
Investigating Edge vs. Cloud Computing Trade-offs
for Stream Processing
Pedro Silva, Alexandru Costan, Gabriel Antoniu

Univ Rennes, Inria, CNRS, IRISA
Rennes, France

pedro.silva@irisa.fr, alexandru.costan@irisa.fr, gabriel.antoniu@inria.fr

Abstract—The recent spectacular rise of the Internet of Things
and the associated augmentation of the data deluge motivated the
emergence of Edge computing as a means to distribute processing
from centralized Clouds towards decentralized processing units
close to the data sources. This led to new challenges in ways to
distribute processing across Cloud-based, Edge-based or hybrid
Cloud/Edge-based infrastructures. In particular, a major ques-
tion is: how much can one improve (or degrade) the performance
of an application by performing computation closer to the data
sources rather than in the Cloud? This paper proposes a method-
ology to understand such performance trade-offs and illustrates
it through experimental evaluation with two real-life stream
processing use-cases executed on fully-Cloud and hybrid Cloud-
Edge testbeds using state-of-the-art processing engines for each
environment. We derive a set of take-aways for the community,
highlighting the limitations of each environment, the scenarios
that could benefit from hybrid Edge-Cloud deployments, what
relevant parameters impact performance and how.

Index Terms—Edge Computing, Edge Analytics, Fog Comput-
ing, Cloud Computing, Stream Processing, Flink, Edgent.

I. INTRODUCTION

In the last two decades, the Cloud became the preferred
processing infrastructure for many applications thanks to fea-
tures like elasticity, scalability and on-demand cost models.
However, it has been challenging to use Cloud computing on
some new types of real-time distributed applications which are
capable of generating huge amounts of data and which demand
low-latency processing responses. For instance, in the context
of large Internet of Things (IoT) applications, the connections
between the many sensors and the Cloud resources may be
an issue because of the potential high-latency of the Internet.
Similarly, it may be impossible to send the data to the Cloud
due to data national security laws or simply because an Internet
connection is not available. Furthermore, data transmission
costs (e.g., Cloud provider fees, carrier costs) could make a
business solution impractical.

Edge computing is a new paradigm which aims to address
some of these issues. The key idea is to leverage computing
and storage resources at the “edge” of the network, i.e., on
processing units located close to the data sources [1]. This
allows applications to outsource data processing from the main
(Cloud) processing data centers to the Edge. For instance,
a home assistant may perform a first lexical analysis before
requesting a translation to the Cloud. However, Edge comput-
ing is not a silver bullet: issues like node volatility, limited

processing power, high latency between nodes, fault tolerance
and data degradation may impact applications depending on
the characteristics of the infrastructure.

In this paper we are interested in understanding the con-
ditions that enable the usage of Edge or Cloud computing in
order to reduce the time to results and the associated costs.
While some state-of-the-art approaches advocate either “100%
Cloud” or “100% Edge” solutions, the relative efficiency of
a method over the other may vary. Intuitively, it depends
on many parameters, including network technology, hardware
characteristics, volume of data or computing power, processing
framework configuration and application requirements.

Some solutions advocate hybrid Edge-Cloud processing [2],
however, in order to split the data processing across those two
infrastructures it is necessary to understand the consequences
of their interaction. This paper makes a first step in this
direction with the following contributions:

• a methodology to understand the performance of Edge
and Cloud applications;

• a thorough experimental evaluation with two representa-
tive real-life stream processing use-cases;

• a set of take-aways for the community, highlighting the
limitations of each environment, the scenarios that could
benefit from hybrid Edge-Cloud deployments and how
various parameters of interest impact performance.

The rest of this paper is organized as follows. We first
contextualize this work (Section II), then we present the
applications, datasets and workloads used in our experiments
(Section III). We detail our experimental methodology (Sec-
tion IV) and setup (Section V), followed by the evaluation of
the experiments (Section VI and VII). We formulate our final
conclusions in Section VIII.

