Φ is tight then |d| m = m and |d| e = e.

CbV Completeness

Proposition 8 (Normal forms are tightly typable for CbV). Let t be such that normal cbv (t). Then there exists a tight derivation Φ cbv (0,0) t : 0.

Lemma 5 (Linear removal for CbV). Let Φ cbv Γ, x : M (m,e) V v : N and v be a value, where x / ∈ fv(v). Then, there exist -a multi type M and two type contexts Γ and Π, -a derivation Φ cbv Γ (m ,e) v : M and -a derivation Ψ cbv Π, x : M M (m ,e) V x : N such that -Type contexts: Γ = Γ Π, -Indices: (m, e) = (m + m , e + e -1).

Proposition 9 (Quantitative subject expansion for CbV). Let Φ cbv Γ (m,e) t : M be a derivation. 1. Multiplicative: if t -→ m cbv t then there is a derivation Φ cbv Γ (m+1,e) t : M . 2. Exponential: if t -→ e cbv t then there is a derivation Φ cbv Γ (m,e+1) t : M .

Theorem 4 (CbV tight completeness). Let t be a closed term. If d : t -→ *

cbv s with normal cbv (s), then there is a tight derivation Φ cbv (|d|m,|d|e) t : 0.

CbV Model. The interpretation of terms with respect to the CbV system is defined as follows (where x = (x 1 , . . . , x n) is a list of variables suitable for t):

[[t]] CbV x := {((M 1 , . . . , M n), N) | ∃ Φ cbv x 1 : M 1 , . . . , x n : M n (m,e) t : N } .
Note that rule fun assigns a linear type but the interpretation considers only multi types. The invariance and the adequacy of [[t]] CbV

x with respect to CbV evaluation are obtained exactly as for the CbN case.

Types by Need

CbNeed as a Blend of CbN and CbV. The multi type system for CbNeed is obtained by carefully blending ingredients from the CbN and CbV ones: -Wise erasures from CbN : in CbN wise erasures are induced by the fact that the empty multi type 0 (the type of erasable terms) and the linear type normal (the type of normalisable terms) are distinct and every term is typable with 0 by using the many rule with 0 premises. Adequacy is then formulated with respect to (non-empty) linear types. -Wise duplications from CbV : in CbV wise duplications are due to two aspects. First, only abstractions can be collected in multi-sets by rule many. This fact accounts for the evaluation of arguments to normal form-that is, abstractions-before being substituted. Second, terms are typed with multi types instead of linear types. Roughly, this second fact allows the first one to actually work because the argument is reduced once for a whole multi set of types, and not once for each element of the multi set, as in CbN.

x : It seems then that a type system for CbNeed can easily be obtained by basically adopting the CbV system plus -separating 0 and normal, that is, adding normal to the system; -modifying the many rule by distinguishing two cases: with 0 premises it can assign 0 to whatever term-as in CbN-otherwise it is forced to work on abstractions, as in CbV; -restricting adequacy to non-empty types. Therefore, the grammar of linear types is:

M (0,1) x : M ax Γ (m,e) t : [N M] Π (m ,e) s : N Γ Π (m+m +1,e+e) ts : M app (0,0) t : 0 many 0 (Πi (m i ,e i) λx.t : Li)i∈J J = ∅ i∈J Πi (i∈J m i , i∈J e i) λx
CbNeed linear types L, L ::= normal | M N
Multi(-sets) types are defined as in Sect. 3, relatively to CbNeed linear types. The rules of this naïve system for CbNeed are in Fig. 3.

