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ABSTRACT: Complex computer codes are often too time expensive to be directly used to perform uncertainty
propagation or sensitivity analysis. A solution to cope with this problem consists in replacing the cpu-time ex-
pensive computer model by a cpu inexpensive mathematical function, called metamodel. Among the metamod-
els classically used in computer experiments, the Gaussian process (Gp) model has shown strong capabilities
to solve practical problems. However, in case of high dimensional experiments (with typically several tens
of inputs), the Gp metamodel building process remains difficult. To face this limitation, we propose a general
methodology which combines several advanced statistical tools. First, an initial space-filling design is performed
providing a full coverage of the high-dimensional input space (Latin hypercube sampling with optimal discrep-
ancy property). From this, a screening based on dependence measures is performed. More specifically, the
Hilbert-Schmidt independence criterion which builds upon kernel-based approaches for detecting dependence
is used. It allows ordering the inputs by decreasing primary influence, for the purpose of the metamodeling.
Furthermore, significance tests based either on asymptotic theory or permutation technique are performed to
identify a group of potentially non-influential inputs. Then, a joint Gp metamodel is sequentially built with the
group of influential inputs as explanatory variables. The residual effect of the group of non-influential inputs is
captured by the dispersion part of the joint metamodel. Then, a sensitivity analysis based on variance decompo-
sition can be performed through the joint Gp metamodel. The efficiency of the methodology is illustrated on a
thermal-hydraulic calculation case simulating accidental scenario in a Pressurized Water Reactor.

1 INTRODUCTION

Quantitative assessment of the uncertainties tainting
the results of computer simulations is nowadays a ma-
jor topic of interest in both industrial and scientific
communities. One of the key issues in such studies is
to get information about the output when the numer-
ical simulations are expensive to run. For example,
in nuclear engineering problems, one often faces up
with cpu time consuming numerical models and, in
such cases, uncertainty propagation, sensitivity anal-
ysis, optimization processing and system robustness
analysis become difficult tasks using such models.
In order to circumvent this problem, a widely ac-
cepted method consists in replacing cpu-time expen-
sive computer models by cpu inexpensive mathemati-
cal functions, called metamodels (Fang et al. 2006).
This solution has been applied extensively and has
shown its relevance especially when simulated phe-

nomena are related to a small number of random input
variables (see Forrester et al. (2008) for example).

However, in case of high dimensional numerical
experiments (with typically several tens of inputs),
depending on the complexity of the underlying nu-
merical model, the metamodel building process re-
mains difficult, even unfeasible. For example, the
Gaussian process (Gp) model (Santner et al. 2003)
which has shown strong capabilities to solve practi-
cal problems, has some caveats when dealing with
high dimensional problems. The main difficulty re-
lies on the estimation of Gp hyperparameters. Manip-
ulating pre-defined or well-adapted Gp kernels (as in
Muehlenstaedt et al. (2012), Durrande et al. (2013))
is a current research way, while coupling the estima-
tion procedure with variable selection techniques has
been proposed by several authors (Welch et al. 1992,
Marrel et al. 2008, Woods and Lewis 2017).

In this paper, following the latter technique, we pro-



pose a rigorous and robust method for building a Gp
metamodel with a high-dimensional vector of inputs
before using it to perform variance-based sensitivity
analysis.

To build this metamodel, we use a sequential
methodology where the technical core are updated
with more relevant statistical techniques. For exam-
ple, the screening step is raised by the use of recent
and powerful techniques in terms of variable selection
using a small number of model runs. Second, contrary
to the previous works, we do not remove the non-
selected inputs from the Gp model, keeping the un-
certainty caused by the dimension reduction by using
the joint metamodel technique (Marrel et al. 2012).
The integration of this residual uncertainty is impor-
tant in terms of robustness of subsequent safety stud-
ies and sensitivity analysis. Finally, a sensitivity anal-
ysis based on variance decomposition is performed
through the joint Gp metamodel, yielding both the es-
timation of the influence of each selected inputs and
the total effect of the group of non-selected inputs.

Each step of our methodology is detailed in a ded-
icated section and illustrated on a guideline appli-
cation, namely a thermal-hydraulic calculation case
simulating accidental scenario in a nuclear reactor.
This use-case is first described in the following sec-
tion.