II. BACKGROUND AND RELATED WORK

A data stream, or simply a stream, is an unbounded and
continuous flow of data. Examples include data produced by
sensors or user events from social networks such as tweets,
postings and comments. Stream processing applications typi-
cally collect data from the Edge of the networks, where they
are produced and eventually pre-processed. Clouds are used
as centralized, main processing data centers, where the data
are shipped for further, complex analytics (e.g., using batch
processing). In this section, we introduce the main concepts
related to stream processing in Edge and Cloud environments.This work is supported by the ANR OverFlow project (ANR-15-CE25-0003).

All experiments were carried out using the Grid’5000 testbed.

A. Stream processing at and near the Edge

Edge computing is the collection of technologies that allows
computation to be performed at the Edge of a network [3], i.e.,
on the set of resources between the data sources and the Cloud
data centers. Edge computing can be applied to a large variety
of application domains, and, in particular, in fields related to
the IoT. For instance, events emitted by sensors installed on
trucks are processed locally (i.e., in the trucks) in order to
reduce latency and transmission costs [4]. Similarly, anomalies
on water transmission pipes are detected locally in order to
reduce response latency [5]; the performance of image and
video processing on mobile devices is improved by offloading
part of the computation to Edge servers [6].

Edge computing is enabled by several platforms that target
software deployment, data processing and system monitoring
pushed by the open-source community [7]–[10] and by large
technology companies [11], [12]. In this work, we use Apache
Edgent [9], a light-weight open source Java library that can
be easily deployed on Edge devices and nodes.

Fog computing, similarly to Edge computing, is a paradigm
that enables computation to be performed near the data
sources. The essential difference between Edge and Fog com-
puting is the exact location where computation is performed. In
Edge computing, this usually occurs directly on Edge devices,
like sensors and actuators. In Fog computing, it is commonly
performed on some dedicated nodes, typically located between
the Edge and the Cloud such as in the local area network
connecting Edge devices or on the network gateways (i.e., at
the left of the dotted line in Figure 1). Although there is no
consensus about those two concepts and many authors use
them interchangeably, we make this distinction for the sake
of clarity. Our evaluation framework can be deployed on both
Edge devices and Edge nodes (the latter corresponding to what
could be referred as Fog resources), as detailed in Section IV.

B. Stream computing in the Cloud

Once data are collected from the Edge, the typical stream
computing pipeline consists of two stages executed in the
Cloud and depicted in Figure 1: ingestion and processing.

Data ingestion serves mainly to aggregate, buffer and log
data streams before they are consumed by the processing
phase. Several mature open-source systems perform data in-
gestion, e.g., Pivotal RabbitMQ [13] and Apache Kafka [14].
They rely on publish-subscribe mechanisms to handle streams
and to store them a in fault-tolerant durable way. Kafka is the
most widely used and is our choice for this paper.

Stream processing executes data analytics on streams.
Very often, streams must be processed in real-time, due
to, mainly, the requirement of low-latency data processing
and analysis of stream applications. A large set of stream
processing engines were proposed specifically to address these
challenges. Most notable examples are from the Apache eco-
system: Flink [15], Spark [16], and Storm [17]. In this work,
we leverage Apache Flink, a reference open source, low-
latency and high-throughput stream processing engine offering
exactly-once semantics.

Edge

Data Ingestion Stream Processing

Edge
Devices

Edge
Nodes

Cloud

Fig. 1. Typical stream computing pipeline from the Edge to the Cloud
involving data ingestion and stream processing [18].

C. Challenges of hybrid Edge and Cloud computing

Edge computing can be a solution for many scenarios,
as discussed in Section II-A. However, it may often have a
negative impact on application performance or cost.