Issue with the Naïve System. Unfortunately, the naïve system does not work: tight derivations-defined as expected: empty type context and the term typed with [normal]-do not provide exact bounds. The problem is that the naïve blend of ingredients allows derivations of 0 with strictly positive indices m and e. Instead, derivations of 0 should always have 0 in both indices-as is the case when they are derived with a many 0 rule with 0 premises-because they correspond to terms to be erased, that are not evaluated in CbNeed. For any term t, indeed, one can for instance derive the following derivation Φ:

(0,0) x : 0 many 0 (0,0) λx.x : 0 0 fun (0,0) λx.x : [0 0] many >0 (0,0) t : 0 many 0

(1,0) (λx.x)t : 0 app Note that introducing (0,1) x : 0 with rule ax rather than via many 0 (the typing context x : 0 is equivalent to the empty type context) would give a derivation with final judgement (1,1) (λx.x)t : 0-thus, the system messes up both indices. Such bad derivations of 0 are not a problem per se, because in CbNeed one expects correctness and completeness to hold only for derivations of non-empty multi types. However, they do mess up also derivations of non-empty multi types because they can still appear inside tight derivations, as sub-derivations of subterms to be erased; consider for instance: normal (0,0) I : normal many >0 (0,0) I : [normal] fun (0,0) λy.I : 0

[normal] many >0 (0,0) λy.I : [0

[normal]]
. . . . Φ

(1,0) (λx.x)t : 0 app (2,0) (λy.I)((λx.x)t) : [normal] The term normalises in just 1 m need -step to I[y←(λx.x)t] but the multiplicative index of the derivation is 2. The mismatch is due to a bad derivation of 0 used as right premise of an app rule. Similarly, the induced typing of I[y←(λx.x)t] is an example of a bad derivation used as right premise of a rule ES: normal (0,0) I : normal many >0 (0,0) I : [normal] Φ (1,0) The Actual Type System. Our solution to such an issue is to modify the system as to avoid derivations of 0 to appear as right premises of rules app and ES. We follow the schema of the rules for counting erasing steps given right after Theorem 2.

Therefore, we add two dedicated rules app gc and ES gc , and constrain the right premise of rules app and ES to have a non-empty type. The system is in Fig. 4 and it is based on the same grammar of types of the naïve system. Note that rules many and ax can still introduce 0. These 0s, however, can no longer mess up the indices of tight derivations, as we are going to show.

Note that the indices m and e are incremented and summed exactly as in the CbN and CbV type systems. Again, we shorten normal to n. Then, we define Ψ as follows

x : M (0, x : 1) x : [n] ax

[[n] [n]] (0,1) x : [[n] [n]] ax x : [n] (0,
x : [n, [n] [n]] (1,2) xx : [n] app x : [n, [n] [n]] (1,2) λy.xx : 0 [n] fun x : [n, [n] [n]] (1,2) λy.xx : [0 [n]] many (1,2) λx.λy.xx : [n, [n] [n]] [0 [n]] fun (1,2) λx.λy.xx : [[n, [n] [n]] [0 [n]]]
many and, shortening [n]

[n] to [n] [n] , we define Θ as follows

ax z : [n, [n] [n]] (0,1) z : [n, [n] [n]] fun (0,1) λz.z : [n, [n] [n]] [n, [n] [n]] many (0,1) λz.z : [[n, [n] [n]]
[n, [n] [n]]] normal (0,0) λw.w : n ax w : [n] (0,1) w : [n] fun (0,1) λw.w : [n] [n] many (0,1) λw.w : [n, [n] [n]] app (1,2) II : [n, [n] [n]] Finally, we put Ψ and Θ together in the following derivation Φ for t Ψ (1,2)

λx.λy.xx : [[n, [n] [n]] [0 [n]]] Θ (1,2) II : [n, [n] [n]] app (3,4) (λx.λy.xx)(II) : [0 [n]]
app gc (4,4) ((λx.λy.xx)(II))(II) : [n] Note that the indices (4, 4) correspond exactly to the number of m need -steps and e need -steps, respectively, from t to its need-normal form-as shown in Example 1-and that Φ is a tight derivation. Forthcoming Theorem 5 shows once again that this is not by chance: tight derivations for CbNeed are minimal and provides exact bounds to evaluation lengths in CbNeed.

