Sougata Bose

Shankara Narayanan

Anca Muscholl

Vincent Penelle

Gabriele Puppis

On Synthesis of Resynchronizers for Transducers

Keywords: 2012 ACM Subject Classification Theory of computation → Transducers String transducers, resynchronizers, synthesis Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.55

We study two formalisms that allow to compare transducers over words under origin semantics: rational and regular resynchronizers, and show that the former are captured by the latter. We then consider some instances of the following synthesis problem: given transducers T1, T2, construct a rational (resp. regular) resynchronizer R, if it exists, such that T1 is contained in R(T2) under the origin semantics. We show that synthesis of rational resynchronizers is decidable for functional, and even finite-valued, one-way transducers, and undecidable for relational one-way transducers. In the two-way setting, synthesis of regular resynchronizers is shown to be decidable for unambiguous two-way transducers. For larger classes of two-way transducers, the decidability status is open.

Introduction

The notion of word transformation is pervasive in computer science, as computers typically process streams of data and transform them between different formats. The most basic form of word transformation is realized using finite memory. Such a model is called finite-state transducer and was studied from the early beginnings of automata theory. Differently from automata, the expressiveness of transducers is significantly affected by the presence of nondeterminism (even when the associated transformation is a function), and by the capability of processing the input in both directions (one-way vs two-way transducers). Another difference is that many problems, notably, equivalence and containment, become undecidable when moving from automata to transducers [START_REF] Fischer | Multi-tape one-way nonwriting automata[END_REF][START_REF] Ibarra | The unsolvability of the equivalence problem for e-free NGSM's with unary input (output) alphabet and applications[END_REF]. An alternative semantics for transducers, called origin semantics, was introduced in [START_REF] Bojańczyk | Transducers with origin information[END_REF]] in order to obtain canonical two-way word transducers. In the origin semantics, the output is tagged with positions of the input, called origins, that describe where each output element was produced. According to this semantics, two transducers may be non-equivalent even when they compute the same relation in the classical semantics. From a computational viewpoint, the origin semantics has the advantage that it allows to recover the decidability of equivalence and containment of non-deterministic (and even two-way) transducers [START_REF] Bose | Origin-equivalence of two-way word transducers is in PSPACE[END_REF].

55:2 On Synthesis of Resynchronizers for Transducers

It can be argued that comparing two transducers in the origin semantics is rather restrictive, because it requires that the same output is generated at precisely the same place. A natural approach to allow some 'distortion' of the origin information when comparing two transducers was proposed in [START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF]. Rational resynchronizers allow to compare one-way transducers (hence, the name 'rational') under origin distortions that are generated with finite control. A rational resynchronizer is simply a one-way transducer that processes an interleaved input-output string, producing another interleaved interleaved input-output string with the same input and output projection. For two-way transducers (or equivalently, streaming string transducers [1]) a different formalism is required to capture origin distortion, since the representation of the origin information through interleaved input-output pairs does not work anymore. To this purpose, regular resynchronizers were introduced in [START_REF] Bose | Origin-equivalence of two-way word transducers is in PSPACE[END_REF] as a logic-based transformation of origin graphs, in the spirit of Courcelle's monadic second-order logic definable graph transductions [START_REF] Courcelle | Graph Structure and Monadic Second-Order Logic -A Language-Theoretic Approach[END_REF]. In [START_REF] Bose | Origin-equivalence of two-way word transducers is in PSPACE[END_REF] it was shown that containment of two-way transducers up to a (bounded) regular resynchronizer is decidable.

In this paper we first show that bounded regular resynchronizers capture the rational ones. This result is rather technical, because rational resynchronizers work on explicit origin graphs, encoded as input-output pairs, which is not the case for regular resynchronizers. Then we consider the following problem: given two transducers T 1 , T 2 , we ask whether some rational, or bounded regular, resynchronizer R exists such that T 1 is origin-contained in T 2 up to R. So here, the resynchronizer R is not part of the input, and we want to synthesize such a resynchronizer, if one exists.

Our main contributions can be summarized as follows: 1. synthesis of rational resynchronizers for functional (or even finite-valued) one-way transducers is decidable, 2. synthesis of rational resynchronizers for unrestricted one-way transducers is undecidable, 3. synthesis of bounded regular resynchronizers for unambiguous two-way transducers is decidable. Somewhat surprisingly, for both decidable cases above the existence of a resynchronizer turns out to be equivalent to the classical inclusion of the two transducers.

Full proofs of the results presented in this paper can be found in the extended version https://arxiv.org/abs/1906.08688.

Preliminaries

One-way transducers.

One of the simplest transducer model is the one-way non-deterministic finite-state transducer (hereafter, simply one-way transducer), capturing the class of so-called rational relations. This is basically an automaton in which every transition consumes one letter from the input and appends a word of any length to the output. Formally, a one-way transducer is a tuple T = (Σ, Γ, Q, I, E, F, L), where Σ, Γ are finite input and output alphabets, Q is a finite set of states, I, F ⊆ Q are subsets of initial and final states, E ⊆ Q × Σ × Q is a finite set of transition rules, and L ∶ E ⊎ F → 2 Γ * is a function specifying a regular language of partial outputs for each transition rule and each final state. The relation defined by T contains pairs (u, v) of input and output words, where u = a 1 . . . a n and v = v 1 . . . v n v n+1 , for which there is a run q 0 a1 v1 → q 1 a2 v2 → . . . q n vn+1 → such that q 0 ∈ I, q n ∈ F , (q i-1 , a i , q i) ∈ E, v i ∈ L(q i-1 , a i , q i), and v n+1 ∈ L(q n). The transducer is called functional if it associates at most one output with each input, namely, if it realizes a partial function. For example, the figure below shows two one-way transducers with input alphabet Σ = {a, b} and output alphabet Γ ⊇ Σ. The first transducer is functional, and realizes the cyclic rotation f ∶ cu ↦ uc, for any letter c ∈ {a, b} and any word u ∈ {a, b} * . The second transducer is not functional, and associates with an input u ∈ Σ * any possible word v ∈ Γ * as output such that u is a sub-sequence of v. Allowing the input head to move in any direction, to the left or to the right, gives a more powerful model of transducer, which captures e.g. the relation {(u, u n) ∶ u ∈ Σ * , n ∈ N}.

To define two-way transducers, we adopt the convention that, for any given input u ∈ Σ * , u(0) = ⊢ and u(u + 1) = ⊣, where ⊢, ⊣ ∉ Σ are special markers used as delimiters of the input. In this way, a transducer can detect when an endpoint of the input has been reached.

A two-way transducer is a tuple T = (Σ, Γ, Q, I, E, F, L), whose components are defined just like those of a one-way transducer, except that the state set Q is partitioned into two subsets, Q ≺ and Q ≻ , the set I of initial states is contained in Q ≻ , and the set E of transition rules is contained in

(Q × Σ × Q) ⊎ (Q ≺ × {⊢} × Q ≻) ⊎ (Q ≻ × {⊣} × Q ≺).
The partitioning of the set of states is useful for specifying which letter is read from each state: states from Q ≺ read the letter to the left, whereas states from Q ≻ read the letter to the right. Given an input u ∈ Σ * , a configuration of a two-way transducer is a pair (q, i), with q ∈ Q and i ∈ {1, . . . , u + 1}. Based on the types of source and target states in a transition rule, we can distinguish four types of transitions between configurations (the output v is always assumed to range over the language L(q, a, q ′)):

(q, i)

a v
→ (q ′ , i + 1) if (q, a, q ′) ∈ E, q, q ′ ∈ Q ≻ , and a = u(i), (q, i) a v → (q ′ , i) if (q, a, q ′) ∈ E, q ∈ Q ≻ , q ′ ∈ Q ≺ , and a = u(i), (q, i) a v → (q ′ , i -1) if (q, a, q ′) ∈ E, q, q ′ ∈ Q ≺ , and a = u(i -1), (q, i) a v → (q ′ , i) if (q, a, q ′) ∈ E, q ∈ Q ≺ , q ′ ∈ Q ≻ , and a = u(i -1). Note that, when reading a marker ⊢ or ⊣, the transducer is obliged to make a U-turn, either left-to-right or right-to-left. The notions of successful run, realized relation, and functional transducer are naturally generalized from the one-way to the two-way variant, (we refer to [START_REF] Bose | Origin-equivalence of two-way word transducers is in PSPACE[END_REF] for more details).

In [START_REF] Bojańczyk | Which classes of origin graphs are generated by transducers?[END_REF], a slight extension of two-way transducers, called two-way transducers with common guess, was proposed. Before processing its input, such a transducer can non-deterministically guess some arbitrary annotation of the input over a fixed alphabet. Once an annotation is guessed, it remains the same during the computation. Transitions may then depend on the input letter and the guessed annotation at the current position. For example, this extension allows to define relations of the form

{(u, vv) u ∈ Σ * , v ∈ Γ * , u = v }.
Note that the extension with common guess does not increase the expressiveness of one-way transducers, since these are naturally closed under input projections. Likewise, common guess does not affect the expressive power of functional two-way transducers, since one can guess a canonical annotation at runtime.

Classical vs origin semantics.

In the previous definitions, we associated a classical semantics to transducers (one-way or two-way), which gives rise to relations or functions between input words over Σ and output words over Γ. In [START_REF] Bojańczyk | Transducers with origin information[END_REF] an alternative semantics for transducers, called origin M F C S 2 0 1 9

55:4

On Synthesis of Resynchronizers for Transducers semantics, was introduced with the goal of getting canonical transducers for any given word function. Roughly speaking, in the origin semantics, every position of the output word is annotated with the position of the input where that particular output element was produced. This yields a bipartite graph, called origin graph, with two linearly ordered sets of nodes, representing respectively the input and the output elements, and edges directed from output nodes to input nodes, representing the so-called origins. The figure depicts an input-output pair (a n , b n) annotated with two different origins: in the first graph, a position i in the output has its origin at the same position i in the input, while in the second graph it has origin at position ni. Formally, the origin semantics of a transducer is a relation

S o ⊆ Σ * × (Γ × N) * consisting of pairs (u, ν), where u = a 1 . . . a n ∈ Σ * is a possible input and ν = ν 1 . . . ν m+1 ∈ (Γ × N) *
is the corresponding output tagged with input positions, as induced by a successful run of the form (q 0 , i 0)

a1 ν1 → (q 1 , i 1) a2 ν2 → . . . (q m , i m) νm+1
→, with each ν j ∈ (Γ × {i j }) * . We identify a pair (u, ν) with the origin graph obtained by arranging the input elements and the output elements along two lines (we omit the successor relation in the graph notation), and adding edges from every output element (a, i) to the i-th element of the input. Given an origin graph G = (u, ν), we denote by in(G), out(G), and orig(G) respectively the input word u, the output word obtained by projecting ν onto the finite alphabet Γ, and the sequence of input positions (origins) obtained by projecting ν onto N.

For one-way transducers, there is a simpler presentation of origin graphs in the form of interleaved words. Assuming that the alphabets Σ and Γ are disjoint, we interleave the input and output word by appending after each input symbol the output word produced by reading that symbol. For example, if Σ = {a} and Γ = {b}, then a word of the form abb . . . abb represents an origin graph (a n , ν), where ν = 2n and ν(2i -1) = ν(2i) = (b, i), for all i = 1, . . . , n. Words over Σ ⊎ Γ are called synchronized words. Just as every synchronized word represents an origin graph, a regular language over Σ ⊎ Γ represents a rational relation with origins, or equally the origin semantics of a one-way transducer.