Let us illustrate the case of improving the performance of
windowed aggregations [19], [20] by processing part of the
data locally on the Edge before sending it to the Cloud. In this
case, there is a trade-off between computation performance
(i.e., execution time) and data transmission (i.e., cost). Doing
all the aggregation on the Edge results in less data sent to the
Cloud, however, this choice can also impact the time needed
at the Edge to treat each local aggregation.

The ultimate goal of a hybrid Edge and Cloud deployment
is to have an online/real-time front-end for processing on the
Edge, close to where data are generated, while the Cloud will
only be used for offline back-end processing, mainly dealing
with archival, fault tolerance and also further processing that is
not time-critical. This hybrid approach enables Edge analytics
to detect what is happening with a monitored object, while
Cloud analytics allows to understand why this is happening.

We can find work in the state-of-the art aiming at analyzing
Cloud-only based data processing scenarios [21], [22] or Edge-
only based data processing scenarios [23], [24]. However, to
the best of our knowledge, there is no previous work proposing
an experimental methodology and analysis for hybrid Cloud
and Edge processing.

.

III. DATASETS AND WORKLOADS

We use two different stream processing scenarios for our
evaluation. The first one uses data from the New York City
Taxi and Limousine Commission (TLC) rides [25]. The sec-
ond one consists of CCTV footage from the University of
California San Diego [26]. The main difference between the
two datasets lies in their data items size. Records in the TLC
dataset are about 300B, making it representative for scenarios
involving sensors that send small messages in Smart Cities. In
contrast, video frames from CCTV dataset are about 25KB,
matching applications that process larger messages, such as
log analysis.

1) TLC Dataset: It is composed of records, emitted at the
end of rides, containing information about taxi rides such as
driver identification, pick-up and drop-off times, and loca-
tions [25]. We use taxi rides data from 2013 and the size of the
dataset is around 20GB. The scenario we implemented consists
in finding the busiest driver every two hours. To do that, five
operations need to be performed: (1) spurious records (records
with invalid data) are filtered; (2) a percentage FR of records,
defined as a parameter of interest, is filtered; (3) pickup and
drop-off positions and times are used to calculate the travel
distance and average speed; (4) a windowed aggregation gets
the sum of working times for each driver in the last two hours;
(5) a windowed aggregation calculates the driver who drove the
most during the last two hours. In Edge scenarios, operations
(1), (2) and (3) are performed on the Edge.

2) CCTV Dataset: It is composed of footage recorded
within the university campus by CCTV cameras capable of
recording 10 frames per second. The original dataset has
around 700MB. In the implemented scenario, we identify the
most crowded places in the campus every minute. For doing
that, we perform three operations: (1) the number of persons
in each frame is counted; (2) a windowed aggregation gets
the maximum number of persons observed in the last WS
seconds for each camera, where WS is a previously defined
parameter of interest; (3) the maximum number of persons,
for all cameras, in the last two minutes is calculated using a
windowed aggregation. For counting the number of persons
in a frame, we use techniques of background subtraction [27]
and k-nearest neighbors with OpenCV [27]. In Edge scenarios,
operations (1) and (2) are performed on the Edge.

IV. METHODOLOGY

In order to understand the impact of Edge and Cloud
environments we analyze the results of series of experiments.
An experiment is a set of executions of one of the considered
scenarios (TLC and CCTV). Every scenario has a set of
parameters of interest used to configure the applications.
Our objective is to observe the behavior of some application
performance metrics, which we refer to as metrics of interest,
when combining the different values of the parameters of
interest. In this section, we detail these parameters and metrics
of interest and present our targeted experiments.

A. Parameters of interest

We select a set of 6 parameters whose values we vary to
observe their impact on the perceived application performance.
The first 4 parameters are common to both scenarios:

• type of processing (T): it indicates the deployment envi-
ronment: Cloud or hybrid Edge-Cloud;

• number of data producers per gateway (P): it counts
the amount of Edge devices in the infrastructure (and
consequently the volume of generated data);

• number of gateways (GW): it defines the number of nodes
that will be responsible for gathering data from data
sources and for uploading data to the Cloud;

TABLE I
EXPERIMENT CONFIGURATION FOR THE TLC SCENARIO.

