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We reduce a one-dimensional model of an active segment (AS), which is used, for instance, in the description
of contraction-driven cell motility, to a zero-dimensional model of an active particle (AP) characterized by
two internal degrees of freedom: position and polarity. Both models give rise to hysteretic force-velocity
relations showing that an active agent can support two opposite polarities under the same external force and
that it can maintain the same polarity while being dragged by external forces with opposite orientations. This
double bistability results in a rich dynamic repertoire which we illustrate by studying static, stalled, motile, and
periodically repolarizing regimes displayed by an active agent confined in a viscoelastic environment. We show
that the AS and AP models can be calibrated to generate quantitatively similar dynamic responses.

DOI: 10.1103/PhysRevE.100.062403

I. INTRODUCTION

Most mammalian cells have a remarkable ability to self-
propel even if confronted by an opposing mechanical force
[1]. The implied macroscopic motion is generated microscop-
ically inside the cellular cytoskeleton, an actively cross linked
biopolymer meshwork that can, for instance, spontaneously
and inhomogeneously contract in response to various external
and internal stimuli [2]. In particular, cells are known to
adjust their mode of self-propulsion by sensing the gradients
of chemokines, detecting the density of ligands and probing
the stiffness of the environment [3,4]. The integration of all
these cues [5] allows cells to continuously reorganize their
cytoskeleton and in this way to actively control their motility
mechanism [6,7].

The effect of mechanical stimuli on the dynamics of the
cytoskeleton is raising increasing attention [8]. Some cells,
like immune or cancer cells, are typically exposed to spa-
tially inhomogeneous rheological environments which may
generate time-dependent elastic and viscous resistance when
they migrate in an organism. Cellular responses can also be
directly linked to the action of external forces as in the case of
the various outcomes of cell collision tests [9,10], which has
been recently explained mechanically [11] without involving
biochemical pathways [12,13]. Understanding the response of
the cytoskeletal reorganization to mechanical loading [14,15]
may also guide the design of microscale bioinspired robots
which would then perform various healing functions.

Many important advances have been made in the modeling
of the migration of individual cells which involves not only
cytoskeletal contraction but also other complex phenomena,

*pierre.recho@univ-grenoble-alpes.fr
†t.putelat@bristol.ac.uk
‡lev.truskinovsky@espci.fr

in particular, active polymerization and active adhesion [16].
All these mechanisms have been successfully captured by the
continuum liquid crystal theory with incorporated tensorial
chemomechanical coupling [17–22]. However, while being
comprehensive, the resulting models mostly rely on large-
scale numerical simulations. This makes their integration as
building blocks of a kinetic theory of tissues [23,24] compu-
tationally costly, and simpler models are needed to study the
collective behavior of cells [25]. Capturing the mechanical
interaction of a cell with its environment at such a reduced
level is crucial for the adequate reproduction of the emerging
active phases [26,27].

To this end, we condense in this paper a one-dimensional
model of an active segment (AS) [28], which is used, for in-
stance, in the description of contraction-driven cell motility on
tracks, to a zero-dimensional model of an active particle (AP)
characterized by two internal degrees of freedom: position
and polarity. By focusing on contraction, we are motivated by
the experimental observations that a crucial building block of
cell repolarization, which plays an important role in both cell
collisions and cell oscillations, is myosin contractility [28,29].
In this exploratory study we limit our consideration to one
dimension having in mind that such a setting is close to the
classical well-calibrated experimental assays [30] while also
carrying some physiological significance: a typical situation
of three-dimensional in vivo motility is when cells travel along
the fibers of the extracellular matrix.

In contrast to some well-known representations of sizeless
active agents [31], the obtained AP model accounts for the
temporal dynamics of the degree of cell polarization in the
presence of external forces. In particular, we show that both
AS and AP models support two coexisting dynamic regimes:
frictional, when the active object is dragged by the force, and
antifrictional, when it is dragging the cargo. The fact that the
system is able to switch from one of these nonequilibrium
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steady states to the other through a hysteresis loop is a clear
manifestation of the fact that repolarization can emerge as a
result of the direct self-organization of the cytoskeleton in re-
sponse to a mechanical action without additional biochemical
regulation.

In the case of self-propulsion in a viscous environment we
find a continuous transition between the static (no polarity)
and the motile (two symmetry-related polarities) regimes at
a critical activity threshold which becomes viscosity inde-
pendent at sufficiently large viscosities. In the case of elas-
tic confinement, we identify three dynamic regimes: static
(no polarity), stalled (two symmetry-related polarities), and
oscillatory (periodically varying polarity). In a certain range
of parameters, our theory predicts a metastable coexistence
between the stalled and the oscillatory regimes, which opens
the possibility of complex stop-and-go dynamics in the pres-
ence of noise.

We show that the AS and AP models can be calibrated to
generate not only qualitatively but also quantitatively similar
dynamic responses. This is rather remarkable in view of the
fact that the AS model is described mathematically by a free
boundary problem formulated for nonlinear partial differential
equations of Keller-Segel type while the AP model ultimately
reduces to a single ordinary differential equation.

The paper is organized as follows. In Sec. II we present the
AS model accounting for the presence of a general external
force field. In Sec. III we formally reduce this model to a
set of two ordinary differential equations describing a sizeless
active particle and specify the calibration procedure for the
reduced model. In Sec. IV we compare the velocity-force
relation obtained in AS and AP models and show that they can
be made quantitatively similar. Then in Sec. V we study the
dynamics of an AP subjected to a viscous force. The case of
an AP attached to fixed wall through a linearly elastic spring
is studied in Sec. VI. Section VII summarizes our results.

II. THE ACTIVE SEGMENT (AS)

In this section we review the model of an active gel
segment performing a contraction-driven crawling on a rigid
surface [1,28,32]. Our focus is on the unexplored role of the
distributed external forces in this context.

A. The active gel model

A cell crawling on a straight frictional substrate is repre-
sented as a viscous contractile gel of fixed length L. The mech-
anisms fixing the cell length (see Ref. [15]) are not described
here; this simplification is made to make the analysis more
transparent.

The time-dependent free boundaries of the cell are x f (t )
for the front and xr (t ) = x f (t ) − L for the rear. The motion of
the geometric center of the cell is described by the function
S(t ) = [xr (t ) + x f (t )]/2. For convenience, the actual position
x ∈ [xr (t ), x f (t )] of a point inside the cell will be replaced in
what follows by the comoving coordinate y(x, t ) = x − S(t ) ∈
[−L/2, L/2].

Momentum balance for the cytoskeleton meshwork with a
frictional substrate requires that

∂yσ + fe = ξw, (1)

where σ (y, t ) is the axial stress field, w(y, t ) is the velocity
of the gel in the comoving frame of reference, ξ is a friction
coefficient, and fe(y, t ) is an external force field. The resultant
applied traction is therefore

Fe(t ) =
∫ L/2

−L/2
fe(y, t ) dy.

The constitutive behavior of the viscocontractile gel is
described by the rheological relation

σ = η∂yw + χc, (2)

where η is the gel viscosity, χ is the contractility, and c(y, t )
is the concentration of motors generating the active stress.