Remarkably, the technical development to prove correctness and completeness of the CbNeed type system with respect to CbNeed evaluation follows smoothly along the same lines of the two other systems, mutatis mutandis.

CbNeed Correctness

Lemma 6 (CbNeed linear substitution). Let Φ need Γ, x:M (m,e) E x :N and v be a value. There is a splitting M = O P such that for any derivation Ψ need Π (m ,e) v : O there exists Φ need Γ Π, x : P (m+m ,e+e -1) E v : N . Proposition 10 (Quantitative subject reduction for CbNeed). Let Φ need Γ (m,e) t : M be a derivation such that M = 0.

-Multiplicative: if t -→ m need s then m ≥ 1 and there is a derivation Φ need Γ (m-1,e) : M . -Exponential: if t -→ e need s then e ≥ 1 and there exists a derivation Φ need Γ (m,e-1) t : M .

Note the condition M = 0 in the statement of subject reduction, that is in contrast to the CbV system but akin to the CbN one. It is due to the way multi types are used as arguments, via rules ES gc and app gc . The restriction is necessary: the CbNeed type system derives (0,1) x[x←δδ] : 0, but x[x←δδ] is not normalising for CbNeed evaluation. And it is expected, as it amounts to the fact that adequacy holds only with respect to non-empty types, as for CbN, and as stressed when introducing the CbNeed type system. The same restriction appears in Theorem 5, Proposition 13 and Theorem 6 below, for the same reason.

Proposition 11 ([normal] typings for normal forms for CbNeed).

Let Φ need Γ (m,e) t : [normal] be a derivation, with normal(t). Then Γ is empty, and so Φ is tight, and m = e = 0. E v : N be a derivation and v be a value, with x / ∈ fv(v). Then there exist -a multi type M and two type contexts Γ and Π, -a derivation Φ need Γ (m ,e) v : M , and -a derivation Ψ need Π, x : M M (m ,e) E x : N such that -Type contexts: Γ = Π Γ . -Indices: (m, e) = (m + m , e + e -1).

Theorem 5 (CbNeed tight correctness

Proposition 13 (Quantitative subject expansion for CbNeed). Let Φ need Γ (m,e) s : M be a derivation such that M = 0. Then, -Multiplicative: if t -→ m need s then there is a derivation Φ need Γ (m+1,e) t : M , -Exponential: if t -→ e need s then there is a derivation Φ need Γ (m,e+1) with respect to the CbNeed system is defined as the set (where x = (x 1 , . . . , x n) is a list of variables suitable for t):

{((M 1 , . . . , M n), N) | ∃ Φ need x 1 : M 1 , . . . , x n : M n (m,e) t : N and N = 0} .
Note that the right multi type is required to be non-empty. The invariance and the adequacy of [[t]] CbNeed

x with respect to CbNeed evaluation are obtained exactly as for the CbN and CbV cases.

A New Fundamental Theorem for Call-by-Need

CbNeed Erases Wisely. In the literature, the theorem about CbNeed is the fact that it is operationally equivalent to CbN. This result was first proven independently by two groups, Maraist, Odersky, and Wadler [START_REF] Maraist | The call-by-need lambda calculus[END_REF], and Ariola and Felleisen [START_REF] Ariola | The call-by-need lambda calculus[END_REF], in the nineties, using heavy rewriting techniques.

Recently, Kesner gave a much simpler proof via CbN multi types [START_REF] Kesner | Reasoning about call-by-need by means of types[END_REF]. She uses multi types to first show termination equivalence of CbN and CbNeed, from which she then infers operational equivalence. Termination equivalence means that a given term terminates in CbN if and only if terminates in CbNeed, and it is a consequence of our slogan that CbN and CbNeed both erase wisely.

With our terminology and notations, Kesner's result takes the following form.