In general, when comparing transducers, we can refer to one of the two possible semantics. Clearly, two transducers that are equivalent in the origin semantics are also equivalent in the classical semantics, but the converse is not true.

Resynchronizations

The central concept of this paper is that of resynchronization, which is a transformation of origin graphs that preserves the underlying input and output words. The concept was originally introduced in [START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF], and mostly studied in the setting of rational relations. Here we use the concept in the more general setting of relations definable by two-way transducers. Formally, a resynchronization is any relation R ⊆ (Σ * × (Γ × N) *) 2 that contains only pairs (G, G ′) of origin graphs such that in(G) = in(G ′) and out(G) = out(G ′), namely, with the same projections onto the input and output alphabets.1 A resynchronization R can be used to modify the origin information of a relation, while preserving the underlying input-output pairs. Formally, for every relation S o ⊆ Σ * × (Γ × N) * with origins, we define

the resynchronized relation R(S o) = {G ′ ∈ S o (G, G ′) ∈ R, G ∈ S o }. Note that if the origin information is removed from both R(S o) and S o , then R(S o) ⊆ S o . Moreover, R(S o) = S o when R is the universal resynchronization, that is, when R contains all pairs (G, G ′), with G, G ′ ∈ Σ * × (Γ × N) * , in(G) = in(G ′), and out(G) = out(G ′).

Definability of resynchronized relations.

An important property that we need to guarantee in order to enable some effective reasoning on resynchronizations is the definability of the resynchronized relations. More precisely, given a class C of transducers, we say that a resynchronization R preserves definability in C if for every transducer T ∈ C, the relation R(T) is realized by some transducer T ′ ∈ C, that can be effectively constructed from R and T . The class C will usually be the class of one-way transducers or the class of two-way transducers, and this will be clear from the context.

Below, we recall the definitions of two important classes of resynchronizations, called rational [START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF] and regular resynchronizers [START_REF] Bose | Origin-equivalence of two-way word transducers is in PSPACE[END_REF], that preserve definability by one-way transducers and by two-way transducers, respectively. We will then compare the expressive power of these two formalisms, showing that rational resynchronizers are strictly less expressive than regular resynchronizers.

Rational resynchronizers.

A natural definition of resynchronizers for one-way transducers is obtained from rational relations over the disjoint union Σ ⊎ Γ of the input and output alphabets. Any such relation consists of pairs of synchronized words (w, w ′), and thus represents a transformation of origin graphs. In addition, if the induced synchronized words w and w ′ have the same projections over the input and output alphabets, then the relation represents a resynchronization. We also recall that rational relations are captured by one-way transducers, so, by analogy, we call rational resynchronizer any one-way transducer over Σ ⊎ Γ that preserves the input and output projections.

It is routine to see that rational resynchronizers preserve definability of relations by one-way transducers. It is also worth noting that every rational resynchronizer is a length-preserving transducer. By a classical result of Elgot and Mezei [START_REF] Elgot | On relations defined by generalized finite automata[END_REF] every rational resynchronizer can be assumed to be a letter-to-letter one-way transducer, namely, a transducer with transitions of the form q

a b → q ′ , with a, b ∈ Σ ⊎ Γ.
Example 1. Consider the functional one-way transducers T 1 , T 2 in Figure 1. The domain of both transducers is (aa) * . An origin graph of T 1 is a one-to-one mapping from the output to the input (each a produces one b). On the other hand, in an origin graph of T 2 , every a at input position 2i + 1 is the origin of two b's at output positions 2i + 1, 2i + 2. The transducer R M F C S 2 0 1 9 55:6 On Synthesis of Resynchronizers for Transducers depicted to the right of the figure transforms synchronized words while preserving their input and output projections. It is then a rational resynchronizer. In particular, R transforms origin graphs of T 1 to origin graphs of T 2 .

Regular resynchronizers.

While languages of synchronized words are a faithful representation of rational relations, this notation does not capture regular relations, so relations realized by two-way transducers. An alternative formalism for resynchronizations of relations defined by two-way transducers was proposed in [START_REF] Bose | Origin-equivalence of two-way word transducers is in PSPACE[END_REF]

(G)(x) = γ, out(G)(x + 1) = γ ′ , orig(G ′)(x) = z, and orig(G ′)(x + 1) = z ′ , then (in(G), z, z ′) ∈ next γ,γ ′ . A resynchronizer is a tuple (move γ) γ∈Γ , (next γ,γ ′) γ,γ ′ ∈Γ
, and defines the resynchronization R with pairs (G, G ′) induced by the relations move γ and next γ,γ ′ , where γ, γ ′ ∈ Γ.

In order to obtain a well-behaved class of resynchronizations, that in particular preserves definability by two-way transducers, we need to enforce some restrictions. First, we require that the relations move γ and next γ,γ ′ are described by regular languages (or equally, definable in monadic second-order logic). By this we mean that we encode the input positions y, z, z ′ with suitable annotations over the binary alphabet B = {0, 1}, so that we can identify the relations move γ and next γ,γ ′ with some regular languages over the expanded alphabet Σ × B 2 . We call regular resynchronizer a resynchronizer where the relations move γ and next γ,γ ′ are given by regular languages. In addition, we also require that regular resynchronizers are k-bounded, for some k ∈ N, in the sense that for every input u, every output letter γ, and every target origin z, there are at most k positions y such that (u, y, z) ∈ move γ .

Example 2. Consider the resynchronization R that contains the pairs (G, G ′), where the origin graph G (resp. G ′) maps every output position to the first (resp. last) input position, as shown in the figure. Note that R is 'one-way', in the sense that it contains only origin graphs that are admissible outcomes of runs of one-way transducers. However, R is not definable by any rational resynchronizer, since, in terms of synchronized words, it should map a v u to a u v,

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5 b5
for every a ∈ Σ, u ∈ Σ * , and v ∈ Γ * , which is clearly not a rational relation. The resynchronization R can however be defined by a 1-bounded regular resynchronizer, for example (move γ) γ∈Γ , (next γ,γ ′) γ,γ ′ ∈Γ , where

move γ = {(u, y, z) u ∈ Σ * , y = 1, z = u } and next γ,γ ′ = Σ * × N × N.
One can observe that, in the previous example, next is not restricting the resynchronization further. For other examples that use next in a non-trivial way see for instance [START_REF] Bose | Origin-equivalence of two-way word transducers is in PSPACE[END_REF]Example 13].

The notion of resynchronizer can be slightly enhanced in order to allow some additional amount of non-determinism in the way origin graphs are transformed (this enhanced notion is indeed the one proposed in [START_REF] Bose | Origin-equivalence of two-way word transducers is in PSPACE[END_REF]). The principle is very similar to the idea of enhancing two-way transducers with common guess. More precisely, we allow additional monadic parameters that annotate the input and the output, thus obtaining words over expanded alphabets of the form Σ × Σ ′ and Γ × Γ ′ . A resynchronizer with parameters is thus a tuple ipar, opar, (move γ) γ , (next γ,γ ′) γ,γ ′ , where ipar ⊆ (Σ × Σ ′) * describes the possible annotations of the input, opar ⊆ (Γ × Γ ′) * describes the possible annotations of the output, and, for every γ, γ ′ ∈ Γ × Γ ′ , move γ ⊆ (Σ × Σ ′ × B 2) * describes a transformation from source to target origins of γ-labelled output positions, and next γ,γ ′ ⊆ (Σ × Σ ′ × B 2) constraints the target origins of consecutive output positions labelled by γ and γ ′ . The resynchronization pairs (G, G ′) in this case are induced by (move γ) γ∈Γ×Γ ′ , (next γ,γ ′) γ,γ ′ ∈Γ×Γ ′ and are obtained by projecting the input and output over the original alphabets Σ and Γ, under the assumption that the annotations satisfy ipar and opar. A resynchronizer with parameters is called regular if all its relations are regular. A regular resynchronizer is called bounded if it is k-bounded, for some k.

In [START_REF] Bose | Origin-equivalence of two-way word transducers is in PSPACE[END_REF] it was shown that, given a bounded regular resynchronizer R with parameters and a two-way transducer T with common guess, one can construct a two-way transducer T ′ with common guess such that T ′ = o R(T). The notation T ′ = o R(T) is used to represent the fact that T ′ and R(T) define the same relation in the origin semantics.

Unless otherwise stated, hereafter we assume that two-way transducers are enhanced with common guess, and regular resynchronizers are enhanced with parameters.

Rational vs regular resynchronizers.

Our first result shows that bounded, regular resynchronizers are more expressive than rational resynchronizers. Consider for instance Example 1: it can be captured by the regular resynchronizer with opar annotating even/odd positions. The resynchronizer shifts the origins of the even positions of the output by one to the left and keeps the origins of the odd positions unchanged. So here move γ can be described by a regular language. On the other hand, Example 2 shows that there are bounded, regular resynchronizers that cannot be captured by rational resynchronizers. Theorem 3. For every rational resynchronizer, there is an equivalent 1-bounded regular resynchronizer.

The proof of the above result is rather technical and can be found in the extended version.

Here we only provide a rough idea. Consider a rational resynchronizer R, that is, a oneway transducer that transforms synchronized words while preserving the input and output projections.

For example, the figure to the right represents a possible pair of synchronized words, denoted w and w ′ , shown in blue and in red, respectively, such that (w, w ′) ∈ R. We assume that Σ = {a} and From the given rational resynchronizer R we construct an equivalent 1-bounded, regular resynchronizer R ′ . The natural approach is to encode a successful run ρ of R over a synchronized word w. By measuring the differences between the partial inputs and the partial outputs that are consumed and produced along the run ρ, we obtain a partial bijection M F C S 2 0 1 9 55:8

On Synthesis of Resynchronizers for Transducers

on the input letters that represents a mapping from source origins to target origins. This mapping determines the relation move γ of R ′ , and in fact depends on a suitable additional annotation γ of the underlying output position. The additional annotation is needed in order to distinguish output elements with the same origin in the source, but with different origins in the target.

For example, by referring again to the figure above, consider the first occurrence of b in w. Its origin in w is given by the closest input letter to the left (follow the blue arrow). To find the origin in w ′ , one finds the same occurrence of b in w ′ (solid line), then moves to the closest input letter to the left (red arrow), and finally maps the latter input position in w ′ back to w (dashed line). The resulting position determines the new origin (w.r.t. w ′) of the considered output element.

The remaining components ipar, opar, and next γ,γ ′ of R ′ are used to guarantee the correctness of the various annotations (notably, the correctness of the encoding of the run ρ and that of the output annotations).