Since the segment boundaries are impermeable to the gel,
they are propelled at the common but unknown velocity,

V (t ) = Ṡ(t ) = ẋ f (t ) = ẋr (t ) = w(±L/2, t ), (3)

where the superimposed dot denotes the time derivative. The
reaction stress at the two boundaries σ (±L/2, t ) = σ b(t ) is
a kinematic variable to be determined using the fixed length
constraint.

The molecular motors are advected with the flow and
undergo a diffusive motion characterized by the flux J so that
the motor conservation law can be written as

∂t c + ∂y[c(w − V ) − J] = 0. (4)

In accordance with Fick’s law we assume that J = D∂yc
where D is an effective [1,32] diffusion coefficient. The
additional drift velocity V in (4) is due to the fact that the
time derivative is taken at fixed value of y and ∂t |x fixed =
∂t |y fixed − V ∂y. Assuming the initial condition c(y, 0) = c0(y)
and adopting no flux boundary conditions ∂yc(±L/2, t ) = 0,

we obtain that the total amount of motors remains fixed:

M =
∫ L/2

−L/2
c0(y) dy =

∫ L/2

−L/2
c(y, t ) dy.

B. Thermodynamics

A detailed study of the thermodynamics of the AS model
can be found in Refs. [1,33]. Here we present a simplified
analysis in order to compare it with the case of an active par-
ticle. Assuming that temperature remains constant the global
dissipation in the system R reads

R = P − Ė � 0, (5)

where E is the energy of the system and P is the power of
external forces. In view of (1) we can write

P = −
∫ L/2

−L/2
(ξw − fe)w dy.

To compute Ė, we need to take into account the chemical
reaction supporting the activity of the motors. If ζ (y, t ) is the
reaction progress variable, we write (see Ref. [33] for details)

Ė = −
∫ L/2

−L/2
[J∂yμ + Aζ̇ ]dy, (6)

where A is the affinity of the reaction which is a prescribed
constant measuring the degree of the nonequilibrium [34]
and μ(c) is the chemical potential of the motors. Under
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these assumptions, we obtain the explicit expression for the
dissipation

R =
∫ L/2

−L/2
[σ∂yw + J∂yμ + Aζ̇ ]dy.

We now make the standard assumption [35] J = l33∂yμ and
introduce a coupling between mechanics and chemistry in the
form σ = η∂yw + l12A, ζ̇ = −l12∂yw + l22A. A simple way
to express the fact that the molecular motors play the role of
a catalyst for the reaction is to assume that the related kinetic
coefficients are proportional to the concentration l12 = ac and
l22 = bc, where a and b are constants. With this assumption,
we recover the constitutive relation (2) with χ = aA. A second
consequence is the presence of the mechanical feedback to
kinetics ζ̇ = c(bA − a∂yw). Finally to recover the Fickian
diffusion postulated to close the equation (4), we need to
assume a linear dependence of the chemical potential in the
concentration field μ = kc and set D = kl33. As a result, we
obtain

R =
∫ L/2

−L/2
[bA2c + η(∂yw)2 + kD(∂yc)2]dy � 0. (7)

The first term in (7) describes dissipation due to chemical
reaction, the second term is the viscous dissipation, and the
last term is the contribution due to diffusion.

C. Nondimensionalization

We nondimensionalize distances by the hydrodynamic
length l̄ = √

η/ξ , times by the diffusional time scale t̄ =
l̄2/D, concentrations by c̄ = M/L, and stresses by σ̄ = ξD
(and hence forces by f̄ = σ̄ /l̄ and velocities by w̄ = l̄/t̄).
The ensuing problem depends on the three nondimensional
parameters:

L := L

l̄
, F := Fe

σ̄
, and P := Mχ

l̄σ̄
.

These parameters represent, respectively, the length of the
segment in the units of the hydrodynamic length (i.e., the
length over which a perturbation in the flow propagates before
it is damped), the normalized resultant traction force applied
to the system (which is generically a function of time), and
the normalized contractility of the motors. The problem also
depends on the imposed nondimensional force field f (y, t ) =
fe(y, t )/Fe(t ) constrained by the condition

∫ L/2
−L/2 f (y, t )

dy = 1.
Although we consider from now on only nondimensional

variables, we keep the same notations for the physical vari-
ables (i.e., time, space, stress, velocity, and concentration).

D. Reduction to a single nonlocal equation

Combining the force balance with the constitutive relation,
we obtain the linear equation for the stress

−∂yyσ + σ = F∂y f + (P/L)c. (8)

Solving for σ , we obtain a nonlocal relation

σ = (P/L)φ̃ ∗ c + F φ̃ ∗ ∂y f , (9)

FIG. 1. Two interaction kernels φ(y): Black line is the exponen-
tial kernel of this paper and blue line is the kernel used in Ref. [36].
Nondimensional length L = 2.

where we introduce the notation

ψ ∗ h =
∫ L/2

−L/2
ψ (y − z)h(z, t ) dz.

The interaction kernel in (9) is

φ̃(z) = cosh (z + L/2) − 2H (z) sinh (z) sinh (L/2)

2 sinh(L/2)
,

where H is the Heaviside function. Differentiating the stress
and using the force balance equation we obtain the expression
for the velocity field

w = (P/L)φ ∗ c + F (φ ∗ ∂y f + f ), (10)

where φ(z) = ∂zφ̃(z). In Fig. 1 we compare the kernel φ

with the simplified kernel introduced in Ref. [36] on purely
topological and symmetry grounds.

Equation (10) may be seen as as the fundamental descrip-
tion of the contraction-driven mechanics: the flow velocity w

at point y is induced, first, by the presence in another point z of
an active force dipole, represented by a motor concentration-
dependent active stress [15,28], and, second, by the passive
external force field. We illustrate in Fig. 2 the nonlocal re-
sponse of the stress and velocity fields to a space-dependent
motor or force loading. While a symmetric motor distribution
gives rise to a symmetric stress field and an antisymmetric
velocity field, the response to a symmetric force field is an
antisymmetric stress distribution and a symmetric velocity
distribution.

The impenetrability condition (3) can be now used to
express the segment velocity

V (t ) = P
L {φ ∗ c} + F {φ ∗ ∂y f + f }, (11)

where {h} = (h|−L/2 + h|L/2)/2 denotes the average over the
domain boundaries.

To write a single equation for the concentration field we
combine (4), (10), and (11) to obtain

∂t c + ∂y{c[(P/L)φ 
 c + F (φ 
 ∂y f + δ 
 f )]} = ∂yyc,
(12)
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FIG. 2. Nonlocal response of the stress field [see (9)] and the
velocity field [see (10)] to a contractility distribution with no external
force (first row, F = 0 and P = 1) and to a force distribution with no
contractility (second row, P = 0 and F = 1). Nondimensional length
L = 2.

where δ is the Dirac distribution, and we introduce the no-
tation φ 
 h = φ ∗ h − {φ ∗ h}. The no-flux boundary condi-
tion then ensures that 〈c〉 = 1, where spatial averaging is
defined by

〈h〉 = 1

L

∫ L/2

−L/2
h(z, t ) dz.