Scenario Parameters Values
CCTV+TLC T {Edge, Cloud}
CCTV+TLC P {20, 30, 40}
CCTV+TLC GW {30}
CCTV+TLC BW (Mb) {10, 100, 1000}

TLC FR (%) {30, 50}
CCTV WS (seconds) {5, 10}

CCTV+TLC Timeout (s) 420
Total experiments 36

• bandwidth (BW): it measures the bandwidth between
Edge gateways and Cloud proxy servers.

The last 2 parameters are specific to each scenario:
• filtering rate (FR): specific to the TLC scenario, it defines

the percentage of data filtered out of the stream;
• window size (WS): specific to the CCTV scenario, it

indicates for each camera the amount of video frames
to aggregate before pre-processing them.

B. Metrics of interest

We measure a set of 3 metrics to evaluate the behavior
of the considered streaming scenarios: Edge-to-Cloud latency,
Edge-to-Cloud throughput, and end-to-end throughput.

1) Edge-to-Cloud latency: describes the time, in seconds,
a record takes to travel from the device which produced it
to the ingestion system (e.g., Apache Kafka). This metric is
directly impacted by the amount of data produced on the Edge
and the network bandwidth between Edge gateways and the
Cloud. Larger filtering rates or window sizes result in more
processing in the Edge and less data being sent to the Cloud,
hence, less congestion.

2) Edge-to-Cloud throughput: indicates the amount of
records that arrive at the ingestion system per second. This
can be measured in records or MB per second. Similarly to
the Edge-to-Cloud latency, this metric depends on the amount
of produced data, the connectivity between Edge and Cloud,
and on the scenario specific parameters.

3) End-to-end throughput: measures the rate at which pro-
cessed data is output by the Cloud engine (e.g., Apache Flink).
This metric is affected by all the parameters of interest.

C. Experiment workflow

There are four steps in each experiment: (i) generation of the
experiments metadata by combining the parameters of interest
values presented in Tables I; (ii) copy of experiment datasets
to data sources hosts; (iii) execution of the experiments and
logging of the resource usage of each machine; and (iv)
execution of the data analyzers responsible for gathering the
processed data.

V. EXPERIMENTAL SETUP

The infrastructure used to deploy the scenarios and run the
experiments is summarized in the schema in Figure 2. Once
produced by the data sources, data will be either processed
entirely in the Cloud, or partially processed at the Edge and

Kafka
Flink

Zookeeper}
Client

/

/

/

/

/
…

Mosquitto
+

Edgent

…

Mosquitto
+

Edgent

Mosquitto
+

Edgent

Edge Cloud

Fig. 2. Simplified model of the infrastructure deployed for the experiments.

then sent to the Cloud. There are several components handling
this workflow: data producers, Edgent nodes and gateways
compose the Edge infrastructure; Kafka brokers, Zookeeper
servers, Flink nodes and clients compose the Cloud infras-
tructure. We explain each of them in detail in the following.

A. The Edge infrastructure
Data producers are used to simulate the generation of

data by sensors/actuators (e.g., taxis and CCTV cameras). In
both scenarios (cf. Section III), sensors are Java programs,
implemented with the Eclipse Paho library [28]. They read
data from files and forward it to the gateways, using the
Message Queuing Telemetry Transport (MQTT) protocol [29],
the most used IoT protocol in the literature.

Gateways are responsible for receiving data from a set of
sensors and transferring it to a main data center in the Cloud.
They are implemented as Eclipse Mosquitto servers [30],
equipped with a set of Kafka producers for data forwarding. In
our experiments, they are responsible for processing the data
and sending the results to the Cloud using Apache Edgent.

The set of data producers and gateways compose the Edge
infrastructure. The amount of data collected varies depending
on the experiment.