Synthesis of Resynchronizers

Recall that containment between transducers depends on the adopted semantics. More precisely, according to the classical semantics, T 1 is contained in T 2 (denoted T 1 ⊆ T 2) if all input-output pairs realized by T 1 are also realized by T 2 ; according to the origin semantics,

T 1 is contained in T 2 (denoted T 1 ⊆ o T 2
) if all origin graphs realized by T 1 are also realized by T 2 . In this section, we study the following variant of the containment problem:

Resynchronizer synthesis problem. Input: two transducers T 1 , T 2 . Question: does there exist some resynchronization R such that

T 1 ⊆ o R(T 2).
In fact, the above problem comes in several variants, depending on the model of transducers considered (one-way or two-way) and the class of admissible resynchronizations R (rational or bounded regular). Moreover, for the positive instances of the above problem, we usually ask to compute a witnessing resynchronization R from the given T 1 and T 2 (this is the reason for calling the problem a synthesis problem).

Clearly, the synthesis problem for unrestricted resynchronizers is equivalent to a classical containment, that is, T 1 ⊆ T 2 if and only if T 1 ⊆ o R(T 2) for some resynchronizer R. Therefore, the synthesis problem for unrestricted resynchronizers is undecidable. Thus we will consider the synthesis problem of rational (resp. bounded regular) resynchronizers for one-way (resp. two-way) transducers.

We also recall that rational resynchronizers preserve definability of relations by oneway transducers [START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF], while bounded regular resynchronizers (which, by Theorem 3, are strictly more expressive than rational resynchronizers) preserve definability by two-way transducers [START_REF] Bose | Origin-equivalence of two-way word transducers is in PSPACE[END_REF]. For the sake of presentation, we shall first consider the synthesis of rational resynchronizers in the functional one-way setting, that is, for instances given by functional one-way transducers. We show that in this setting the problem collapses again to the classical containment problem, which is however decidable now, that is:

T 1 ⊆ T 2 if and only if T 1 ⊆ o R(T 2)
for some rational resynchronizer R. The decidability result can be slightly extended to some non-functional transducers. More precisely, we will show that synthesis of rational resynchronizers for finite-valued one-way transducers is still decidable. When moving to the relational case, however, the problem becomes undecidable.

The decidability status in the one-way setting could be also contrasted with the two-way setting. In this respect, we observe that, in the functional case, the synthesis problem does not collapse anymore to classical containment, as there are functional two-way transducers T 1 , T 2 such that T 1 ⊆ T 2 , but for which no bounded regular resynchronizer R satisfies T 1 ⊆ o R(T 2) (an example can be found at the beginning of Section 4.3). We are able to prove decidability of synthesis of bounded, regular resynchronizers for unambiguous two-way transducers. The decidability status, however, remains open in the functional two-way case, as well as in the unrestricted (non-functional) two-way case.

Resynchronizing functional, one-way transducers

Recall that it can be decided in PSpace whether a transducer (be it one-way or two-way) is functional [START_REF] Béal | Squaring transducers: an efficient procedure for deciding functionality and sequentiality[END_REF], and that the classical containment problem for functional (one-way/two-way) transducers is also in PSpace [START_REF] Blattner | Single-valued a-transducers[END_REF]. The following result shows that, for functional one-way transducers, classical containment and rational resynchronizer synthesis are inter-reducible. Theorem 4. Let T 1 , T 2 be two functional one-way transducers. The following conditions are equivalent, and decidable:

1. T 1 ⊆ T 2 , 2. T 1 ⊆ o R(T 2) for some resynchronization R, 3. T 1 = o R(T 2) for some rational resynchronizer R.
Proof sketch. The implications from 2. to 1. and 3. to 2. are trivial. The implication from 1. to 3. is proved by constructing a rational resynchronizer R as a product of T 1 , T 2 : at each step, R consumes a symbol a ∈ Σ and a word v 1 ∈ Γ * from a transition of T 1 and produces the same symbol a and possibly a different word v 2 ∈ Γ * from a corresponding transition of T 2 . The fact that R preserves the outputs relies on functionality of T 1 and T 2 .

A natural question arises: can a characterization similar to Theorem 4 be obtained for transducers that compute arbitrary relations, rather than just functions? The example below provides a negative answer to this question. Later in Section 4.2, we will see that synthesis of rational resynchronizers for unrestricted one-way transducers is an undecidable problem.

Example 5. Consider a one-way transducer T 1 that checks that the input is from (aa) * and produces a single output letter b for each consumed input letter a, and another transducer T 2 that works in two phases: during the first phase, it produces two b's for each consumed a, and during the second phase consumes the remaining part of the input without producing any output. The origin graphs of T 1 and T 2 are shown to the right. We have

T 1 ⊆ T 2 , but T 1 ⊆ o T 2 . The only resynchronization R that satisfies T 1 ⊆ o R(T 2
) must map synchronized words from (ab) * to (abb) * (a) * , while preserving the number of a's and b's. Such a transformation cannot be defined by any rational resynchronizer, nor by a bounded regular resynchronizer.

. . ε ε

There is however an intermediate case, between the functional and the full relational case, for which a generalization of Theorem 4 is possible. This is the case of finite-valued one-way transducers, that is, transducers that realize finite unions of partial functions. The generalization exploits a result from [START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF], stated just below, that concerns synthesis of bounded-delay resynchronizers. Formally, given two origin graphs G and G ′ with the same input and output projections, and given an input position y, we denote by delay G,G ′ (y) the difference between the largest x ∈ dom(out(G)) such that orig(G)(x) = y and the M F C S 2 0 1 9 55:10 On Synthesis of Resynchronizers for Transducers

largest x ′ ∈ dom(out(G ′)) such that orig(G ′)(x ′) = y. Given d ∈ N,
we define the d-delay resynchronizer as the resynchronization that contains all pairs (G, G ′) with the same input and output projections and such that delay G,G ′ (y) ∈ [-d, +d] for all input positions y. It is easy to see that the d-delay resynchronizer is a special case of a rational resynchronizer.

Theorem 6 (Theorem 13 in [START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF]). Let T 1 , T 2 be one-way transducers, where T 2 is kambiguous. 2 One can compute a d-delay resynchronizer R d , for some d ∈ N, such that

T 1 ⊆ T 2 implies T 1 ⊆ o R d (T 2).
As a corollary we can generalize Theorem 4 to k-valued one-way transducers, with the only difference that the witnessing rational resynchronizer now satisfies

T 1 ⊆ o R(T 2) rather than T 1 = o R(T 2)
. We also recall that classical containment remains decidable for k-valued one-way transducers, thanks to the fact that these can be effectively transformed to finite unions of functional transducers [START_REF] Weber | Decomposing a k-valued transducer into k unambiguous ones[END_REF]:

Corollary 7.
Let T 1 , T 2 be k-valued one-way transducers. The following conditions are equivalent, and decidable:

1. T 1 ⊆ T 2 , 2. T 1 ⊆ o R(T 2) for some resynchronization R, 3. T 1 ⊆ o R(T 2) for some rational resynchronizer R.
Proof. We prove the only interesting implication from 1. to 3. Suppose that T 1 , T 2 are k-valued one-way transducers such that T 1 ⊆ T 2 . Using the decomposition theorem from [START_REF] Weber | Decomposing a k-valued transducer into k unambiguous ones[END_REF], we can construct a k-ambiguous one-way transducer T ′ 2 that is classically equivalent to T 2 and such that

T ′ 2 ⊆ o T 2 . Since T 1 ⊆ T ′ 2 , by Theorem 6 we can compute a d-delay (in particular, rational) resynchronizer R d such that T 1 ⊆ o R d (T ′ 2). Finally, since T ′ 2 ⊆ o T 2 , T 1 ⊆ o R d (T ′ 2), and R d (T ′ 2) ⊆ o R d (T 2), we get T 1 ⊆ o R d (T 2).

Resynchronizing arbitrary one-way transducers

In the previous section we saw how to synthesize a rational resynchronizer for functional, or even finite-valued, one-way transducers. One may ask if finite-valuedness is necessary. We already know that classical containment T 1 ⊆ T 2 is undecidable [START_REF] Fischer | Multi-tape one-way nonwriting automata[END_REF][START_REF] Griffiths | The unsolvability of the equivalence problem for lambda-free nondeterministic generalized machines[END_REF] for arbitrary one-way transducers, whereas origin-containment T 1 ⊆ o T 2 is decidable [START_REF] Bose | Origin-equivalence of two-way word transducers is in PSPACE[END_REF]. Synthesis of a rational resynchronizer R such that

T 1 ⊆ o R(T 2
) is a question that lies between the two questions above. We show in this section that in the case of real-time transducers with unary output alphabet, the latter question is equivalent to language-boundedness of one-counter automata, a problem that we define below.

A transducer is said to be real-time if it produces bounded outputs for each consumed input symbol. A one-counter automaton (OCA) is a non-deterministic pushdown automaton with a single stack symbol, besides the bottom stack symbol. In the definition of the language-boundedness problem, we assume that the OCA recognizes a universal language; this assumption is used in the reduction to the synthesis problem.

Language-boundedness of OCA. Input:

An OCA A over alphabet Ω that recognizes the universal language L(A) = Ω * . Question: Does there exist some bound k such that every word over Ω can be accepted by A with a run where the counter never exceeds k?

Our reductions between language-boundedness of OCA and synthesis of rational resynchronizers rely on the following result from [START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF], that implies that bounded-delay resynchronizers are enough for synthesizing resynchronizers of real-time transducers:

Theorem 8 (Theorem 11 in [START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF]). Let T 1 , T 2 be real-time, one-way transducers and R a rational resynchronizer such that

T 1 ⊆ o R(T 2). One can compute a d-delay resynchronizer R d such that T 1 ⊆ o R d (T 2).
Proposition 9. Synthesis of rational resynchronizers for real-time one-way transducers with unary output alphabet and language-boundedness of OCA are inter-reducible problems. Moreover, in the reductions, one can assume that the left hand-side transducer is functional.

Proof sketch. Given some real-time transducers T 1 , T 2 , one constructs an OCA A that, when the input encodes a successful run of T 1 , guesses and simulates an equivalent successful run of T 2 . The OCA A keeps track in its counter, how ahead or behind is the partial output produced by the encoded run of T 1 compared to the partial output produced by the simulated run T 2 , and accepts with an empty counter. Moreover, A accepts all inputs that do not encode successful runs of T 1 : as soon as an error is detected, the counter is reset and frozen. Thus, badly-formed encodings do not affect language-boundedness. Then, using Theorem 8, one shows that A is language-bounded if and only if T 1 ⊆ o R(T 2) for some rational (and w.l.o.g. bounded-delay) resynchronizer R.

In the opposite reduction, one has to construct some real-time transducers T 1 , T 2 from a given OCA A. Both transducers receive inputs over the same alphabet as A. T 1 is a simple functional transducer that outputs one symbol for each consumed input symbol. T 2 , instead, guesses and simulates a run of A, and ouputs two symbols when the counter of the OCA increases, and no symbol when it decreases. As before, one argues using Theorem 8 that A is language-bounded if and only if T 1 ⊆ o R(T 2) for some rational resynchronizer R.

The status of the problem of language-boundedness of OCA was open, to the best of our knowledge. Piotr Hofman communicated to us the following unpublished result, which can be obtained by a reduction from the undecidable boundedness problem for Minsky machines (the proof is in the extended version of this paper): Theorem 10 ([13]). The language-boundedness problem for OCA is undecidable.

Corollary 11. Synthesis of rational resynchronizers for (real-time) one-way transducers is undecidable, and this holds even when the left hand-side transducer is functional.