In the special case when F = 0 we obtain the classical Keller-
Segel model with a quadratic nonlinearity [37]

∂t c + (P/L)∂y[cφ 
 c] = ∂yyc. (13)

After Eq. (12) is solved for c(y, t ), the remaining unknowns
σ (y, t ), w(y, t ), and V (t ) can be reconstructed using Eqs. (9),
(10), and (11). Note that the velocity field decouples from the
motor concentration field with the latter emerging as the main
driver of the overall dynamics.

III. THE ACTIVE PARTICLE (AP)

Suppose now that the internal configuration of the motors
c(y, t ) is not observable and that we have access only to some
global polarity measure. We found it convenient to choose it
in the form

C(t ) = {φ ∗ c}/L,

which is a variable confined to the interval [−1/2, 1/2] and
which is nonzero if and only if c is not symmetric (i.e., not
even).

A. Model reduction

To obtain a closed description of the cell dynamics in terms
of the “macrovariables” representing the polarity C(t ) and
the position S(t ), we need to project the infinite dimensional
active segment (AS) model (12) onto this two-dimensional
space defining the active particle (AP) model. To this end, we
first average (10) in two different ways. Using (11) we directly
obtain

V = PC + kSF,

where

kS = {φ ∗ ∂y f + f }. (14)

By integrating (10) over space we also obtain

〈w〉 = F/L.

The new macroscopic variable 〈w〉 naturally enters a macro-
scopic analog of (4), which we write in the form

Ċ + 〈w − V 〉 = −�(C).

Here the term 〈w − V 〉 mimics the drift term in (4). The term
on the right-hand side is intended to play the role of diffusion
degrading the existing polarity, and therefore the function �

is chosen to be increasing and vanishing at C = 0. We thus
write �(C) = ∂CĒ , where the potential Ē is convex. In what
follows we will be using the expression

Ē (C) = α

4
C4 + Pc

2
C2.

If we now eliminate 〈w〉 and denote

kC = kS − 1/L,

we obtain the system of ordinary differential equations:

Ṡ = PC + kSF,
(15)

Ċ = −∂CE + kCF,

where we introduced a new potential E which now contains
an active contribution: ∂CE = �(C) − PC. In particular, for
the quartic choice of Ē made above, we obtain

E (C) = α

4
C4 − P − Pc

2
C2,

which is a Landau potential with the active term playing a
destabilizing role for the symmetric state. The presence of the
active term −PC2/2 ensures that for large P the potential
develops two wells corresponding to two symmetry-related
polarized states.

Similar to the AS model, the decoupling of the variable S
from the dynamics of the variable C renders the AP model
(15) nonpotential: The position of the AP depends on its
polarity while the reverse influence is absent.

B. Thermodynamics

If we multiply (15)2 by Ċ we find

kCFĊ − Ė = Ċ2 � 0.

This relation is reminiscent of (5) in the AS model. The terms
kCFĊ can be interpreted as the work done by the external
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force F on the collective variable C. The rate of change of
the energy associated with the variable C is described by the
term Ė . Finally, the positive definite term Ċ2 can be associated
with dissipation R. Note that Ė splits into the sum of a passive
term ˙̄E representing diffusion and serving the same role as
the term − ∫ L/2

−L/2 J∂yμ dy in (6), and the active term −(PC)Ċ,
representing the internally driven contraction, and playing a
role of the analog of the term − ∫ L/2

−L/2 Aζ̇ dy in (6).

C. Negative friction coefficient

Given that the velocity of the particle is essentially en-
slaved to its polarity, (15) is a direct analog of the Rayleigh-
Helmholtz model where the polarity variable is absent and the
activity takes the form of a velocity-dependent friction force
[31]. Since the dissipation in such a model can be negative, a
“friction” term will, in some parameter range, take the form
of an “antifriction”.

To illustrate this statement in our context it is sufficient to
compute the effective frictional viscosity of the AP at zero
velocity: μ0(P ) = ∂V F |Ṡ=Ċ=0. We obtain

1

μ0
= kS + P

Pc − P kC . (16)

To highlight the effect, consider the simplest case when Pc �
P so that E has a single well and (15) has a single steady
state (Ṡ = Ċ = 0) which is stable. In the case of AS model,
the results are similar even though the analysis is less explicit;
see Appendix A.

The sign of μ0 in (16) depends on the contractility P
and the constants kS and kC , which are functionals of the
continuous force distribution. One would expect that always
kS � 0 since in the absence of molecular motors (P = 0), a
positive resultant force should be able to drag the layer in
the forward direction. When f � 0, we have indeed kS � 0
but negativity of kS can still result from a sign-indefinite
distribution of external loading; see Appendix B.

In contrast, even when f � 0, the coefficient kC may be
negative for some force distributions. A negativity of kC would
mean that a positive resultant force favors negative polarity
which triggers a competition between the active force PC and
the passive force kSF in determining the AP velocity. On the
contrary, a positive value of kC means that a positive value of
the resultant force biases the polarity towards a positive value
and that the active and passive forces conspire in selecting the
velocity.

We start with the simplest situation when the loading is
homogeneous f (y) = 1/L. In this case, we obtain kS = 1/L
and kC = 0. Thus, the coupling between the applied force and
the polarity in (15) is absent, and the coefficient μ0 takes its
passive value (independent of P) which is μ0 = L; see the
black line in Fig. 3. This is fully consistent with the behavior
of the AS model as in the case of homogeneous loading
(12) is independent of the applied forces and reduces to (13):
the homogeneous force shifts the flow velocity w only by a
constant, pulling the segment as if it were a passive object.

FIG. 3. Effective frictional viscosity μ0 in the AP model as a
function of the motor activity P in the three loading configurations
(for the related AS model): homogeneous loading (black line),
loading localized in the middle of the segment (blue line), and
loading on the segment sides (red line). Nondimensional length
L = 2.

A more complex case, which was also discussed in
Refs. [11,14], is when external forces are applied at the
boundaries of the segment (for instance, using cantilevers).
Then

f (y) = βδ(y + L/2) + (1 − β )δ(y − L/2), (17)

where 0 � β � 1. The configuration of the motors is indepen-
dent of the partition of the force between the two boundaries
(factor β) because the length is fixed and the symmetric part
of the loading on the boundary is absorbed into σ b. Therefore,
independently of the value of β, we obtain

kS (L) = coth(L/2)

2
. (18)

In this case kC � 0 and μ0 decreases with the motor activity
reaching zero at P = Pc; see the red line in Fig. 3.

The situation changes radically in the case when the load-
ing is localized in the middle of the segment (say, when a
force is applied to the cell nucleus) f (y) = δ(y). Then kS =
1/[2 sinh(L/2)] and thus kC � 0. Since the coefficient kC is
negative, the friction coefficient μ0 increases with the motor
activity P until it blows up and switches sign at the critical
value P = LkSPc and then increases again to reach zero at Pc;
see the blue line in Fig. 3. The fact that the frictional viscosity
μ0 can reach zero and even be negative is a feature of many
active systems [38,39].