B. The Cloud infrastructure
Apache Kafka [14] is used to ingest streams coming from

the sensors before being processed. In summary, Kafka stores
arriving messages into partitions which, in their turn, are
organized into topics. The clients that write and read data from
partitions are called producers and consumers, respectively.

Apache Zookeeper [31] handles Kafka’s configurations and
metadata.

Apache Flink [15] is a high-throughput, low-latency stream
processing engine for the Cloud. In our scenarios, it is respon-
sible for getting data from Kafka, processing it and storing the
results back to Kafka.

The Client is written in Java and it is responsible for
downloading processed data from Kafka and analyzing it in
order to calculate the metrics of interest.

VI. EVALUATION

In this section, we discuss key points about the implementa-
tion and execution of the experiments and interpret the results.

A. Infrastructure and frameworks specifications

For our experiments we use 30 nodes from the paravance
and the parasilo clusters of the Grid’5000 testbed. The nodes
are equipped with Intel Xeon processors (Haswell, 2.40GHz, 2
CPUs/node, 8 cores/CPU) and 128GB of RAM. For managing
the network bandwidth and latencies we use virtual LANs and
the Linux traffic control (tc) tools. Every node has its resources
(CPU, memory, disk, I/O and network) monitored and logged
using the Linux dstat command.

We deploy Apache Flink v1.6 on 4 machines per cluster
except when indicated otherwise. We use Apache Kafka v1.0
with 4 brokers connected to one Zookeeper server. Kafka
was configured with 2 topics with 32 partitions each, one for
ingesting data sent by the gateways and another one to receive
data produced by Flink jobs. In addition, we set batch.size and
linger.ms with 200KB and 50ms, respectively. Those values
were defined through experimentation and are used throughout
all experiments.

B. Data preparation

The experimental workflow for both datasets is essentially
the same. The only differences are in the way data are gener-
ated and the data transmission frequencies of each source.

In the CCTV scenario there are, originally, around 700MB
of data. To be able to run our larger scale experiments without
having to generate new video frames, before execution, each
data source picks randomly around 6,000 frames from the
original dataset. In that way, even if the resulting videos do
not make sense for human eyes, they are distinct and valid
for data processing. Once the data is available in the data
sources, video frames are read every 100ms, wrapped with
their creation time stamp, and sent to the Mosquitto server.

In the original TLC dataset there are about 20GB of taxi
ride logs, which is enough for running our experiments without
having to generate data. TLC records come already with a
creation time stamp (i.e., the time the taxi ride ended), hence,
there is no need to redefine it. In order to compress an entire
year of data into our experiments, we mapped each minute in
the original dataset to 5ms.

When an experiment finishes its execution, two Kafka
consumers deployed on dedicated nodes get a sample of its
input topic and the entire output topic. Only a sample of the
input topic is recovered because in Cloud only scenarios, this
may be very large and would demand too much time and
resources to read it entirely.

C. Analysis

In this section we discuss how the parameters of interest
impact the performance of the TLC and CCTV workloads and
highlight some key differences between the two.

Impact of the bandwidth on the Edge-to-Cloud through-
put. In Figure 3, we plot the Edge-to-Cloud throughput of the
CCTV workload when all the stream processing is performed
on the Cloud. When the bandwidth (BW) is 100Mb/s or
1000Mb/s, there is a correlation between the throughput and
the number of data sources (P), in the X axis. Note, however,

4000

5000

#
 m

e
ss

a
g
e
s

/
s

Cloud only

BW: 1000
WS: 5

40 30 20
BW: 1000
WS: 10

40 30 20
BW: 100
WS: 5

40 30 20
BW: 100
WS: 10

40 30 20
BW: 10
WS: 5

40 30 20
BW: 10
WS: 10

40 30 20
3000

Fig. 3. Edge-to-Cloud throughput for different configurations of Cloud only
CCTV experiments. On the X axis we vary the number of data sources (P).