Resynchronizing unambiguous, two-way transducers

We now focus on the resynchronizer synthesis problem for two-way transducers. Here the appropriate class of resynchronizations is that of regular resynchronizers, since, differently from rational resynchronizer, they can handle origin graphs induced by two-way transducers. The situation is more delicate, as the synthesis problem does not reduce anymore to classical containment. As an example, consider the transducer T 1 that consumes an input of the form a * from left to right, while copying the letters to the output, and a two-way transducer T 2 that realizes the same function but while consuming the input in reverse. We have that T 1 ⊆ T 2 , but there is no resynchronizer R that satisfies T 1 ⊆ o R(T 2) and that is bounded and regular at the same time. As we will see, extending Theorem 4 to two-way transducers is possible if we move beyond the class of regular resynchronizers and consider bounded resynchronizers defined by Parikh automata. The existence of bounded regular M F C S 2 0 1 9 55:12 On Synthesis of Resynchronizers for Transducers resynchronizers between functional two-way transducers can thus be seen as a strengthening of the classical containment relation. Unfortunately, we are only able to solve the synthesis problem of bounded regular resynchronizers for unambiguous two-way transducers, so the problem remains open for functional two-way transducers.

First we introduce resynchronizers definable by Parikh automata. Formally, a Parikh automaton is a finite automaton A = (Σ, Q, I, E, F, Z, S) equipped with a function Z ∶ E → Z k that associates vectors of integers to transitions and a semi-linear set S ⊆ Z k . A successful run of A is a run starting in I, ending in F and such as the sum of the weights of its transitions belongs to S. We say that A is unambiguous if the underlying finite automaton is. In this case, we can associate with each input u the vector A(u) ∈ Z k associated with the unique accepting run of the underlying automaton of A on u, if this exists, otherwise A(u) is undefined. By taking products, one can easily prove that unambiguous Parikh automata are closed under pointwise sum and difference, that is, given A 1 and A 2 , there are A + and

A -such that A + (u) = A 1 (u) + A 2 (u) and A -(u) = A 1 (u) -A 2 (u) for all possible inputs u.
Hereafter, we will only consider languages recognized by unambiguous Parikh automata with the trivial semilinear set S = {0 k }.

By a slight abuse of terminology, we call Parikh resynchronizer any resynchronizer with parameters whose relations move γ and next γ,γ ′ are recognizable by unambiguous Parikh automata, and ipar and opar are regular. We naturally inherit from regular resynchronizers the notion of boundedness. Moreover, we introduce another technical notion, that will be helpful later. Given a resynchronizer R, we define its target set as the set of all pairs (u, z) where u is an input, z is a position in it, and (w, y, z) ∈ move γ for some annotation w of u with input parameters, some input position y, and some output type γ. Similarly, we define the target set of a two-way transducer T as the set of all pairs (u, z), where u = in(G) and z ∈ orig(G)(x) for some x ∈ dom(out(G)) and some origin graph G realized by T . Theorem 12. Let T 1 , T 2 be two unambiguous two-way transducers. The following conditions are equivalent:

1. T 1 ⊆ T 2 , 2. T 1 ⊆ o R(T 2) for some resynchronization R, 3. T 1 = o R(T 2)
for some 1-bounded Parikh resynchronizer R whose target set coincides with that of T 1 and where, each relation next γ,γ ′ is regular if move γ and move γ ′ are regular.

Proof sketch. We focus on the implication from 1. to 3., as the other implications are trivial.

Similarly to the one-way case, to synthesize a resynchronizer, we need to annotate the input with the (unique) successful runs of T 1 and T 2 (if these runs exist). Since T 1 , T 2 are two-way, the natural way of doing it is to use crossing sequences. Thanks to the encoding of runs by means of crossing sequence, we can describe any output position x with a pair (y, i), where y is the origin of x (according to T 1 or T 2) i is the number of output positions before x with the same origin y. Note that i is bounded, as the transducers here are unambiguous, and hence every input position is visited at most a bounded number of times.

Given T = T 1 or T = T 2 and an index i, one can construct a unambiguous Parikh automaton A T,i that, when receiving as input a word u with a marked position y, produces the unique position x that is encoded by the pair (y, i), according to the transducer T . It follows that, for every output element correctly annotated with γ = (a, i, j), the relation move γ can be defined as {(y, z) A T2,i (y) -A T1,j (z) = 0}, which is a unambiguous Parikh language. This almost completes the definition of the Parikh resynchronizer R. The remaining components of R consists of suitable relations next γ,γ ′ that check correctness of the annotations. In particular, the relations next γ,γ ′ are obtained by pairing a regular property with properties defined in 55: 13 terms of the prior relations move γ and move γ ′ , and hence next γ,γ ′ is regular whenever move γ and move γ ′ are.

We now explain how to exploit the above characterization to decide bounded regular resynchronizer synthesis problem. We provide the following characterization, whose proof follows from the previous theorem: Theorem 13. Let T 1 , T 2 be two unambiguous two-way transducers such that T 1 ⊆ T 2 , and let R be the bounded Parikh resynchronizer obtained from Theorem 12. The following conditions are equivalent:

1. R is a regular resynchronizer, 2. T 1 ⊆ o R(T 2) for some bounded regular resynchronizer R, 3. T 1 ⊆ o R(T 2) for some 1-bounded regular resynchronizer R, 4. T 1 = o R(T 2)
for some 1-bounded regular resynchronizer R with the same target set as T 1 .

Theorems 12 and 13 together provide a characterization of those pairs of unambiguous two-way transducers T 1 , T 2 for which there is a bounded regular resynchronizer R such that T 1 ⊆ o R(T 2). The effectiveness of this characterization stems from the decidability of regularity of languages recognized by unambiguous Parikh automata [START_REF] Cadilhac | Unambiguous constrained automata[END_REF]. This result requires unambiguity and uses Presburger arithmetics to determine for each (simple) loop a threshold such that iterating the loop more than the threshold always satisfies the Parikh constraint. The language of the Parikh automaton is regular if and only if every (simple) loop has such a threshold. We thus conclude: Corollary 14. Given two unambiguous two-way transducers T 1 , T 2 , one can decide whether there is a regular resynchronizer R such that T 1 ⊆ o R(T 2).

Conclusions

We studied two notions of resynchronization for transducers with origin, called rational resynchronizer and regular resynchronizer. Rational resynchronizers are suited for transforming origin graphs of one-way transducers, while regular resynchronizers can be applied also to origin graphs of two-way transducers. We showed that the former are strictly included in the latter, even when restricting the origin graphs to be one-way. We then studied the following variant of containment problem for transducers: given two transducers T 1 , T 2 , decide whether T 1 ⊆ o R(T 2) for some (rational or regular) resynchronizer R. That is, if all origin graphs of T 1 can be seen as some origin graph of T 2 transformed according to R, then compute such a resynchronizer R. This problem can be seen as a synthesis problem of resynchronizers. It is shown that the synthesis problem is decidable when T 1 , T 2 are finite-valued one-way transducers and the resynchronizer is constrained to be rational, as well as when T 1 , T 2 are unambiguous two-way transducers and the resynchronizer is allowed to be regular (and bounded). In the one-way setting, the problem turns out to be undecidable already for unrestricted (non-functional) transducers and rational resynchronizers. In the two-way setting, the decidability status remains open already when the transducers are not unambiguous (be them functional or not). Concerning this last point, however, we recall that the synthesis problem becomes undecidable as soon as we consider regular resynchronizers that are unbounded, as in this case the problem is at least as hard as classical containment. Theorem 3. For every rational resynchronizer, there is an equivalent 1-bounded regular resynchronizer.

We fix a one-way transducer R over Σ ⊎ Γ that defines a rational resynchronizer. We assume without loss of generality that R is letter-to-letter, as well as trimmed, namely, every state in R occurs in some successful run. Note that R maps synchronized words to synchronized words. With a slight abuse of terminology, we shall use the terms 'source' (resp. 'target') to refer to a synchronized word that is an input (resp. an output) of R. When depicting examples, we will often adopt the convention that source synchronized words are shown in blue, while target synchronized words are shown in red. On the other hand, we shall use the terms 'input' and 'output' to refer to the projections of a synchronized word over Σ and Γ, respectively (note that, in this case, it does not matter whether the synchronized word is the source or the target, since these have the same projections over Σ and Γ). The goal is to construct a 1-bounded, regular resynchronizer R ′ , with parameters, that defines the same resynchronization as R.

We begin by introducing the key concept of lag, which represents the difference between the number of input symbols consumed and number of input symbols produced along a certain run (not necessarily successful) of R. Formally, given a run of R of the form ρ = q 0 c1 d1

→ q 1 c2 d2 → . . . cn dn → q n , we define its lag lag(ρ) as π Σ (c 1 . . . c n) -π Σ (d 1 . . . d n) ,
where π Σ denotes the operation of projection onto the alphabet Σ. Note that, because R is letter-to-letter, one could have equally defined lag(ρ) by counting the difference between produced output symbols and consumed output symbols. Further note that the lag of a successful run is always 0, since R preserves the input projection. Notice that the lag of a run is a notion distinct of the delay of a rational resynchronizer presented in [START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF] which is the maximum distance between the target origin of an output position and its source origin. The following lemma shows that the lag is in fact a property of the initial and final states of a run.

Lemma 15.

For every two runs ρ 1 and ρ 2 of R that begin with the same state and end with the same state, lag(ρ 1) = lag(ρ 2).

Proof. Since R is trimmed, both runs ρ 1 and ρ 2 can be completed to some successful runs of the form ρ ′ ρ 1 ρ ′′ and ρ ′ ρ 2 ρ ′′ . From lag(ρ ′ ρ 1 ρ ′′) = 0 = lag(ρ ′ ρ 2 ρ ′′), it immediately follows that lag(ρ 1) = 0 -(lag(ρ ′) + lag(ρ ′′)) = lag(ρ 2).

In view of the above lemma, we can associate a lag lag(q) with each state q of R as follows: we choose an arbitrary run ρ that starts with the initial state of R and ends with q, and let lag(q) = lag(ρ). This is well-defined since lag(q) does not depend on the particular choice of ρ. For instance, if we consider the letter-to-letter resynchronizer R of Example 1, the only state with non-zero lag is the bottom one, which has lag 1. Note that, because each transition of R can only increase or decrease the lag by 1, all lags range over the finite set {-Q , . . . , + Q }, where Q is the state space of R.

Next, we consider a successful run of R, say ρ = q 0 c1 d1

→ q 1 c2 d2 → . . . cn dn
→ q n , and define relations omatch ρ and imatch ρ between positions of ρ. These relations are used later to define a bijection between source and target origins. The relation omatch ρ consists of all pairs (i, j) of positions of ρ such that c i and d j are output letters and c 1 c 2 . . .

c i = Γ d 1 d 2 . . . d j (the latter is a shorthand for π Γ (c 1 c 2 . . . c i) = π Γ (d 1 d 2 . . . d j)).
Note that omatch ρ is in fact a partial bijection. In a similar way, we define imatch ρ as the partial bijection that contains all pairs (i, j) of positions of ρ such that c i and d j are input letters and c 1 c 2 . . . relations omatch ρ and imatch ρ by means of edges between source and target positions. In the figure, the solid edges represent pairs of omatch ρ , while the dashed edges represent some pairs of imatch ρ (precisely, those pairs (i, j) such that the transition at position j produces an input letter, while the next transition produces an output letter).

c i = Σ d 1 d 2 . . . d j .