To summarize, the AP model carries a memory of the
force distribution in the corresponding AS model, and some
particular force distributions may trigger the change of the
sign of the effective friction coefficient. In Sec. IV we study
the stationary force velocity distribution more systematically,
showing, in particular, how the friction coefficient μ0 depends
on the parameter P .

In what follows, the force distribution will be always taken
in the form (17).

D. Calibration

To relate the AP and AS models quantitatively we need
to find a relation between the functions φ(y) and �(C). To
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FIG. 4. Spontaneous polarization in AS (thin blue line) and AP
(thick black line) models when contractility increases above the
critical threshold Pc. We show in insets typical concentration profiles
of molecular motors along the bifurcated branches in the AS model.
Nondimensional length L = 2.

do so, it is sufficient to consider the case F = 0. Under this
condition, when the contractility parameter P in the AS model
increases above a critical threshold Pc(L), the symmetric ho-
mogeneous solution of (12) c ≡ 1 becomes unstable and a po-
larized motile state emerges as a result of a pitchfork bifurca-
tion (second-order phase transition) leading to two symmetric
configurations with opposite polarities [33]. The structure of
the bifurcation is shown in Fig. 4, and the expression of Pc(L)
is given in Appendix C, see also Fig. 5. To reproduce the same
bifurcation in the framework of the AP model (at F = 0), we
need to find the minima of the Landau potential E (C). It has

FIG. 5. Dependence of three contractility thresholds Pc, Pm, and
Ps on the nondimensional length L for the AP (thick black line) and
AS (thin blue line). The value of Pc is the same in both the AS and
AP models by construction. The color dots are choices of parameters
related to the V-F relations shown in Fig. 6.

a single minimum at C = 0 when P < Pc and two symmetric
minima at C = ±√

(P − Pc)/α when P > Pc; see Fig. 4.
The coefficient α is fixed by matching the asymptotic behavior
for the two models at P = Pc. From a normal form analysis
of the AS model, we obtain α = P2

c L3θ2(L)/2; the analytical
expression for the function θ2(L) > 0 is given in Appendix C.

The last parameter that needs to be specified to fully
define the AP model is kS (L), which encapsulates the external
loading distribution. As we have already mentioned, in this
paper, we will focus on an external loading from the sides of
the segment [see (17)] leading to the expression (18) for kS .

The AP model is now fully defined and connected to the
AS model by (15) with �(C), Pc(L), α(L), and kS (L) given
above.

The dynamics of both the AP and AS thus depend on two
scalar parameters P and L, characterizing respectively, the
activity and the size of the crawler. The overall control is
performed by the external loading F (t ).

IV. VELOCITY-FORCE RELATIONS

To test the efficiency of our calibration procedure, we now
subject both systems, AS and AP, to a fixed external force
and show that the steady-state velocity-force (V-F) relations
obtained in Ref. [11] for the AS model can be closely approx-
imated if we use directly the AP model.

In the case of the AS model, we solve numerically Eq. (12)
with ∂t c = 0. In the AP setting we find the stationary value
of polarity C directly from the equation ∂CE = kCF and
then obtain the V-F relation substituting this value of C into
(15). As shown in Fig. 6, both models generate quantitatively
similar V-F relations.

When the contractility is sufficiently small, P < Pc (black
curves in Fig. 6), the V-F relations in both models are single-
valued and frictional, meaning that V F > 0. This is obvious
in the AP case since the potential E (C) is convex and the
system has only one stable [∂CCE (C0) > 0] stationary solution
C0(F ). The ensuing V-F relation can be written explicitly:
V = kSF + PC0(F ).

When contractility becomes large enough, P > Pc (red,
green, and blue curves in Fig. 6), the V-F curves develop a do-
main of bistability which spreads over a range F ∈ [−Ft , Ft ],
where, in the AP model, Ft = 2(P − Pc)3/2/(3kC

√
3α).

Within this range, the stationary polarity can take three
values: C∗

0 < C0 < C∗∗
0 where C∗

0 < 0 < C∗∗
0 correspond

to metastable solutions and C0 is an unstable solution
[∂CCE (C0) < 0]. In this range, the V-F relations allow for
the coexistence of the two metastable regimes with different
signs of velocity: V ∗ = kSF + PC∗

0 (F ) and V ∗∗ = kSF +
PC∗∗

0 (F ). These two branches of the V-F relation are con-
nected by the unstable branch V0 = kSF + PC0(F ), which
is located between the two turning points F = ±Ft . Inside
the coexistence interval [−Ft , Ft ], one of the two metastable
solutions necessarily operates in an antifrictional regime with
V F � 0. Similar bidirectionality is also characteristic of the
V-F curves describing an ensemble of molecular motors
interacting either hydrodynamically [40] or through a rigid
backbone [41].
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FIG. 6. Comparison of the V-F relations in the AS and AP
models. Four typical V-F relations in the AS (thick lines) and the AP
(thin lines) models. The dashed parts of the V-F curves correspond
to unstable regimes. Parameters L = 2 and P = 5 (black-upper left
corner), P = 6 (red-upper right corner), P = 7 (green-lower left
corner), and P = 9 (blue-lower right corner) are represented with
the same color dots in Fig. 5.

The most interesting feature of the model is the existence
of another threshold, Pm (= kSLPc in the AP case), beyond
which the V-F curves start to display muscle-like stall force
states. For Pm < P < Ps (green curves in Fig. 6), where Ps =
2kSPc/(3/L − kS ) in the AP case, such states are unstable
but for P > Ps(L) (blue curves in Fig. 6) they stabilize. The
functions Pm,s(L) for the AS model are compared with those
for the AP model in Fig. 5, and the corresponding V-F curves
can be read off in Fig. 6. As we illustrate in the schematic
Fig. 7, the V-F relations can display a standard hysteresis in
force (when Pc < P < Ps) or be double hysteretic in both
force and velocity (when P > Ps). In the latter case, not only
two steady-state velocities can be compatible with the same

FIG. 7. Schematic representation of the single and double
hysteretic V-F relations.

FIG. 8. Comparison of the global polarity C as a function of the
force in AS (thin blue) and AP models (thick black). The dashed parts
of the C-F curve correspond to unstable regimes. We show in the
inset the motor concentration in the AS case at forces F = −3 and
F = 3. The red profiles have a positive polarity, and the blue profiles
have a negative polarity. A central symmetry transforms a red (resp.
blue) profile at a positive force into a blue (resp. red) profile at a
negative force. The green profiles are related to the unstable branch.
Nondimensional length and contractility: L = 2 and P = 9.

loading but also two force distributions can be compatible
with the same velocity.

Note that in both the AS and AP models, the relation
linking the global polarity measure C to the velocity and the
force is the same:

C = (V − kSF )/P .

We illustrate in Fig. 8 how C varies as a function of F and how
the underlying concentrations of molecular motors change in
the AS model. When the loading increases beyond the turning
points located at ±Ft , the global polarity changes sign as the
local motor concentration abruptly switches from one edge
of the segment to the other. Similar hysteretic effects have
also been found between the angular velocity and the applied
torque in a Couette cell containing a polar active gel [42].