50

100

150

200

#
 m

e
ss

a
g

e
s

/
s

Cloud + Edge

BW: 1000
WS: 5

40 30 20
BW: 1000
WS: 10

40 30 20
BW: 100
WS: 5

40 30 20
BW: 100
WS: 10

40 30 20
BW: 10
WS: 5

40 30 20
BW: 10
WS: 10

40 30 20

Fig. 4. Edge to Cloud throughput (messages/s) for different configurations
of Cloud + Edge CCTV experiments. P varies on the X axis.

that the correlation disappears when BW is 10Mb/s and the
throughput keeps close to constant. This behavior of data
invariance followed by an augmentation of the data volume
characterizes a bandwidth bottleneck.

In Figure 4, we illustrate the throughput between Edge and
Cloud for CCTV when the stream processing is performed
partially at the Edge and on the Cloud (cf. Section III). There
is a correlation between throughput, window size (WS) and
number of data sources (P) in which more data and smaller
windows result in increased throughput. In this scenario, the
bandwidth does not affect the throughput and this can be
verified by checking that all points with the same P, W and
BW have similar throughput. In this case the bandwidth is no
longer a bottleneck because data is aggregated in the Edge
before being transmitted. Hence, only a fraction of the total
amount of data, which in this case varies between 1% and 2%,
is actually sent to the Cloud.

Impact of the bandwidth and of the number of data
sources on the end-to-end throughput. In Figure 5 we
illustrate the number of messages produced by Flink, which
corresponds to the amount of solutions calculated by each ex-
periment in Cloud only and hybrid Cloud and Edge scenarios.

Analyzing exclusively the Cloud-only throughput in Fig-
ure 5, we can observe two interesting trends. Firstly, when
the value of BW is 10Mb/s, the throughput is reduced and
it follows an almost constant pattern. Again, this happens
because of a bandwidth bottleneck: in our experiments, data
is processed by Flink at event time, i.e., the time observed
in each message dictates the time flow. In this case, it means
that the processing clock is behind the wall clock: the data
stream arrives slowly in the Cloud and, consequently, ”time”
passes slowly. Secondly, when BW is 100Mb/s or 1000Mb/s,
there are experiments where P is 30 or 40 and the throughput

0

1

2

3

4

5

6

#
 m

e
ss

a
g

e
s

BW: 1000
WS: 5

40 30 20
BW: 1000
WS: 10

40 30 20
BW: 100
WS: 5

40 30 20
BW: 100
WS: 10

40 30 20
BW: 10
WS: 5

40 30 20
BW: 10
WS: 10

40 30 20

Edge + Cloud
Cloud only

Fig. 5. Output of experiments in terms of number of messages for CCTV
experiments. Note that the maximum number of output messages for this
experiment is 6.

0

10

20

30

BW: 1000
WS: 5

40 30 20
BW: 1000
WS: 10

40 30 20
BW: 100
WS: 5

40 30 20
BW: 100
WS: 10

40 30 20
BW: 10
WS: 5

40 30 20
BW: 10
WS: 10

40 30 20

La
te

n
cy

 (
s)

Edge + Cloud
Cloud only

Fig. 6. Latency of experiments for CCTV experiments.

also reduces. However, in this case the bottleneck is not
the bandwidth, but the number of consumers. As the input
throughput is too high, a larger Flink cluster is needed. This
issue disappears when we increase its size, as the application
manages to process the workload in time.

Impact of the bandwidth and of the number of data
sources on the Edge-to-Cloud latency. The bandwidth bot-
tleneck can also be identified when analyzing the median of
the application latency, illustrated in Figure 6. In this Figure,
we identify (i) the overhead of data aggregation as the distance
between Edge + Cloud and Cloud only latencies, and (ii) the
bandwidth bottleneck issues – when bandwidth is 10Mb/s –
which impacts the latency of Cloud only experiments.