M F C S

Mapping the source to target origins.

We now explain how the relations imatch ρ and omatch ρ can be used to define a mapping from source to target origins. We do so by first using the figure of Example 16. Consider any output letter at position i in the source synchronized word w (e.g. the first blue letter b). Let j be the last Σ-labelled position before i, as indicated by the blue arrow. This position j determines the source origin y = π Σ (w[1, j]) of the output letter. To find the corresponding target origin, we observe that the position i is mapped via the relation omatch ρ (solid line) to some position k in the target synchronized word. Let h be the last Σ-labelled position before k (red arrow), and map h back to a position in the source via the relation imatch ρ (dashed line). The position determines precisely the target origin z = π Σ (w[1,]) of the considered output letter. The above steps describe a correspondence between two positions j and in ρ, with labels over Σ, that is precisely defined by

∃i, k, h ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ρ[j, i] consumes a word in ΣΓ + (i, k) ∈ omatch ρ ρ[h, k] produces a word in ΣΓ + (h,) ∈ imatch ρ . (⋆)
In the above ρ[j, i] represents the part of ρ between positions j, i (both j, i included). We denote by match ρ the relation of all pairs (j,) that satisfy Equation (⋆). Note that match determines an analogous correspondence between source and target origins of the input projection. However, match has two issues: it is not yet a partial bijection (since different output positions may have the same source origin), and it needs to be implemented by means of a regular relation move γ that only considers positions of the input, plus the label γ of a single position in the output. Below, we explain how to overcome those issues.

The case of bounded output blocks.

Hereafter, we call output block any maximal factor of a synchronized word that is labelled over Γ. Intuitively, this corresponds to a maximal factor of the output that originates at the same input position. We first consider, as a simpler case, a rational resynchronizer R that reads source synchronized words where the lengths of the output blocks are uniformly bounded by some constant, say B (a similar property holds for the blocks of the target synchronized words, using lag-based arguments). In this case we can encode any successful run ρ of R entirely on the input, by annotating every Σ-labelled position y with a factor ρ y of ρ that reads the input symbol at position y, followed by the sequence of output symbols up to the next input symbol. Note that every factor ρ y has length at most B + 1. The correctness of this input annotation can be checked by the regular language ipar. Given a factor ρ y ∈ ΣΓ + , ρ y [1] ∈ Σ is the first position of the factor ρ y . Likewise, ρ y [i, j] denotes the subfactor of ρ y consisting of positions i, i + 1, . . . , j.

In addition, we also annotate the output word with indices from {1, . . . , B}, called offsets, in such a way that an output position x is annotated with an offset o if and only if it is the o-th output position with the same source origin. Note that the correctness of the annotation cannot be checked by a regular language such as opar that refers only to the output. The check will be done instead by a combined use of the relations move γ and next γ,γ ′ .

We first check that, for every pair of consecutive output positions and x + 1 annotated with the offsets o and o ′ , respectively, it holds that o ′ = o + 1 or o ′ = 1, depending on whether the source origins of x and x + 1 coincide or not. For this we let (u, z, z ′) ∈ next γ,γ ′ , with γ = (a, o) and γ ′ = (a ′ , o ′), if 1. either o ′ = o + 1 and there is y = y ′ such that (u, y, z) ∈ move γ and (u, y ′ , z ′) ∈ move γ ′ , 2. or o ′ = 1 and there are y < y ′ such that (u, y, z) ∈ move γ and (u, y ′ , z ′) ∈ move γ ′ . Recall that the relation next γ,γ ′ must be defined in terms of the target origins of x and x + 1. So it needs to rely on the relation move γ in order to determine the source origins from the target origins. We assume that for every output type γ the relation move γ , which will be defined later, determines a partial bijection between input positions (we will see that this is indeed the case). Based on these assumptions, the above definition of next γ,γ ′ guarantees that the offsets annotating consecutive positions in the output are either incremented or reset, depending on whether they have the same origin or not.

It remains to check that maximal offset occurring in an output block with origin y coincides with number of output symbols produced by the corresponding factor ρ y of the run. Thus, we modify slightly the definition of next γ,γ ′ in case 2., as follows: 2'. or o ′ = 1 and there are y < y ′ such that (u, y, z) ∈ move γ and (u, y ′ , z ′) ∈ move γ ′ , and o = ρ y -1. Note that the factor ρ y can be derived by inspecting the annotation of the input position y. The modification suffices to guarantee that the output annotation is correct for all output blocks but the last one. The annotation for the last output block can be checked by marking the last output position with a distinguished symbol and by requiring that if γ witnesses the marked symbol and the offset o, then move γ can only contain a triple of the form (u, y, z), with o = ρ y -1. We omit the tedious definitions in this case. Now, having the input correctly annotated with the factors ρ y of ρ and the output correctly annotated with the offsets, we can encode any position i of ρ by a pair (y, o) that consists of a position y of the input and an offset o ∈ {0, 1, . . . , B}. The encoding is defined in such a way that i = ∑ y ′ <y ρ y ′ + o + 1 (in particular, o = 0 when the transition at position i consumes an input symbol, otherwise o ≥ 1). We use this encoding to translate the relations omatch ρ , imatch ρ , and match ρ , to equivalent finite unions of partial bijections between input positions. We begin by explaining the translation of omatch ρ .

Translation of omatch ρ .

Consider any pair (i, j) ∈ omatch ρ . Since the transition at position i of ρ consumes an output symbol, it is encoded by a pair of the form (y, o), with o ≥ 1. On the other hand, the transition at position j may consume either an input symbol or an output symbol (but does produce an output symbol). In the former case, j is encoded by a pair (y ′ , 0); in the In general, we observe that the lag induced just after the o-th transition of ρ y must be equal to the number of output symbols produced between the (o ′ + 1)-th transition of ρ y ′ and the o-th transition of ρ y , both included (when the lag is negative one follows the transitions in reverse order, counting negatively). As an illustration in the figure, the lag after the first transition of ρ 5 is 2, which is the number of output symbols in the dotted box. The dotted box consists of the symbols produced between the first transition of ρ 3 ′ and the first transition of ρ 5 , and has two output symbols. The only difference here is that one has to relate the lag with the number of input letters produced between (both positions included) the first transition of ρ y and the o ′ -th transition of ρ y ′ . Again, in the figure, the lag after the first transition of ρ 3 is 1, which is the number of input symbols in the dotted box. The dotted box contains the symbols produced between the first transition of ρ 3 and the first transition of ρ 4 ′ , and has one input symbol.

Translation of imatch

Relations encoding omatch ρ and imatch ρ .

So we can represent omatch ρ as a finite union of relations O o,o ′ ⊆ (Σ × Σ ′) * × N × N, each describing a regular property of annotated inputs with two distinguished positions in it, in such a way that the positions are bijectively related to one another.

Likewise, we can represent imatch ρ as a finite union of relations I 0,o ′ , each describing a regular property of annotated inputs with two distinguished positions encoded as (y, 0) and (y ′ , o ′) in it, which are bijectively related to one another.

Translation of match ρ .

We finally turn to the translation of the relation match ρ , which will eventually determine the relations move γ of the desired regular resynchronizer R ′ . This is done by mimicking Equation (⋆) via the encoding of positions in the run ρ using pairs of input positions and offsets, and more precisely, by replacing the variables j, i, k, h, of Equation (*) with the pairs (y, 0), (y, o), (y ′ , o ′), (y ′′ , o ′′), (z, 0).

Formally, for every offset o ∈ {1, . . . , B}, we define the set M o of all triples (u, y, z), where u is an annotated input and y, z are positions in it that satisfy the following property:

∃y ′ , y ′′ ⋁ 0≤o ′ ,o ′′ ≤B ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ρ y [1, o + 1] consumes a word in ΣΓ + (u, y, y ′) ∈ O o,o ′ ρ y ′′ [o ′′ + 1, ρ y ′′] ρ y ′′ +1 . . . ρ y ′ -1 ρ y ′ [1, o ′ + 1] produces a word in ΣΓ + (u, z, y ′′) ∈ I 0,o ′′ . (⋆⋆)
Note that the first condition holds trivially by definition of ρ y , while the third condition is easily implemented by accessing the factors ρ y ′′ , . . . , ρ y ′ of ρ that are encoded by the input parameters. For simplicitly, here we assumed that (y ′′ , o ′′) is lexicographically before (y ′ , o ′); to treat the symmetric case, one has to interpret the definition by considering the sequence of transitions in reverse. The intended meaning of (u, y, z) ∈ M o is as follows. Suppose that the input is correctly annotated with the factors ρ y of a successful run ρ of R, and that the output position x of ρ is correctly annotated with an offset o. Assuming that x is the o-th output position with source origin y, then z is its target origin in ρ. Continuing with our running example, we determine the target origin for the point b annotated (5,1), whose source origin is (5,0). We will find the target origin of this b annotated (5,1). As seen in the computation of omatch ρ , we know that (u, 5, 3) ∈ O 1,0 . The factor ρ 5 = abbb, and ρ 5 [1, 2] = ab ∈ ΣΓ + , and as we have seen, (u, 5, 3) ∈ O 1,0 . Now, consider the part of the source u annotated with (2, 1) [START_REF] Blattner | Single-valued a-transducers[END_REF]0). This produces the output ab ∈ ΣΓ + . That is, for y ′′ = 2, o ′′ = 1, and

y ′ = 3, o ′ = 0, we have ρ y ′′ [o ′′ + 1, 2] ρ y ′ [1, o ′ + 1] = ρ 2 [2, 2]ρ 3 [1, 1] = ba produces the output ab ∈ ΣΓ + .
Consider (z, 0) = (2, 0). The lag after the a at i = 2 annotated (2, 0) is 1. Also, (2, 3) ∈ imatch ρ . The position 3 consumes an output and produces an input a. Indeed, the lag after the first transition of ρ 2 is 1, which is the number of input symbols between the first transition of ρ 2 and the second transition ((o ′ + 1)th transition) of ρ 2 . That is, (u, 2, 2) ∈ I 0,1 . Thus, starting with the b annotated (y, o) = (5, 1) such that ρ 5 [1, 2] ∈ ΣΓ + , we first obtain

(y ′ , o ′) = (3, 0) with (u, 5, 3) ∈ O 1,0 . Further, ρ 2 [2, 2]ρ 3 [1, 1] produces a word in ΣΓ + . Finally, we have (u, 2, 2) ∈ I 0,1 , obtaining (u, 5, 2) ∈ M 1 . a (1,0) a (2,0) b (2,1) a (3,0) a (4,0) a (5,0) b (5,1) b (5,2) b (5,3) a b a b a b b a a Definition of move γ .
It is tempting to define move γ just as M o , for every γ = (a, o) ∈ Γ × {1, . . . , B}. However, we recall that the correctness of the output annotation is guaranteed only once we are sure that every relation move γ defines a partial bijection between input positions y and z (hereafter we say for short that the relation is bijective), which is not known a priori. Bijectiveness must then be enforced syntactically, without relying on annotations: for this it suffices to define move γ as {(u, y, z) ∈ M o ∀(u, y ′ , z ′) ∈ M o (y = y ′) ↔ (z = z ′)}, and observe that either M o is bijective, and hence move γ = M o , or it is not, and in this case move γ is a subrelation of M o that is still bijective. Note that, in the case where move γ is a subrelation of M o , there will be no induced pair of synchronized words, since the origins of some output elements could not be redirected. This is fine, and actually needed, in order to avoid generating with R ′ spurious pairs of synchronized words that are not also generated by R. On the other hand, observe that the relation move γ does generate, for appropriate choices of the output annotations, all the pairs of synchronized words that are generated by R. We finally observe that the relations move γ and next γ,γ ′ are regular. We obtain in this way, a 1-bounded, regular resynchronizer R ′ equivalent to R.