Given the good agreement between the AS and AP models
in predicting the steady-state regimes, in the rest of the paper
we focus on the non-steady-state dynamic behavior of the AP
model in two paradigmatic cases when the AP is exposed to
either a fluidlike viscous or a solidlike elastic environment.
We also compare the nonsteady behavior predicted by the AP
and the AS models in the same conditions.

V. VISCOUS ENVIRONMENT

Assume that the external force is proportional to the parti-
cle velocity

F (t ) = −ηpṠ(t ),

where ηp is the (nondimensional) viscosity of the environ-
ment. System (15) then takes the form

(1 + ηpkS )Ṡ = PC, Ċ = −∂CE (C) − ηpkCṠ. (19)
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FIG. 9. Phase diagram of an AP subjected to a viscous drag
force. The inset shows that the bifurcation from a static to a motile
case at a critical contractility remains of second order (supercritical).
Such a transition can be also obtained by reducing the environment
viscosity. The phase boundary obtained for the AS is superimposed
in thin blue. Nondimensional length L = 2.

We can reduce (19) to a single nonlinear ordinary differential
equation for the particle polarity Ċ = −∂CEeff(C) where

Eeff(C) = α
C4

4
−

[
P

(
1 − ηpkC

1 + ηpkS

)
− Pc

]
C2

2
. (20)

The viscosity of the environment therefore redresses the onset
of motility to the value

Peff
c = Pc

1 − ηpkC

1+ηpkS

� Pc.

The resulting motility initiation phase diagram is shown in
Fig. 9. The effect is the same in the AS case with Peff

c analyt-
ically given in Appendix C and presented for comparison in
Fig. 9 (thin blue line). Note that the bifurcation from a static
to motile state as the activity of the motors increases remains
supercritical; see inset of Fig. 9.

Interestingly, the same type of transition (static to motile)
is also initiated by reducing the environment viscosity. How-
ever, Peff

c (ηp) has an asymptote (=Pm for both the AP and
AS) when ηp → ∞. This is an indication that the transition
threshold Peff

c depends weakly on the external viscosity when
the latter is sufficiently large even though the velocity of the
particle remains sensitive to it. The robustness of the threshold
suggests that, in this range of parameters, active crawlers can
effectively adapt their degree of polarization to the external
viscosity.

In Fig. 10 we illustrate the nonsteady motility
initiation while comparing the AP and AS dynamic
models. One can see that depending on the value of the
environmental viscosity the same statically equilibrated initial
state can be stable or not: in more viscous environments active
agent remains static, while in less viscous environments it

FIG. 10. Initiation of motility in a viscous environment. (a) AP
position S as a function of time with two external viscosities cor-
responding a static (red) and a motile (blue) case. One of the two
symmetric trajectory is chosen according to a small bias in the initial
polarity. (b) Same type of dynamics for the AS model. The intensity
of the coloring is proportional to the level of motor concentration.
Nondimensional contractility and length P = 6 and L = 2.

spontaneously starts to move in one of the two symmetric
directions.

VI. ELASTIC CONFINEMENT

We now consider the case when the environmental force
F (t ) is given by

F (t ) = −kpS(t ),

where kp is the (nondimensional) stiffness of the confining en-
vironment; see Fig. 11. While we have previously investigated
this situation numerically in the case of the AS model [11],
we now show that the AP model allows one to understand the
stability properties of such systems analytically.

Inside a harmonic trap the active agent cannot move per-
sistently, but it can still exhibit a rich dynamics. In the case of
the AP model, the main system (15) takes the form

Ṡ = PC − kpkSS, Ċ = −∂CE (C) − kpkCS, (21)

which combines into the second-order system for the polarity
variable

kpC̈ + [kp∂CCE (C) + kS]Ċ + kS∂CE (C) + kCPC = 0. (22)

Inspection of Eq. (22) shows that it reduces to a classical
Van der Pol equation if kS = 0. The critical points of (21)
are (S0,C0) = (0, 0), corresponding to the force-free static
configuration, while the points

(S±
s ,C±

s ) = ±
√

kS (P − Pc) − kCP√
kSα

( P
kpkS

, 1

)
,

describe two symmetrically stalled configurations with the
spring under either tension or compression. The linear stabil-
ity of such states is determined by solving the characteristic

FIG. 11. Scheme of an elastically confined AP (in red).
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FIG. 12. Linear instability thresholds of the static solution in the
AP and AS case. We show in insets some typical static, stalled, and
oscillatory dynamics for the AP and AS case. The intensity of the
coloring is proportional to the motor concentration for the AS case.
Nondimensional length L = 2.

equation

det

(−kSkp − ω P
−kCkp −3αC2 + P − Pc − ω

)
= 0

for C = C0 and C = C±
s and finding conditions when the real

part of ω becomes positive.
From such an analysis, we find that the loss of linear sta-

bility of the trivial static configuration (S0,C0) can be of two
types depending on the rigidity of the external environment:

(1) If kp � k∗
p = kCLPc/kS , the configuration (S0,C0)

stops being linearly stable as a result of a Hopf bifurcation
taking place at P = kp(Pm − Pc)/k∗

p + Pc.
(2) If kp � k∗

p , the configuration (S0,C0) stops being lin-
early stable through a supercritical pitchfork bifurcation tak-
ing place at P = Pm.

We present in Fig. 12 the comparison of these two linear
instabilities for the AP and AS models. The insets illustrate
the typical static, stalled and oscillatory regimes. A similar
picture emerges from the study of the linear stability of the
stalled solutions (S±

s ,C±
s ):

(1) If kp � k∗
p , the configuration (S±

s ,C±
s ) stops being

linearly stable through a Hopf bifurcation taking place at
P = Ps − kp(Ps − Pm)/k∗

p .
(2) If kp � k∗

p , the configuration (S±
s ,C±

s ) stops being
linearly stable through a supercritical pitchfork bifurcation
taking place at P = Pm.

Both linear stability results are summarized for the AP
model on the synthetic phase diagram shown in Fig. 13. In
addition, we show there the numerically constructed non-
linear stability boundaries for all three types of solutions:
static, stalled, and oscillatory. Interestingly, the supercritical

FIG. 13. Stability diagram of an AP confined by harmonic
springs depending on the contractility and environment stiffness.
Note the region of coexistence (metastability) between the oscilla-
tions and stall phases where the two types of solutions coexist. The
two thin dashed lines and associated capital letters are related to
the bifurcations diagrams shown in Fig. 14. Nondimensional length
L = 2.

transition from a static to a stalled state becomes insensitive
to kp above the threshold k∗

p . This indicates again that the
AP can self-adapt to the environmental stiffness in order to
maintain the same motor activity threshold. We also report
the opening of a domain of metastability where oscillatory
solutions coexist with stall solutions which we were not
able to capture numerically for the AS model in Ref. [11].
This is potentially important as it can open the possibility of
complex stop-and-go dynamics for an elastically confined AP
subjected to noise.