Impact of the record size on the Edge-to-Cloud through-
put. We plot the Edge-to-Cloud throughput of the TLC work-
loads grouped by BW, FR and P in Figure 7. We identify
similar patterns to those observed in Figures 5, however the
effects of bandwidth bottlenecks are smaller. This is due to the
different message sizes of each scenario. While video frames
from the CCTV dataset are around 25KB, TLC records are
about 300B. Hence, even if there are more messages flowing
from Edge to the Cloud, the influence of the bandwidth size
on the throughput is smaller.

An important detail that links the performance of hybrid
Edge and Cloud experiments in Figures 4 and 7 is that WS
and FR affects the amount of data uploaded to the Cloud in
an almost linear fashion.

VII. DISCUSSION

Edge and Cloud computing can and do work well together.
However, Edge computing is more suited for purpose-built
systems with special needs, while Cloud computing remains
more general. In this section, we present our main take-aways
for the community about the interaction between the two.

50000

100000

150000

200000

#
 m

e
ss

a
g

e
s

/
s

BW: 1000
FR: 50

40 30 20
BW: 1000
FR: 30

40 30 20
BW: 100
FR: 50

40 30 20
BW: 100
FR: 30

40 30 20
BW: 10
FR: 50

40 30 20
BW: 10
FR: 30

40 30 20

Edge + Cloud
Cloud only

Fig. 7. Throughput Edge-to-Cloud for TLC workloads for different parameter
configurations.

Bandwidth is a key parameter for hybrid Edge-Cloud
processing. As expected, we observe that, among all parame-
ters of interest, the bandwidth impacts every metric. However,
its influence can be offset by controlling the workload size
and the Edge gateways parallelism.

Complex, stateful operations are not suitable for Edge
only. Processing all data in the Edge, in complex scenarios is
usually not possible mainly because Edge nodes and devices
have only a partial view of the entire data. Additionally, often
Edge machines have restricted resources and battery life, and
are more susceptible to errors and virtual or physical attacks
than Cloud servers.

Hybrid Edge-Cloud processing speeds-up stateless and
simple stateful operations. As observed throughout the pre-
vious section, when it comes to stateless or simple stateful
operations, pre-processing data on the Edge before sending
them to the Cloud may have some very interesting benefits.
In our experiments, we observe that Edge computing helps
reduce the amount of data being uploaded to the Cloud and,
consequently, improves the overall performance, in terms of
end-to-end throughput.

Edge processing reduces network and Cloud resources
costs. While in many cases the Edge processing cannot bring
performance benefits to the overall application, it can reduce
its incurred costs. By filtering and aggregating data locally, the
transmissions costs and also the Cloud computing resources
costs are reduced (i.e., by sending and processing smaller
volumes of data, less processing power in the Cloud is needed).

VIII. CONCLUSION

The anticipated deployment of 5G networks in the near
future will allow to transmit very large amounts of data
short distances, with lower latencies and higher speeds. Con-
sequently, Edge processing will become ubiquitous. In this
context, identifying and understanding the impact of various
parameter settings on the performance of applications executed
on hybrid Edge-Cloud environments could trigger a new wave
of research aiming to achieve uniform and automated schedul-
ing of tasks on both infrastructures. Besides eliminating such
burden from users, this can enable optimized computation
placement with respect to network and resource costs.
monetary costs, and examine in this context the extent to

By necessity, our preliminary study only focused on a series
of parameters. As future work, we plan to extend and refine
our evaluation to take into account energy consumption and

which the benefits of using Edge-based or hybrid Edge-Cloud
processing can offset the associated costs.

REFERENCES

[1] M. Satyanarayanan, “The emergence of edge computing,” Computer,
2017.

[2] L. Prosperi, A. Costan, P. Silva, and G. Antoniu, “Planner: Cost-efficient
Execution Plans Placement for Uniform Stream Analytics on Edge and
Cloud,” in WORKS 2018, 2018.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, 2016.