The general case.

We now aim at generalizing the previous ideas to capture a rational resynchronizer R with source output blocks of possibly unbounded length. One additional difficulty is that we cannot anymore encode a successful run ρ of R entirely on the input, as ρ may have arbitrarily long factors on outputs blocks. Another difficulty is that we cannot uniquely identify the positions in an output block using offsets ranging over a fixed finite set. We will see that a solution to both problems comes from covering most of the output by factors in which the positions behave similarly in terms of the source-to-target origin transformation. Intuitively, each of these factors can be thought of as a 'pseudo-position', and accordingly the output blocks can be thought of as having boundedly many pseudo-positions. This will make it possible to apply the same ideas as before. We now state the key lemma that identifies the aforesaid factors. By a slight abuse of terminology, we call output blocks also the maximal Γ-labelled factors of a synchronized word. Lemma 17. Let ρ be a successful run of R, and let w and w ′ be the source and target synchronized words induced by ρ.

Every output block v of w can be factorized into O(Q 2) sub-blocks v 1 , . . . , v n such that if v i > 1 and ρ i is the factor of ρ that corresponds to v i , then all states in ρ i have the same lag, say i , and the factor obtained by extending ρ i to the left and to the right by exactly i transitions forms a loop of R. Moreover, for every factorization v = v 1 . . . v n as above, each sub-block v i is also a factor of w ′ , and hence all positions in v i have the same target origin.

Proof. We prove the first claim of the lemma (Figure 2 provides an intuitive account of the constructions). Let v be an output block of the source synchronized word w and let ρ ′ be the factor of the run ρ aligned with v. As a preliminary step, we fix a maximal set of pairwise non-overlapping maximal loops inside ρ ′ , say ρ ′ 1 , . . . , ρ ′ m . A simple counting argument shows that m ≤ Q and that there are at most Q positions in ρ ′ that are not covered by the loops ρ ′ 1 , . . . , ρ ′ m . The latter positions determine some sub-blocks of v of length 1. The remaining sub-blocks of v will be obtained by factorizing the loops ρ ′ 1 , . . . , ρ ′ m , as follows. Consider any loop ρ ′ j . By construction, all letters consumed by ρ ′ j occur in v, so they must be output letters. Similarly, all letters produced by ρ ′ j are also output letters, since otherwise, by considering repetitions of the loop ρ ′ j , one could get different lags, violating Lemma 15. This means that the lag associated with the states along ρ ′ j is constant, say j (≤ Q). If ρ ′ j has length at most 2 j , then we simply decompose it into 2 j factors of length 1. Otherwise, we cover a prefix of ρ ′ j with j factors of length 1, and a suffix of ρ ′ j with j other factors of length 1. The remaining part of ρ ′ j is covered by a last factor of length ρ ′ j -2 j . Overall, this induces a factorization of v into at most Q (the sub-blocks not covered by a loop) + Q ⋅ (2 Q + 1) (Each ρ ′ j is decomposed into (2 j + 1) ≤ (2 Q + 1) sub-blocks). This gives O(Q 2) sub-blocks v 1 , . . . , v n . Moreover, by construction, if v i > 1, then in the corresponding factor ρ i of ρ, all states have the same lag, say i , and if we extend ρ i to the left and to the right by exactly i transitions, we get back one of the loops ρ ′ j (recall that each loop ρ ′ j of length > 2 j is decomposed into j blocks of length 1, then a block of length ρ ′ jj , and finally, j blocks of length 1. Clearly, if we extend the middle block on either side by blocks of length j , then we get back ρ ′ j . This proves the first claim of the lemma. As for the second claim, suppose that v 1 , . . . , v n is a factorization of an output block v of w satisfying the first claim. Clearly, every sub-block v i of length 1 is also a factor of the target synchronized word w ′ . The interesting case is when a sub-block v i has length larger than 1. In this case, by the previous claim, we know that in the corresponding factor ρ i of ρ, all states have the same lag i , and the factor ρ ′ i of ρ that is obtained by expanding ρ i to the left and to the right by i transition is a loop. In fact, since ρ ′ i is a loop, we also know that all states in it have lag i . Now, to prove that v i is a factor of the target synchronized word w ′ , it suffices to show that every two consecutive positions of ρ i are mapped to consecutive positions via the relation omatch ρ . This follows almost by construction, since for every pair (i ′ , k ′) ∈ omatch ρ , if i ′ occurs inside the factor ρ i , then k ′ occurs inside the loop ρ ′ i (recall that ρ ′ i consumes and produces only output symbols), and hence k ′ = i ′i . In addition, if i ′ + 1 also occurs inside ρ i , then clearly (i ′ + 1, k ′ + 1) ∈ omatch ρ . This proves that v i is a factor of the target synchronized word w ′ , and hence all positions in it have the same target origin.

In view of the above lemma we can guess a suitable factorization of the output into sub-blocks that refine the output blocks, and treat each sub-block as if it were a single position. In particular, we can annotate every sub-block with a unique offset from a finite set of quadratic size w.r.t. Q . The role of the offsets will be the same as in the previous proof, where blocks had bounded length, namely, determine some partial bijections O o,o ′ , I 0,o ′ , and M o between positions of the input. In addition, we annotate every sub-block with the pair consisting of the first and last states of the factor of the successful run that consumes that sub-block. We call such a pair of states a pseudo-transition, as it plays the same role of a transition associated with a single output position. Finally, we annotate every input position y with a sequence of bounded length that represents a single transition on y followed by the pseudo-transitions on the subblocks with source origin y. The resulting input annotation provides an abstraction of a successful run of R.

The correctness of the above annotations can be enforced by defining suitable relations ipar, opar, next γ,γ ′ for the regular resynchronizer R ′ . We omit the tedious details concerning these relations, and only observe that, as before, the definition next γ,γ ′ relies on the fact that move γ and move γ ′ define partial bijections between input positions.

Finally, we turn to describing the relation move γ that maps source to target origins for γ-labelled output positions. The definition is basically the same as before, based on some M F C S 2 0 1 9 55:22 On Synthesis of Resynchronizers for Transducers auxiliary relations O o,o ′ and I 0,o ′′ that implement omatch ρ and imatch ρ at the level of input positions. As before, we guarantee, by means of a syntactical trick, that move γ determines a partial bijection between input positions. In conclusion, we get a regular resynchronizer R ′ , with input and output parameters, that is equivalent to the rational resynchronizer R.

B

Proofs of Section 4 Theorem 4. Let T 1 , T 2 be two functional one-way transducers. The following conditions are equivalent, and decidable:

1. T 1 ⊆ T 2 , 2. T 1 ⊆ o R(T 2) for some resynchronization R, 3. T 1 = o R(T 2)
for some rational resynchronizer R.

Proof. One implication, from 2. to 1., is trivial, since origin containment implies classical containment, and since applying an arbitrary resynchronization R to T 2 cannot result in having more input-output pairs (it can however modify the origin, as well as discard some input-output pairs). The implication from 3. to 2. is also trivial.

For the remaining implication, from 1. to 3., suppose that T 1 , T 2 are functional one-way transducers such that T 1 ⊆ T 2 . We construct a rational resynchronizer R over the disjoint union Σ ⊎ Γ of the input and output alphabets of T 1 , T 2 , using a variant of the direct product of T 1 and T 2 . More precisely, let

T 1 = (Q 1 , q 1 , ∆ 1 , F 1), T 2 = (Q 2 , q 2 , ∆ 2 , F 2), and R = (Q, q, ∆, F), where Q = Q 1 × Q 2 , q = (q 1 , q 2), F = F 1 × F 2 , ∆ contains all transitions of the form (s 1 , s 2) aw2 aw1
→ (t 1 , t 2), with s i a wi → t i in ∆ i for both i = 1 and i = 2. Intuitively, the transducer R simulates a run of T 1 and a run of T 2 in parallel, by repeatedly consuming an input symbol a and the corresponding output w 2 produced by T 2 , and producing the same input symbol a and the corresponding output w 1 of T 1 . Since T 1 and T 2 are functional and classically contained one in the other, we have that R maps strings over Σ ⊎ Γ to strings over Σ ⊎ Γ while preserving the projections on the input and on the output alphabets. This means that R is indeed a resynchronizer. Finally, T 1 is clearly origin equivalent to R(T 2). Proposition 9. Synthesis of rational resynchronizers for real-time one-way transducers with unary output alphabet and language-boundedness of OCA are inter-reducible problems. Moreover, in the reductions, one can assume that the left hand-side transducer is functional.

Proof. We first prove the reduction from synthesis of rational resynchronizers to languageboundedness of OCA, and then prove the reduction in the opposite direction.

From synthesis to language-boundedness.

Let T 1 , T 2 be real-time, one-way transducers with unary output alphabet. We suppose in addition that T 1 is trimmed. We construct an OCA A that reads encodings of successful runs of T 1 . If the input is not a successful run of T 1 , then, as soon as an error is detected, A resets its counter and accepts any continuation of the input. In particular, thanks to this behaviour and to T 1 being trimmed, badly-formed encodings of runs will not cause the counter of A to be unbounded.

Consider now an input for A that is a correct encoding of a successful run of T 1 , say ρ 1 . In this case, A guesses and simulates a successful run ρ 2 of T 2 having the same input as ρ 1 . The counter of A is used as expected: it is incremented according to the outputs produced using the transitions of ρ 1 , and decremented according to the outputs produced using the transitions of ρ 2 , or vice versa when one needs to represent a negative value (recall that 55:25 (q, a, v, q ′) such that (q, y) a v → (q ′ , y ′) is a transition of ρ, where the occurrence order on transitions induces a corresponding order on the quadruples of the crossing sequence. Without loss of generality, for two-way automata, as well as for functional two-way transducers, one can restrict to successful runs that never visit the same state twice at the same position. Accordingly, we can assume that the length of a crossing sequence never exceeds the total number of states of the device. Moreover, when the two-way automaton or transducer is unambiguous, the crossing sequences are uniquely determined by the input and the specific position in it. More precisely, there are regular languages L t , one for each possible crossing sequence, that contains precisely those inputs u with a specific position y marked on it (for short, we denote such by ⟨u, y⟩), such that the crossing sequence at y of the unique successful run on u is precisely t.

We now turn to the main proof, which is divided into several steps.

Encoding output positions.