Theorem 7 (Kesner [START_REF] Kesner | Reasoning about call-by-need by means of types[END_REF]). Let t be a closed term. Note that, with respect to the other similar theorems in this paper, the result does not cover tight derivations and it does not provide exact bounds. In fact, the CbN system cannot provide exact bounds for CbNeed, because it does provide them for CbN evaluation, that in general is slower than CbNeed. Consider for instance the term t in Example 1 and its CbN tight derivation in Example 2: the derivation provides indices (5, 5) for t (and so t evaluates in 10 CbN steps), but t evaluates in 8 CbNeed steps. Closing such a gap is the main motivation behind this paper, achieved by the CbNeed multi type system in Sect. 6. CbNeed Duplicates Wisely. Curiously, in the literature there are no dual results showing that CbNeed duplicates as wisely as CbV. One of the reasons is that it is a theorem that does not admit a simple formulation such as operational or termination equivalence, because CbNeed and CbV are not in such relationships. Morally, this is subsumed by the logical interpretation according to which CbNeed corresponds to an affine variant of the linear logic representation of CbV. Yet, it would be nice to have a precise, formal statement establishing that CbNeed duplicates as wisely as CbV -we provide it here.

Our result is that the CbV multi type system is correct with respect to CbNeed evaluation. In particular, the indices (m, e) provided by a CbV type derivation provide bounds for CbNeed evaluation lengths. Two important remarks before we proceed with the formal statement: -Bounds are not exact: the indices of a CbV derivation do not generally provide exacts bounds for CbNeed, not even in the case of tight derivations.

Conclusions

Contributions. This paper introduces a multi type system for CbNeed evaluation, carefully blending ingredients from multi type systems for CbN and CbV evaluation in the literature. Notably, it is the first type system whose minimal derivations-explicitly characterised-provide exact bounds for evaluation lengths. It also characterises CbNeed termination, and thus its judgements provide an adequate relational semantics.

The technical development is simple, and uniform with respect to those of CbN and CbV multi type systems. The typing rules count evaluation steps following exactly the same schema of the CbN and CbV rules. The proofs of correctness and completeness also follow exactly the same structure.

A further side contribution of the paper is a new fundamental result of CbNeed, formally stating that it duplicates as wisely as CbV. More precisely, the CbV multi type system is (quantitatively) correct with respect to CbNeed evaluation. Pleasantly, our presentations of CbV and CbNeed provide the result for free. This result dualizes the other fundamental theorem stating that CbNeed erases as wisely as CbN, usually formulated as termination equivalence, and recently re-proved by Kesner using CbN multi types [START_REF] Kesner | Reasoning about call-by-need by means of types[END_REF].

Future Work. Recently, Barenbaum et al. extended CbNeed to strong evaluation [START_REF] Balabonski | Foundations of strong call by need[END_REF], and it is natural to try to extend our type system as well. The definition of the system, in particular the extension of tight derivations to that setting, seems however far from being evident. Barembaum, Bonelli, and Mohamed also apply CbN multi types to a CbNeed calculus extended with pattern matching and fixpoints [START_REF] Barenbaum | Pattern matching and fixed points: resource types and strong call-by-need: extended abstract[END_REF], that might be interesting to refine along the lines of our work.

An orthogonal direction is the study of the denotational models of CbNeed. It would be interesting to have a categorical semantics of CbNeed, as well as a categorical way of discriminating our quantitative precise model from the quantitatively lax one given by CbN multi types. It would also be interesting to obtain game semantics of CbNeed, hopefully satisfying a strong correspondence with our multi types in the style of what happens in CbN [START_REF] Di Gianantonio | A type assignment system for game semantics[END_REF][START_REF] Di Gianantonio | Innocent game semantics via intersection type assignment systems[END_REF][START_REF] Ong | Quantitative semantics of the lambda calculus: some generalisations of the relational model[END_REF][START_REF] Tsukada | Plays as resource terms via non-idempotent intersection types[END_REF].