The origin of such metastability can be understood by
reconstructing the global structure of the bifurcation dia-
gram using a numerical continuation method [43]. Typical
results are illustrated in Fig. 14. When the environment stiff-
ness is smaller than the tricritical point value, kp � k∗

p [see
Fig. 14(a)], the branch of oscillatory solutions emerging from
the static branch reaches a turning point (denoted by C in
Fig. 13 and Fig. 14). As the contractility P increases beyond
this point the oscillatory solutions cease to be stable and the
system abruptly switches to the stalled configuration. The
same discontinuous transition is associated with the decrease
of contractility when the stalled configurations undergoes a
Hopf bifurcation at the critical value of P (denoted by B in
Fig. 13 and Fig. 14). The oscillatory and stalled configurations
have therefore a domain of metastable coexistence. When
kp � k∗

p [see Fig. 14(b)], this complexity disappears as we
observe only a continuous transition from a static to a stalled
state (point D in Fig. 13 and Fig. 14).
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FIG. 14. Two typical bifurcation diagrams for an elastically con-
fined AP when the stiffness kp < k∗

p (a) and when kp > k∗
p (b).

The continuation of the Hopf bifurcation is shown in blue, while
supercritical pitchforks (second-order phase transitions) are shown
in black. In the inset of (a), we show the frequency (inverse of the
period) of the stable Hopf oscillations as a function of the continua-
tion parameter. The dashed lines are linearly unstable branches, and
full lines are stable. Arrows indicate the discontinuous transitions.
The capital letters are related to the phase diagram shown in Fig. 13.
Nondimensional length L = 2.

To illustrate the structure of the oscillations we show in
Fig. 15 the limit-cycle-type regimes for the AP model using
the force-velocity coordinates. The parameters are chosen in
the oscillatory phase, see Fig. 13. As the stiffness of the
environment gets smaller, the oscillations amplitude and their
period are increasing, which results, in the limit kp → 0, in
an almost steady-state behavior as the limit cycle is now
adequately described by the hysteretic V-F relation obtained
in Sec. IV.

Oscillations driven by molecular motors are ubiquitous
across various space and time scales in cell biology [44,45].
Cell shape oscillations are often shown to be resulting from
a periodic regulation by signaling molecules (Rho GTPases)
controlling the motors’ contractility [46]. Indeed, the acti-
vation or inhibition dynamic between several Rho GTPases
can form an autonomous clock acting as a pacemaker [47].
However, center-of-mass oscillations of living cells, associ-
ated with periodic reversals of the molecular motors polarity,
were also repeatedly observed [48,49]. There exist theoretical
models of cell motility involving both cytoskeleton contrac-

FIG. 15. Dynamics of the oscillations for the stiffness kp of
the environment starting from the initial state (S0,C0 ). (a) The
trajectories of the oscillating particle in the phase space (kpS, Ṡ) for
three different stiffnesses. We superimpose in black the V-F curve
obtained for a fixed force (Sec. IV). (b) The related particle position
steady-state oscillations. Nondimensional length and contractility
L = 2 and P = 6.5.

tion and protrusion aiming at capturing the emergence of such
oscillations. For instance, in Ref. [50], oscillations emerge
from a coupling between cell shape and biochemical polar-
ization, while in Ref. [51], they result from a delay between
actin and myosin flow in the cell cortex. Here we report
that oscillations can also spontaneously arise simply from the
mechanical interaction of the cell with its elastic environment.
Interestingly, oscillations similar to the ones found in this
paper were also reported at a smaller scale where a bead-tailed
actin filament propelled by the collective action of myosin
motors was tethered to an optical trap [52].

To complement this analysis, we now briefly discuss the
case of a breakable environmental confinement from where
the active agent can escape. To this end we assume that
F (t ) = −kpS(t )H[lp − |S(t )|], where the parameter lp char-
acterizes the (nondimensional) breaking limit of the confining
spring; see Fig. 16. In this case, the AP can break out of the
confinement and reach a motile state. We show in Fig. 17
the resulting phase diagram at a given value of lp. The AP
can now become motile as soon as the spring reaches the

FIG. 16. Schematic representation of the harmonic confinement
with a breaking threshold.

062403-10



ACTIVE GEL SEGMENT BEHAVING AS AN ACTIVE … PHYSICAL REVIEW E 100, 062403 (2019)

FIG. 17. Stability diagram of an AP confined by breakable har-
monic springs. The position of the boundary of the motile phase
depends on the initial conditions of (15), which are here taken
to be (S,C)(t = 0) = (S0,C0). We show in the inset some typical
dynamic of the AP breaking out of the harmonic confinement.
Nondimensional length and breaking limit L = 2 and lp = 1.5.

elongation lp with a nonzero speed. Such an escape scenario is
reminiscent of an epithelial to mesenchymal transition where
cells break out from the confinement of their neighbors and
start to move persistently on their own.

VII. CONCLUSIONS

Starting with a one-dimensional model of contraction-
driven crawling we developed an active particle model. Such a
particle is able to adjust its polarity to the applied force. Both
models generate quantitatively similar force-velocity relations
which can describe hysteresis in velocity and force. In the
presence of a viscous resistance from the environment, the
obtained model predicts the emergence of polarity and the as-
sociated initiation of motility when the viscosity is reduced. If
elastically confined, both the active segment and particle can
develop dynamical oscillations. The model suggests that there
exists a domain of parameters where oscillatory and stalled
states coexist, which suggests the possibility of stochastic
switch between the two regimes. We can anticipate even more
complex dynamic attractors in a viscoelastic environment
of Kelvin-Voigt or Maxwell type and/or when the external
rheology becomes nonlinear involving, for instance, plastic
deformations.
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APPENDIX A: EFFECTIVE VISCOSITY

When the applied force is much larger than the contractile
force F 
 P , Eq. (11) furnishes the explicit steady-state
velocity-force (V-F) relation: V = (F/2) coth(L/2). The in-
verse of the slope of the V-F relation at zero force (i.e., the
effective frictional viscosity) can then be computed directly:

μ∞ = 2 tanh(L/2).

In the opposite case, when the external forces are negligible
P 
 F , the homogeneous solution c ≡ 1 is the stable steady
state as long as P � Pc. By performing a first-order Taylor
expansion around this solution for small F , we can compute
the effective frictional viscosity μ0.

To this end we introduce a small parameter ε and substitute
the expansions c(y) = 1 + εc1(y), V = εV1, and F = εF1 into
Eq. (12). At the first order we obtain the linear integro-
differential equation∫ 1/2

−1/2
{φ[L(u − v)] − φ(L/2 − Lv)}c1(v)dv

+ F1[ψ (Lu) − ψ (L/2)] = 1

L∂uc1. (A1)

Here we have used the rescaled variable u and applied the
no-flux boundary conditions. Note that we still need to impose
the constraint

∫ 1/2
−1/2 c1(u) du = 0.