We begin by describing a natural encoding of arbitrary output positions by means of their origins. Of course, the encoding depends on the given input, denoted u, and on the transducer we consider, either T 1 or T 2 , which here is generically denoted by T . Now, let ρ be the unique successful run of T on u, and let G be the induced origin graph. To simplify the notations, hereafter we tacitly assume that T produces at most one letter at each transition -the assumption is without loss of generality, since long outputs originating at the same input position can be produced incrementally by exploiting two-way head motions. Let n be the number of states of T . Since T is unambiguous, G contains at most n output positions with the same origin (otherwise, the same configuration would be visited at least twice along the successful run ρ, which could then be used to contradict the assumption of unambiguity). This means that every position x in out(G) can be encoded by its origin y x = orig(G)(x) together with a suitable index i x ∈ {1, . . . , n}, describing the number of output positions x ′ ≤ x with the same origin y x as x. Moreover, we recall that y x can be represented as an annotated input of the form ⟨u, y x ⟩.

Decoding by Parikh automata.

We now show that there are Parikh automata that compute the inverse of the encoding x ↦ (y x , i x) described above. More precisely, there are unambiguous Parikh automata A 1 , . . . , A n such that each A i receives as input a word ⟨u, y⟩ having a special position marked on it, and outputs the unique output position x such that (y, i) = (y x , i x), if this exists, otherwise the output is undefined. Each automaton A i can be constructed from T and i by unambiguously guessing the crossing sequences of the unique run of T on u, and by counting the number of output symbols emitted until a productive transition at the marked position y is executed for the i-th time -a productive transition is a transition that produces non-empty output.

Redirecting origins.

We now apply the constructions outlined above in order to obtain the desired Parikh resynchronizer R from T 1 and T 2 . Let u be some input and G 1 , G 2 be the origin graphs induced by the unique successful runs of T 1 , T 2 on u. Since T 1 ⊆ T 2 , we can further let v = out(G 1) = out(G 2). Consider any output position x ∈ dom(v). According to G 2 , x is encoded by an input position y x and an index i x ∈ {1, . . . , n 2 }, where n 2 is the number of states of T 2 . In a similar way, according to G 1 , the same position x is encoded by some input M F C S 2 0 1 9 55:26 On Synthesis of Resynchronizers for Transducers position z x and an index j x ∈ {1, . . . , n 1 }, where n 1 is the number of states of T 1 . Moreover, based on the previous constructions, there are unambiguous Parikh automata A 2,i and A 1,j such that A 2,i (⟨u, y⟩) = x if and only (y, i) = (y x , i x), A 1,j (⟨u, z⟩) = x if and only (z, j) = (z x , j x). Since unambiguous Parikh automata are closed under pointwise difference, there is a unambiguous Parikh automaton A i,j that recognizes precisely the language of annotated words ⟨u, y, z⟩ such that

A 2,i (⟨u, y⟩) -A 1,j (⟨u, z⟩) = 0 (⋆)
Note that the above language defines a partial bijection between pairs of positions y, z in the input u in such a way that y and z are the origins of the same output position x according to the unique origin graphs

G 1 , G 2 of T 1 , T 2 such that in(G 1) = in(G 2) = u.
This property can be used to define the component move γ of the desired resynchronizer R, by simply letting

move γ = {(u, y, z) A i,j (⟨u, y, z⟩) = 0}
where γ = (a, i, j) ∈ Γ × {1, . . . , n 2 } × {1, . . . , n 1 }.

For the correctness of the above definition we rely on guessing the correct pairs of indices (i, j) as annotations of output positions. More precisely, we have that:

for every output position x with source origin y = orig(G 2)(x) and with label γ = (a, i x , j), there is at most one input position z such that (u, y, z) ∈ move γ ; in addition, if we also have j = j x , then z = orig(G 1)(x) is the target origin of x; symmetrically, for every output position x with target origin z = orig(G 1)(x) and with label γ = (a, i, j x), there is at most one input position y such that (u, y, z) ∈ move γ ; in addition, if we also have i = i x , then y = orig(G 2)(x) is the source origin of x. Based on the above properties, we need to guess suitable output parameters that associate with each position x, a correct pair (i x , j x). We explain below how this is done using the components opar and next γ,γ ′ of the resynchronizer.

Constraining output parameters.

We first focus on the indices j x related to T 1 ; we will later explain how to adapt the constructions to check the indices i x related to T 2 . As usual, we fix an input u and the unique successful run ρ 1 of T 1 on u. The idea is that each index j x corresponds to a certain element of the crossing sequence of ρ 1 at the target origin z x , and knowing the correct index for x determines the correct index for the next output position x + 1. Based on this, correctness can be verified inductively using the guessed crossing sequences and the relation next γ,γ ′ of the resynchronizer, as follows. For the base case, we check that the first output position is correctly annotated with the index j = 1: this is readily done by a regular language opar.

For the inductive step, we consider an output position x and assume that it is correctly annotated with j = j x . Let j ′ be the annotation of the next position x + 1. To check that j ′ is also correct, we consider pairs of productive transitions in the crossing sequences associated with the target origins of x and x + 1, and verify that they are connected by a non-productive run. More precisely, let z and z ′ be the target origins of x and x + 1, respectively, and let t z and t z ′ be the crossing sequences of ρ 1 at those positions. We have that j ′ = j x+1 if and only if the j-th productive transition of t z and the j ′ -th productive transition of t z ′ are connected by a factor of the run that consists only of non-productive transitions. The latter property can be translated to a regular property next γ,γ ′ concerning the input annotated with two specific positions, z and z ′ , assuming that γ = (a, i, j) and γ = (a ′ , i ′ , j ′) are the letters of the output positions x and x + 1.

It now remains to check the correctness of the output annotations w.r.t. the indices i for the second transducer T 2 . We follow a principle similar to the one described above for T 1 . The only difference is that now, in the inductive step, we have work with the source origins y and y ′ of consecutive output positions x and x + 1. The additional difficulty is that, by definition, the relation next γ,γ ′ can only refer to target origins. We overcome this problem by exploiting the partial bijection between target and source origins, as defined by the relations move γ and move γ ′ . Formally, we first define a relation next source γ,γ ′ as before, that constrain the indices i and i ′ associated with two consecutive output positions x and x + 1 labeled by γ and γ ′ , respectively. We do this as if next source γ,γ ′ were able to speak about source origins. We then intersect the following relation with the previously defined relation next γ,γ ′ : (u, z, z ′) ∃y, y ′ (u, y, y ′) ∈ next source γ,γ ′ , (u, y, z) ∈ move γ , (u, y ′ , z ′) ∈ move γ ′ .

Since in the inductive step we assume that x is correctly annotated with the pair (i, j) and x + 1 is annotated with (i ′ , j ′), where j ′ = j x is correct by the previous arguments, there are unique y, y ′ that satisfy (u, y, z) ∈ move γ and (u, y ′ , z ′) ∈ move γ in the above definition, and these must be the source origins of x and x + 1. This means that the above relation, which is definable by a unambiguous Parikh automaton, correctly verifies the correctness of the index i ′ associated with x + 1. We conclude by observing a few properties of the defined Parikh resynchronizer R. As already explained, the relation move γ defines a bijection between pairs of input positions, so R is a 1-bounded Parikh resynchronizer. As concerns its target set, that is the set of pairs (u, z) such that (u, y, z) ∈ move γ for some z ∈ dom(u) and some γ ∈ Γ × {1, . . . , n 2 } × {1, . . . , n 1 }, it coincides by construction with the target set of T 1 . Finally, since the relation next γ,γ ′ is defined by conjoining a regular property with the properties defined by the relations move γ and move γ ′ , we have that next γ,γ ′ is regular if move γ and move γ ′ are regular. Theorem 13. Let T 1 , T 2 be two unambiguous two-way transducers such that T 1 ⊆ T 2 , and let R be the bounded Parikh resynchronizer obtained from Theorem 12. The following conditions are equivalent: 1. R is a regular resynchronizer, 2. T 1 ⊆ o R(T 2) for some bounded regular resynchronizer R, 3. T 1 ⊆ o R(T 2) for some 1-bounded regular resynchronizer R, 4. T 1 = o R(T 2) for some 1-bounded regular resynchronizer R with the same target set as T 1 .

Proof. We prove the following implications in the order: 1. → 2. → 3. → 4. → 1.

From 1. to 2.

This is trivial since R is bounded and satisfies T 1 = o R(T 2), and hence T 1 ⊆ o R(T 2).

From 2. to 3.

Let R be a k-bounded regular resynchronizer. The goal is to construct an equivalent 1bounded regular resynchronizer R ′ (note that this part of the proof does not depend on T 1 and T 2). For this, we introduce a parameter i x ∈ {1, . . . , k} associated with each output position x, and require that for all output positions x, x ′ having the same label γ, and for all input positions y, z such that (u, y, z) ∈ move γ , if i x = i x ′ , then x = x ′ . The existence of such a mapping x ↦ i x follows easily from the assumption that R is k-bounded. The relation M F C S 2 0 1 9 55:28 On Synthesis of Resynchronizers for Transducers move ′ (γ,i) of the new resynchronizer R ′ redirects origins of output positions based on their annotations (γ, i) ∈ Γ × {1, . . . , k}, as follows: move ′ (γ,i) = (w, y, z) (w, y, z) ∈ move γ , ∃ !i y ′ y ′ < y ∧ (w, y ′ , z) ∈ move γ where ∃ !i y ′ is an abbreviation for "there exist exactly i positions y ′ such that. . . ". As for the relation next ′ (γ,i),(γ ′ ,j) , this coincides with next γ,γ ′ , so it does not take into account the new annotations. Thus, the defined resynchronizer R ′ is 1-bounded, regular, and defines the same resynchronization as R.

From 3. to 4.

Suppose that R is a 1-bounded regular resynchronizer with input alphabet Σ and output alphabet Γ, such that T 1 ⊆ o R(T 2). The goal is to construct a 1-bounded regular resynchronizer R ′ with the same target set as T 1 and such that T 1 = o R ′ (T 2). For the sake of simplicity, we assume that R has no input parameters, and similarly T 1 has no common guess (the more general cases can be dealt with by annotating the considered inputs with the possible parameters and the common guess). The idea for defining the desired resynchronizer R ′ is as follows. We first restrict each relation move γ so as to make it a partial bijection, that is, for every input u, and every source origin y ∈ dom(u), there is an annotation w of the input and at most one target origin z that corresponds to y in u ⊗ w (and conversely, since R is 1-bounded, for every target origin z there is a unique source origin y that corresponds to z). This step requires the use of appropriate input parameters that determine a unique target origin z from any given source origin y. Then, we restrict further the relation move γ so that every target origin z is witnessed by T 1 . Formally, we introduce input parameters ranging over B Γ and work with annotated inputs of the form u ⊗ w, with u ∈ Σ * and w ∈ (B Γ) * . Given u ∈ Σ * , we define O u as the set of all positions z = orig(G)(x) where G is an origin graph of T 1 , x ∈ dom(out(G)), and in(G) = u. The new relation move ′ γ that redirects source origins to target origins is defined as the following restriction of move γ : move ′ γ = (u ⊗ w, y, z) (u, y, z) ∈ move γ , w(z)(γ) = 1, z ∈ O u .