A further, unconventional direction is to dualise the inception of the CbNeed type system trying to mix silly duplication from CbN and silly erasure from CbV, obtaining-presumably-a multi types system measuring a perpetual strategy.

 respectively. Given an evaluation sequence d : t -→ * cbn s we note with |d| the length of d, and with |d| m and |d| e the number of multiplicative and exponential steps in d, respectively-and similarly for -→ cbv and -→ need .

 Multi typesM, N ::= [L i] i∈J (for any finite set J)where [. . .] denotes the multi-set constructor. The empty multi-set [] (the multi type obtained for J = ∅) is called empty (multi) type and denoted by the special symbol 0. An example of multi-set is [L, L, L], that contains two occurrences of L and one occurrence of L . Multi-set union is noted .

Fig. 1 .

 1 Fig. 1. Type system for CbN evaluation

 CbN linear types L, L ::= normal | M L Multi(-sets) types are defined as in Sect. 3, relatively to CbN linear types. Note the linear constant normal (used to type abstractions, which are normal terms): it plays a crucial role in our quantitative analysis of CbN evaluation. -The CbN typing rules are in Fig. 1.

Theorem 1 (

 1 CbN tight correctness). Let t be a closed term. If Φ cbn (m,e) t : L then there is s such that d : t -→ * cbn s, with normal(s), |d| m ≤ m and |d| e ≤ e. Moreover, if Φ is tight then |d| m = m and |d| e = e.

 (λx.x)t : 0 ES (1,0) I[y←(λx.x)t] : [normal]

Definition 3 (

 3 Tight derivations for CbNeed). A derivationΦ need Γ (m,e) t : M is tight (for CbNeed) if M = [normal]and Γ is empty.

Example 4 .

 4 We return to the term t := ((λx.λy.xx)(II))(II) used in Example 1 and we give it a tight derivation in the CbNeed type system.

manyΓFig. 4 .

 4 Fig. 4. Type system for CbNeed evaluation.

). Both λx.t and t[x←s] bind x in t, with the usual notion of α-equivalence.

	LSC Terms t, s, u ::= x | v | ts | t[x←s]	LSC Values v ::= λx.t
	The set fv(t) of free variables of a term t is defined as expected, in particular,
	fv(t[x←s]) := (fv(t)\{x})∪fv(s). A term t is closed if fv(t) = ∅, open otherwise.
	As usual, terms are identified up to α-equivalence.	

 Forms. We use two predicates to characterise normal forms, one for both CbN and CbNeed normal forms, for which ES can contain whatever term, and one for CbV normal forms, where ES can only contain normal terms:

normal(λx.t) normal(t) normal(t[x←s]) normal cbv (λx.t) normal cbv (t) normal cbv (s) normal cbv (t[x←s]) Proposition 1 (Syntactic characterization of closed normal forms). Let t be a closed term. 1. CbN and CbNeed: For r ∈ {cbn, need}, t is r-normal if and only if normal(t). 2. CbV: t is cbv-normal if and only if normal cbv (t).

 e) t : L} . (for any term t, possibly open) is invariant by CbN evaluation. Correctness (Theorem 1) and completeness (Theorem 2) guarantee that, given a closed term t, its interpretation [[t]] CbN x is non-empty if and only if t is CbN normalisable, that is, they imply that relational semantics is adequate.

	Subject reduction (Proposition 2) and expansion (Proposition 5) guarantee that the semantics [[t]] CbN x ax Γ (m,e) t : [N M] Π (m ,e) s : N Γ Π (m+m +1,e+e) ts : M app of t x : M (0,1) x : M Γ, x : N (m,e) t : M Γ (m,e) λx.t : N M fun (Πi (m

i ,e i) λx.t : Li)i∈J i∈J Πi (i∈J m i , i∈J e i) λx.t : [Li]i∈J

many Γ, x : N (m,e) t : M Π (m ,e) s : N Γ Π (m+m ,e+e) t[x←s] : M ES Fig. 2. Type system for CbV evaluation.