In view of the exponential nature of the kernel, Eq. (A1)
can be solved analytically. It can be first transformed into
the following system of second-order linear differential equa-
tions:

− 1

L2
∂uuX + MX = V(u), where X =

(
c1

σ1

)
,

V =
(−F1ψ̃ (Lu)

0

)
and M =

(−P/L 1
−P/L 1

)
. (A2)

The boundary conditions take the form

∂uc1|−1/2 = 0,
∫ 1/2

−1/2
c1(u) du = 0, σ1|−1/2 = σ1|1/2

× and ∂uσ1|−1/2 = ∂uσ1|1/2. (A3)

The solution of this system reads

c1(u) = csch (ω/2) sinh(uω) − uω coth (ω/2)

2 − (P/L)ω coth (ω/2)
F1,

where ω2 = L2(1 − P/L). Finally, the substitution of c1(u)
into (11) gives the linear part of the force velocity relation

V1 = F1

(ω

L
)3 coth (ω/2)

2 − (P/L)ω coth (ω/2)
. (A4)

In Fig. 18 we show the effective viscosity at zero force
μ0 = ∂F1/∂V1 as a function of the parameter P . When P = 0,
the value μ0 coincides with μ∞ because the V-F relation is
linear over the whole range of forces. As the parameter P
increases, μ0 decreases, which is the signature of the contrac-
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FIG. 18. Effective frictional viscosity at the origin of the V-
F curve, μ0 as a function of the nondimensional contractility P .
Nondimensional length L = 2.

tile activity being responsible for the induced flow inside the
cell. When P reaches the value Pc, the viscosity μ0 vanishes
and becomes negative for P > Pc. The value of μ0 continues
to decrease and eventually diverges at P = Pm indicating a
complete flattening of the V-F relation close to the origin. If P
increases beyond Pm, then μ0 becomes positive again. Note,
however, that expression (A4) is obtained as we perturbed the
homogeneous solution. Such a solution is the stable attractor
of the initial value problem only when P � Pc, and therefore,
the values of μ0 obtained for P � Pc are associated with
unstable regimes (when the external force is controlled.)

APPENDIX B: NONPOSITIVE DEFINITENESS
OF THE COEFFICIENT kS

Using the known expression of the kernel φ, the general ex-
pression for the coefficient kS , given by (14), can be rewritten
in the form

kS =
∫ L/2

−L/2

cosh(z)

2 sinh(L/2)
f (z) dz. (B1)

It then clear that if f (z) � 0, then kS � 0. However, if we
use the nonsign-definite distributed loading f which takes
negative values close to the sides of the segments and a
positive value in the center, then the structure of the explicit
multiplier in front of f (z) in (B1) suggests that kS can
become negative. For instance, if f (z) = −a[δ(z + L/2) +

δ(z − L/2)] + bδ(z) with a, b � and b − 2a = 1, then kS � 0
as long as a � 1/[4 sinh(L/4)2].

APPENDIX C: BIFURCATIONS AND NORMAL FORMS

Consider a steady-state configuration of AS in the absence
of an externally applied force (F = 0). In this case ∂t c ≡ 0,
and we can integrate (4) to obtain an expression for c as a
function of σ . Then substituting this expression into (8) leads
to the nonlocal boundary value problem (see Ref. [32] for
details):⎧⎪⎨

⎪⎩
− 1

L2 ∂uus(u) + s(u) + sb = θ

(
es(u)−νu∫ 1/2

−1/2 es(u)−νu du
− 1

)
s
(± 1

2

) = 0 and ∂us
(± 1

2

) = ν.

(C1)

Here we introduced the notations u = y/L ∈ [−1/2, 1/2],
θ ≡ P/L, s(u) = σ (u) − σ b, sb = σ b − θ , and ν = LV . For
steady states and F = 0, Eq. (C1) is equivalent to (12) as c
can be reconstructed from s and ν using the formula

c(u) = es(u)−νu∫ 1/2
−1/2 es(u)−νu du

.

Equation (C1) has the unique homogeneous solution

s = 0, ν = 0 and sb = 0.

Below we study the bifurcations from this trivial solution
giving rise to nontrivial solutions as the parameter θ increases.

To this end, we choose a small parameter ε and perform a
Taylor expansion near the homogeneous solution keeping the
terms up to third order:⎧⎪⎨

⎪⎩
s = 0 + εs1 + ε2

2 s2 + ε3

6 s3 + o(ε3),

ν = 0 + εν1 + ε2

2 ν2 + ε3

6 ν3 + o(ε3),

sb = 0 + εsb
1 + ε2

2 sb
2 + ε3

6 sb
3 + o(ε3).

We also write a similar expansion for the bifurcation parame-
ter

θ = θ0 + εθ1 + ε2

2
θ2 + ε3

6
θ3 + o(ε3).

Substituting these expansions into (C1) and introducing the
operator

Lin(s(u), sb, ν) = −∂uus(u)

L2
+ (1 − θ0)s(u)

+ (1 − θ0)sb + θ0νu,

we obtain:
at first order,

Lin
(
s1, sb

1, ν1
) = 0, (C2)

at second order,

Lin
(
s2, sb

2, ν2
) = 2

{
1

24
θ0

[
12s1(u)

(
s1(u) + 2sb

1 − 2ν1u
) + 24ν1

∫ 1/2

−1/2
us1(u) du

−12
∫ 1/2

−1/2
s1(u)2 du + 24sb

1
2 − 24sb

1ν1u + 12ν2
1 u2 − ν2

1

]
+ θ1

[
s1(u) + sb

1 − ν1u
]}

, (C3)
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at third order,

Lin
(
s3, sb

3, ν3
) = 1

4

(
θ0

{
12s1(u)

(
2sb

1
2 + sb

2

) + 12s2(u)
[
s1(u) + sb

1 − ν1u
]

+ 12

[∫ 1/2

−1/2
us1(u) du

][
2ν1s1(u) + 4sb

1ν1 − 2ν2
1 u + ν2

] − 24sb
1ν1us1(u) + 12sb

1s1(u)2

− 24sb
1

[∫ 1/2

−1/2
s1(u)2 du

]
− 12

∫ 1/2

−1/2
s1(u)s2(u) du + 12ν2

1 u2s1(u) − 12ν2
1

∫ 1/2

−1/2
u2s1(u) du − ν2

1 s1(u)

− 12ν1us1(u)2 + 12ν1u
∫ 1/2

−1/2
s1(u)2 du + 12ν1

∫ 1/2

−1/2
us1(u)2 du − 12ν2us1(u) + 4s1(u)3 − 4

∫ 1/2

−1/2
s1(u)3 du

− 12s1(u)

[∫ 1/2

−1/2
s1(u)2 du

]
+ 24sb

1
3 + u

( − 24sb
1

2
ν1 − 12sb

1ν2 − 12sb
2ν1 + ν3

1

) + 24sb
1sb

2 − 2sb
1ν

2
1

+ 12ν1u2(sb
1ν1 + ν2

) + 12ν1

∫ 1/2

−1/2
us2(u) du − 4ν3

1 u3 − ν1ν2

}

+ θ1

[
12s1(u)

(
s1(u) + 2sb

1 − 2ν1u
) + 24ν1

∫ 1/2

−1/2
us1(u) du − 12

∫ 1/2

−1/2
s1(u)2 du + 24sb

1
2 − 12u

(
2sb

1ν1 + ν2
)

+ 12s2(u) + 12sb
2 + 12ν2

1 u2 − ν2
1

]
+ 12θ2

[
s1(u) + sb

1 − ν1u
])

. (C4)

At all orders the boundary conditions remain

si(±1/2) = 0 and ∂usi(±1/2) = νi. (C5)

1. Bifurcation points

The spectral analysis of (C2) produces a countable number
of bifurcation points. Although we provide below a general
analysis of all these points, we emphasize that direct numeri-
cal simulations of (12) show that the only stable steady-state
branches are the trivial branch when P � Pc and the first
motile branch D1 when P > Pc. See Ref. [32] for further
details.