Clearly, the above relation is regular and contained in move γ . However, it is still possible that move ′ γ associates multiple target origins with the same source origin. To get a partial bijection from move ′ γ we need to constrain the possible annotated input u ⊗ w. We do so by requiring that, for every output letter γ ∈ Γ and every position y in u ⊗ w, if there is z satisfying (u, y, z) ∈ move γ , then there is exactly one z ′ satisfying (u, y, z ′) ∈ move γ and w(γ)(z) = 1. Note that the latter property is again regular, and thus could be conjoined with the original relation ipar to form the new relation ipar ′ . Accordingly, the relation next ′ γ,γ ′ of the desired resynchronizer R ′ defines the same language as next γ,γ ′ , but expanded with arbitrary input annotations over B Γ .

It is now easy to see that the the resulting resynchronizer R ′ is 1-bounded, and in fact, on each input, defines a partial bijection between source and target origins in such a way that the target set coincides with that of T 1 . By pairing this with the containments R ′ (T 2) ⊆ o R(T 2) and T 1 ⊆ o R(T 2), we obtain T 1 = o R ′ (T 2).

From 4. to 1.

Knowing that R(T 2) = o T 1 = o R(T 2) for two 1-bounded resynchronizers R, R with the same target sets as T 1 implies that the relations move γ and move ′ γ , from R and R respectively,

 a a a . . . a a a b b b . . . b b b a a a . . . a a a b b b . . . b b b

Figure 1

 1 Figure1Two functional 1NFT T1, T2, their origin graphs, and a rational resynchronizer R.

 a a b a a a b b a a a b a a b b b a a b a a a b a a a b b a a b a b b a Γ = {b}.

 a a . . . a a b b . . . b b a a . . . a a b b b b .

References1

 Rajeev Alur and Pavel Cerný. Expressiveness of streaming string transducer. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

16 .

 16 Consider the pair of source and target synchronized words over Σ ⊎ Γ shown to the right, where Σ = {a} and Γ = {b}, which could be realized by a successful run ρ of R. For the moment, we overlook the blue and red arrows. Because R is letter-to-letter, any position in any of the two words corresponds precisely to a position in the run ρ, so we can represent the a a b a a a b b a a a b a a b b b a a b a a a b a a a b b a a b a b b a

 Synthesis of Resynchronizers for Transducerslatter case, it is encoded by a pair (y ′ , o ′), with o ′ ≥ 1. As an example, in the figure below, (7, 4) ∈ omatch ρ . Position 7 of the run is encoded as (5, 1) on the input. The transition at position 4 consumes an input symbol a, and produces the output symbol b, and is encoded as (3, 0).

 ρ . The translation of the relation imatch ρ is similar. The only difference is that now the pairs (i, j) ∈ imatch ρ are encoded by tuples of the form (y, o), (y ′ , o ′) , with o = 0 since the transition at i consumes an input symbol. The transition at position j as before, can consume an input symbol or an output symbol. Consider the figure below, where (2, 3) ∈ imatch ρ . Position i = 2 is encoded as (2, 0). The transition at position 3 consumes an output symbol b (and produces the input symbol a). Position 3 is encoded as (2, 1).

Figure 2

 2 Figure 2 Factorization of an output block.

 under the name of MSO resynchronizer (here we call it simply 'resynchronizer'). The formalism describes pairs (G, G ′) of origin graphs by means of two relations move γ and next γ,γ ′ (γ, γ ′ ∈ Γ) in the spirit of MSO graph transductions. More precisely:move γ describes how the origin y of an output position x labeled by γ is redirected to a new origin z (for short, we call y and z the source and target origins of x). Formally, move γ is a relation contained in Σ * × N × N that induces resynchronization pairs (G, G ′) ′ constrains the target origins z and z ′ of any two consecutive output positions x and x + 1 that are labelled by γ and γ ′ , respectively. Formally, next γ,γ ′ is a relation contained in Σ * × N × N that induces resynchronization pairs (G, G ′) such that, for all output positions x and x + 1, if out

	such that, for all output positions x, if out(G)(x) = γ, orig(G)(x) = y, and orig(G ′)(x) = z,
	then (in(G), y, z) ∈ move γ .
	next γ,γ

In[START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF], resynchronizers were further restricted to contain at least the pairs of identical origin graphs. Here we prefer to avoid this additional restriction and reason with a more general class of resynchronizations.

A transducer is k-ambiguous if each input admits at most k successful runs.

project (ANR-16-CE40-0007)

OCA work with counter over natural numbers). The detail regarding which among T 1 , T 2 is "leading", resulting in the non-negative counter value can be stored in the finite control of the OCA.

Intuitively, a configuration of A determines how ahead or behind is the partial output produced by the encoded run of T 1 compared to the partial output produced by the simulated run T 2 . The OCA A accepts with empty counter. Note that this construction is close to the direct product of T 1 and T 2 , the main difference being the treatment of the badly formed encodings and the role played by the counter.

Let us now prove that the OCA A is language-bounded if and only if T 1 ⊆ o R(T 2) for some rational resynchronizer R.

Suppose first that the OCA A is language-bounded, namely, that there is some k ∈ N such that every word is accepted by A with a counter that never exceeds k. We can think of the successful runs of A that maintain the counter between 0 and k as runs of a k-delay resynchronizer R. More precisely, we can define a letter-to-letter resynchronizer R, the states of which are the configurations of A with the value of the counter inside {0, . . . , k}. On consuming an input letter, R produces the same input letter; on consuming a sequence of j output letters, depending on the simulated transition of A, R produces an output of length j + h if the counter is incremented by h. Likewise, if the simulated transition of A decrements the counter by h, then on reading a sequence of j output symbols, R produces an output of length jh. The run of R is successful if an only if the simulated run of A is so. The fact that A accepts every word with a counter that never exceeds k, immediately implies that

Conversely, suppose that T 1 ⊆ o R(T 2) for some rational resynchronizer R. By Theorem 8, we can assume without loss of generality that R is a k-delay resynchronizer, for some k (that can be even computed from T 1 , T 2 , and R, but this is immaterial here). From this it is easy to see that A is language-bounded, and precisely, that A accepts every word with a counter that never exceeds k, as when reading a run ρ of T 1 , it can guess a run ρ ′ of T 2 such that R(ρ ′) = ρ.

From language-boundedness to synthesis.

Let A be an OCA. We construct two real-time, one-way transducers T 1 , T 2 that have the same input alphabet as A, say Σ, and a singleton output alphabet, say Γ = {c}. The transducer T 1 reads any word a 1 . . . a n ∈ Σ * and outputs one letter c for each consumed input symbol. In particular, the synchronization language of T 1 is {a 1 c . . . a n c ∶ a i ∈ Σ, n ≥ 0}. Note that T 1 is real-time and functional. The transducer T 2 does the following: upon reading a 1 . . . a n , it guesses a successful run of the OCA A. Whenever the counter is incremented along the guessed run of A, T 2 outputs cc; whenever the counter is decremented, T 2 outputs ε; whenever the counter is unchanged, T 2 outputs c. Note that T 2 is also real-time, but not necessarily functional.

Let us now prove that A is language-bounded if and only if

Suppose first that A is language-bounded, with bound k. We obtain from this a k-delay resynchronizer R that reads a synchronized word a 1 c i1 . . . a n c in of T 2 , where i j ∈ {0, 1, 2} for all j. The resynchronizer R simulates a counter taking values in [-k, k], and outputs a 1 c . . . a n c, accepting if and only if the counter is 0. Each time an a i c 2 a j is encountered, it corresponds to an increment in the OCA; then R outputs a i c, and the simulated counter decreases by 1 in R; likewise, each time an a i ca j is encountered, R outputs a i c with no change in the simulated counter value, and finally, when two consecutive input symbols a i a j M F C S 2 0 1 9 55:24 On Synthesis of Resynchronizers for Transducers are read by R, R outputs a i c and the simulated counter value increases by 1. Since the counter value is bounded by k in the OCA, the simulated counter in R is within

Conversely, suppose that T 1 ⊆ o R(T 2) for some rational resynchronizer R. We argue as before, using Theorem 8: we assume without loss of generality that R is a k-delay resynchronizer, for some k, and derive from this that A is language-bounded.

Theorem 10 ([13]

). The language-boundedness problem for OCA is undecidable.

Proof. The reduction is from the boundedness problem for multi-counter (Minksy) machines. Such a machine M can increment, decrement and test for zero. The question is whether there exists some bound k such that all computations of M (not necessarily accepting) from the initial configuration with all counters zero, have all counters stay below k. One can assume w.l.o.g. that if M is not bounded then for every k there is some initial run of M where all counters exceed k.

The OCA A reads sequences of transitions of M . At the beginning, A guesses a counter index j of M and starts simulating the sequence of transitions on counter j. If the sequence of transitions is incorrect because of counter j, the OCA accepts and stops after emptying counter j. Note that there are two types of error: either the counter is zero but should be decremented, or the counter is tested for zero, but is not zero. Both kinds of error can be checked by the OCA. Otherwise, if the simulation goes through for counter j, then the OCA accepts with empty counter at the end.

Assume that M is bounded, with bound k. If a sequence ρ of transitions is a run of M , then all simulations on any counter will be bounded by k. If ρ is not a run, then there is a first position of ρ where an error occurs, for instance because of counter j. Then the run of A simulating counter j will accept ρ within bound k.

If M is unbounded then for every k there is a run ρ where all counters exceed k. In this case all runs of A on ρ exceed k, so A is not language-bounded. Theorem 12. Let T 1 , T 2 be two unambiguous two-way transducers. The following conditions are equivalent:

for some 1-bounded Parikh resynchronizer R whose target set coincides with that of T 1 and where, each relation next γ,γ ′ is regular if move γ and move γ ′ are regular.

Proof. The implications from 2. to 1. and from 3. to 2. are as in the proof of Theorem 4.

The only interesting implication is from 1. to 3, where we suppose that T 1 ⊆ T 2 and we aim at constructing a 1-bounded Parikh resynchronizer R such that T 1 = o R(T 2), and with the same target set as T 1 . The proof exploits some constructions based on crossing sequences, which are classically used to translate two-way automata to equivalent one-way automata [START_REF] Shepherdson | The reduction of two-way automata to one-way automata[END_REF], as well as to reduce containment of functional two-way transducers to emptiness of languages recognized by Parikh automata [START_REF] Muscholl | The many facets of string transducers (invited talk)[END_REF]. We briefly recall the key notions here, by adapting them in a way that is convenient for the presentation (notably, considering transitions instead of states).

A crossing sequence of a two-way automaton or a functional two-way transducer is a tuple t = (t 1 , . . . , t n) of transitions such that the source states of t 1 , t 3 , . . . are right-reading and the source states of t 2 , t 4 , . . . are left-reading. The tuple is meant to describe the transitions along a successful run that depart from configurations at a certain position y. Formally, given a run ρ, the crossing sequence of ρ at input position y, denoted ρ[y], consists of the quadruples 55:29 coincide. Moreover, since the relation move γ of R is assumed regular, this means that move ′ γ is regular too. Finally, we recall that R is such that next ′ γ,γ ′ is regular whenever move γ and move γ ′ are. We can then conclude that the relations next ′ γ,γ ′ from R are also regular, and hence R is a regular resynchronizer.