 ,e i) λx.t : Li)i∈J i∈J Γi (i∈J m i , i∈J e i) λx.t : [Li]i∈J

	1) x : M	ax		(0,0) λx.t : normal	normal
	Γ, x : N (m,e) t : M Γ (m,e) λx.t : N M	fun	(Γi (m i

CbNeed Completeness Proposition 12 (Normal forms are tightly typable for CbNeed).

 |d| m ≤ m and |d| e ≤ e. Moreover, if Φ is tight then |d| m = m and |d| e = e. Let t be such that normal(t). Then there is a tight derivation Φ need (0,0) t : [normal].

	6.2 Lemma 7 (Linear removal for CbNeed). Let Φ need Γ, x : M (m,e)

). Let t be a closed term. If Φ need (m,e) t : M where M = 0, then there is s such that d : t -→ * need s, with normal(s),

 t : M .

	Theorem 6 (CbNeed tight completeness). Let t be a closed term. If
	d : t -→ * need s and then there exists a tight derivation Φ need	(|d|m,|d|e)
	t : [normal].	
	CbNeed Model. The interpretation [[t]] CbNeed x	

 * need s, normal(s), |d| m ≤ m and |d| e ≤ e. 2. Completeness: if d : t -→

1. Correctness: if Φ cbn (m,e) t : L then there exists s such that d : t -→ * need s and normal(s) then there is Φ cbn (m,e) t:normal.

Corollary 1 (CbV correctness w.r.t. CbNeed). Let

 The reason is that CbNeed does not evaluate unneeded subterms (i.e. those typed with 0), while CbV does. Consider again the term t of Example 1, for instance, whose CbV tight derivation has indices (5, 5) (and so t evaluates in 10 CbV steps) but it CbNeed evaluates in 8 steps.-Completeness cannot hold : we prove correctness but not completeness simply because the CbV system is not complete with respect to CbNeed evaluation. Consider for instance (λx.I)Ω: it is CbV untypable by Theorem 4, because it is CbV divergent, and yet it is CbNeed normalisable.CbV Correctness with Respect to CbNeed. Pleasantly, our presentations of CbV and CbNeed make the proof of the result straightforward. It is enough to observe that, since we do not consider garbage collection and we adopt a nondeterministic formulation of CbV, CbNeed is a subsystem of CbV. Formally, if t -→ need s then t -→ cbv s, as it is easily seen from the definitions (CbNeed reduces only some subterms of applications and ES, while CbV reduces all such subterms). The result is then a corollary of the correctness theorem for CbV. * need s and normal(s), with |d| m ≤ m and |d| e ≤ e. Since the CbNeed system provides exact bounds (Theorem 5), we obtain that CbNeed duplicates as wisely as CbV, when the comparison makes sense, that is, on CbV normalisable terms.

	Corollary 2 (

t be a closed term and Φ cbv (m,e) t : M be a derivation. Then there exists s such that d : t -→

CbNeed duplicates as wisely as CbV).

 Let d : t -→ * cbv u with normal cbv (u). Then there is d : t -→ * need s with normal(s) and |d | m ≤ |d| m and |d | e ≤ |d| e .

If a term t admits both converging and diverging evaluation sequences then the diverging sequences occur in erasable subterms of t, which is why CbN avoids them.

The CbN translation maps A ⇒ B to (!A CbN) B CbN , while the CbV maps it to !A CbV !B CbV , or equivalently to !(A CbV B CbV).

The new terminology is due to the fact that a non-idempotent intersection A ∧ A ∧ B ∧ C can be seen as a multi-set [A, A, B, C].

Acknowledgements. This work has been partially funded by the ANR JCJC grant COCA HOLA (ANR-16-CE40-004-01) and by the EPSRC grant EP/R029121/1 "Typed Lambda-Calculi with Sharing and Unsharing".