Introducing

ω2 = L2(1 − θ0), (C6)

we obtain in the first order,

s1(u) = C1 cosh [ω(u + 1/2)] + C2 sinh[ω(u + 1/2)]

− sb
1 + ν1u

(
ω2 − L2

)
/ω2. (C7)

Note that the solution ω = 0 should be excluded because it
produces the same homogeneous solution. The four constants
C1, C2, sb

1, and ν1 follow from the four boundary conditions
(C5), which leads to a homogeneous linear system of equa-
tions. This algebraic problem has nontrivial solutions when
the determinant of the matrix⎛

⎜⎜⎝
1 0 −1 (L2/ω2 − 1)/2
0 ω 0 −L2/ω2

cosh(ω) sinh(ω) −1 (1 − L2/ω2)/2
ω sinh(ω) ω cosh(ω) 0 −L2/ω2

⎞
⎟⎟⎠ (C8)

cancels out, yielding the transcendental characteristic equa-
tion

2[cosh(ω) − 1] + (ω2/L2 − 1)ω sinh(ω) = 0.

The solutions of this equation split into two families depend-
ing on whether parameter ω is real or purely imaginary. In
the first (resp. second) case we denote ωc = |ω| � 0 (resp.
ωc = −|ω| � 0), which leads to{

2 tanh(ωc/2) = (
1 − ω2

c/L2
)
ωc if ωc � 0

2[cos(ωc) − 1] + (
ω2

c/L2 + 1
)
ωc sin(ωc) = 0 if ωc � 0.

(C9)
It is convenient to analyze equations (C9)1 and (C9)2 sepa-
rately:

1. When ω is real, Eq. (C9)1 has a unique solution pro-
vided 2

√
3 � L. Otherwise, it has no solution. The corre-

sponding eigenvector can be written as⎛
⎝ sb

1
ν1

s1(u)

⎞
⎠ =

⎛
⎝ 0

1
L2

ω3
c cosh(ωc/2) [sinh (uωc) − 2u sinh (ωc/2)]

⎞
⎠.

Since ν1 �= 0 the corresponding bifurcation leads to a motile
configuration that we denote D1.

2. When ω is purely imaginary, Eq. (C9)2 has two families
of solutions:

(a) The first family is explicitly parametrized with an
integer ωc = −2mπ with m � 1, and the associated eigenvec-
tor reads ⎛

⎝ sb
1

ν1

s1(u)

⎞
⎠ =

⎛
⎝ 1

0
cos[ωc(u + 1/2)] − 1

⎞
⎠.

Since ν1 = 0, the bifurcated solution describes a static cell.
We denote this family Sm.
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FIG. 19. Eigenvalues θ0 and θ2 as a function of L for the first
motile branch D1.

(b) The second family consists of a countable set of nega-
tive roots of the equation

2 tan(ωc/2) = (
1 + ω2

c/L2
)
ωc. (C10)

The largest root exists only if L � 2
√

3, and the correspond-
ing eigenvector reads⎛

⎝ sb
1

ν1

s1(u)

⎞
⎠ =

⎛
⎝ 0

1
−L2

ω3
c cos(ωc/2) [sin (uωc) − 2u sin (ωc/2)]

⎞
⎠.

Since ν1 �= 0, these roots of the characteristic equation are
associated with motile branches. We denote this family Dm

with m � 1.
The critical bifurcation threshold Pc introduced in the

main text can be written as Pc = Lθ0(D1) where the relation
between θ0 and ωc follows from (C6). See also Fig. 19.

In the presence of an external viscous friction ηp, the
Dirichlet boundary conditions in (C1) are modified into

s

(
±1

2

)
= ∓ηpν

2L ,

which modifies the critical contractility value controlling the
onset of motility into Peff

c (L, ηp) as (C9)1 and (C10), respec-
tively, become

2 tanh(ωc/2) = [
1 − ω2

c/L2(1 + ηp/L)
]
ωc

and

2 tan(ωc/2) = [
1 + ω2

c/L2(1 + ηp/L)
]
ωc.

The resulting value of Peff
c is shown in Fig. 9.

2. Normal forms

Each bifurcation is now characterized by the eigenvalue
θ0 and the eigenvector [s1(u), sb

1, ν1]. This information is not
sufficient to find the shape of the bifurcated branch close to
a bifurcation point. To this end we need to use higher-order
equations (C3)–(C4).

FIG. 20. Eigenvalues θ0 and θ2 as a function of L for the first
static branch S1.

Starting from second order, the right-hand side of Eq. (C3)
must be in the range of the operator Lin. This is equivalent
(Fredholm alternative) to the requirement that this expression
is orthogonal to the kernel of the dual of Lin. In our case, this
property reduces to imposing an orthogonality condition in the
space (C1,C2, sb, ν) with the kernel of the transpose of (C8).
The resulting scalar equation sets the value of θ1.

For both static and motile branches, we find θ1 = 0, which
means that the static and motile bifurcations are of pitchfork
type. The super- or subcritical nature of the bifurcation fol-
lows from third order. Solving first (C3) with θ1 = 0 leads to
the solution [sb

2, ν2, s2(u)], whose detailed expression is not
given here.

We can now apply the same analysis as above to Eq. (C4),
which gives, for the motile branches:

θ2 = {(L2 − ω2)[L10(3ω2 + 770)

− 6L8(2ω4 + 215ω2 + 1540)

+ 6L6(4ω4 + 85ω2 + 660)ω2 − 2L4(15ω2 + 79)ω6

+ 21L2(ω2 + 8)ω8 − 6ω12]}/
{144L2ω8[−L4 + 2L2(ω2 + 6) − ω4]}. (C11)

This expression is always positive indicating that all motile
bifurcations are supercritical. We illustrate in Fig. 19 the
eigenvalues θ0 and θ2 as a function of the length parameter
L for the first motile branch D1.

To complete the picture, a similar but simpler analysis
for the static branches can be carried out. Given that the
expression for θ0 can be given explicitly, we can compute

θ2 = 1

48

(
32π2m2

L2
− L2

π2m2
+ 4

)
.

This value is not always positive, which indicates that the
pitchfork bifurcation can be super- or subcritical depending on
the value of m and L. In Fig. 20 we illustrate the dependence
of θ0 and θ2 on L for the first static branch S1 (m = 1).
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