[4] R. Young, S. Fallon, and P. Jacob, “An architecture for intelligent data
processing on iot edge devices,” UKSim-AMSS, 2017.

[5] S. Kartakis, W. Yu, R. Akhavan, and J. A. McCann, “Adaptive edge
analytics for distributed networked control of water systems,” in IEEE
IoTDI, 2016.

[6] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanarayanan,
“Scalable crowd-sourcing of video from mobile devices,” in Proceeding
of MobiSys ’13, 2013.

[7] Y. Qiu, Y. Chen, L. Jiao, and S. Huang, “Rta: Real time actionable
events detection as a service,” in IEEE CWS, 2016.

[8] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov,
“Spanedge: Towards unifying stream processing over central and near-
the-edge data centers,” in IEEE/ACM SEC, 2016.

[9] Apache, “Apache edgent.” [Online]. Available:
https://edgent.incubator.apache.org

[10] ——, “Apache edgent.” [Online]. Available: https://nifi.apache.org
[11] Amazon, “Aws iot greengrass.” [Online]. Available:

https://aws.amazon.com/greengrass/
[12] IBM, “Ibm watson iot.” [Online]. Available:

https://www.ibm.com/internet-of-things
[13] Pivota, “Rabbit mq.” [Online]. Available: https://www.rabbitmq.com
[14] Apache, “Apache kafka.” [Online]. Available: https://kafka.apache.org
[15] ——, “Apache flink.” [Online]. Available: https://flink.apache.org
[16] ——, “Apache spark.” [Online]. Available: https://spark.apache.org
[17] ——, “Apache storm.” [Online]. Available: http://storm.apache.org
[18] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopou-

los, “Challenges and opportunities in edge computing,” in IEEE Smart-
Cloud, 2016.

[19] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing grouped ag-
gregation in geo-distributed streaming analytics,” in HPDC ’15. ACM,
2015.

[20] Y. Zhu Dennis Shasha, “Statstream: Statistical monitoring of thousands
of data streams in real time,” 09 2002.

[21] O. Marcu, A. Costan, G. Antoniu, and M. S. Pérez-Hernández, “Spark
versus flink: Understanding performance in big data analytics frame-
works,” in IEEE CLUSTER, 2016.

[22] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky,
“Benchmarking streaming computation engines: Storm, flink and spark
streaming,” in IEEE IPDPSW, 2016.

[23] A. Das, S. Patterson, and M. P. Wittie, “Edgebench: Benchmarking edge
computing platforms,” CoRR, 2018.

[24] A. Medvedev, A. Hassani, A. Zaslavsky, P. P. Jayaraman, M. Indrawan-
Santiago, P. Delir Haghighi, and S. Ling, “Data ingestion and storage
performance of iot platforms: Study of openiot,” in Interoperability
and Open-Source Solutions for the Internet of Things, I. Podnar Žarko,
A. Broering, S. Soursos, and M. Serrano, Eds., 2017.

[25] B. Donovan and D. B. Work, “Using coarse gps data to quantify city-
scale transportation system resilience to extreme events.” in Transporta-
tion Research Board 94th Annual Meeting, 2015.

[26] A. B. Chan and N. Vasconcelos, “Modeling, clustering, and segmenting
video with mixtures of dynamic textures,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2008.

[27] OpenCV, “Opencv.” [Online]. Available: https://opencv.org
[28] Eclipse, “Eclipse paho.” [Online]. Available:

https://www.eclipse.org/paho/
[29] Oasis, “Message queuing telemetry transport.” [Online]. Available:

https://mosquitto.org/
[30] Eclipse, “Eclipse mosquitto.” [Online]. Available: https://mosquitto.org/
[31] Apache, “Apache zookeeper.” [Online]. Available:

https://zookeeper.apache.org/