2 THERMAL-HYDRAULIC TEST-CASE

Our use-case consists in thermal-hydraulic computer
experiments, typically used in support of regulatory
work and nuclear power plant design and operation.
Indeed, some safety analysis considers the so-called
“Loss Of Coolant Accident” (LOCA), which takes
into account a double-ended guillotine break with a
specific size piping rupture. It is modeled with code
CATHARE 2.V2.5 which simulated the thermalhy-
draulic responses during a LOCA in a Pressurized
Water Reactor (Mazgaj et al. 2016).

In this use-case, d = 27 scalar input variables of
CATHARE are uncertain. They correspond to vari-
ous system parameters as initial conditions, boundary
conditions, some critical flowrates, interfacial friction
coefficients, condensation coefficients, . . . The output
variable of interest is a single scalar which is the max-
imal peak cladding temperature during the accident
transient.

In our problem, minimal and maximal values are
defined for each uncertain input and, in the frame-
work of probabilistic approach, their uncertainties are
modeled by probability laws defined on the domain
of variation (uniform, log-uniform, truncated normal
and truncated log-normal laws). Moreover, the d
inputs are supposed independent. Our first objective
with this use-case is to provide a good metamodel
for sensitivity analysis, uncertainty propagation and,
more generally, safety studies. Indeed, the cpu-time
cost of this computer code is too important to develop

all the statistical analysis required in a safety study
only using direct calculations of the computer code.
A metamodel would allow to develop more complete
and robust demonstration.

In what follows, the system under study is generi-
cally denoted

Y = g (X1, . . . ,Xd) (1)

where g(·) is the numerical model (also called the
computer code), whose output Y and input parame-
ters X1, . . . ,Xd belong to some measurable spaces Y
and X1, . . . ,Xd respectively. X = (X1, . . . ,Xd) is the
input vector and we suppose that X =

∏d
k=1Xk ⊂ Rd

and Y ⊂ R. For a given value of the vector of inputs
x = (x1, . . . , xd) ∈ Rd, a simulation run of the code
yields an observed value y = g(x).

3 STEP 1: INITIAL DESIGN OF EXPERIMENTS

The objective of the initial sampling step is to inves-
tigate the whole variation domain of the uncertain pa-
rameters in order to fit a predictive metamodel which
approximates as accurately as possible the code in the
whole domain of variation of the uncertain parame-
ter. For this, we use a space-filling design (SFD) of a
certain number n of experiments, providing a full cov-
erage of the high-dimensional input space (Fang et al.
2006). This design enables to investigate the domain
of variation of the uncertain parameters and provides
a learning sample.

For the SFD type, a Latin Hypercube Sample
(LHS) with optimal space-filling and good projection
properties (Woods and Lewis 2017) would be well
adapted. In particular, Fang et al. (2006) and then
Damblin et al. (2013) have shown the importance of
ensuring good low-order sub-projection properties.
Maximum projection designs (Joseph et al. 2015) or
low-centered L2 discrepancy LHS (Jin et al. 2005)
are then particularly well-suited.

Mathematically, this corresponds to the sample{
x(1), . . . ,x(n)

}
which is performed on the model

g. This yields n model output values denoted{
y(1), . . . , y(n)

}
with y(i) = g(x(i)). The obtained

learning sample is denoted (Xs, Ys) with Xs =[
x(1)T , . . . ,x(n)T

]T
and Ys =

[
y(1), . . . , y(n)

]T . The
goal is to build an approximating model of g using
the n-sample (Xs, Ys).

The number n of simulations is a compromise
between the CPU time required for each simulation
and the number of input parameters. Some thumb
rules propose to choose n at least as large as 10 times
the dimension d of the input vector (Loeppky et al.
2009, Marrel et al. 2008).



To build the metamodel for the LOCA test case,
N = 500 CATHARE simulations of this test case
are performed following a space-filling LHS with
good projection properties as the design of experi-
ments. The obtained inputs-output sample constitutes
the learning sample.

Remark 3.1 Note that the input values are sampled
following their prior distributions defined on their
variation ranges. Indeed, as we are not ensured to be
able to build a sufficiently accurate metamodel, we
prefer sample the inputs following the probabilistic
distributions in order to have at least a probabilized
sample of the uncertain output, on which statistical
characteristics could be estimated. Moreover, as ex-
plained in the next section, dependence measures can
be directly estimated on this sample, providing first
usable results of sensitivity analysis.

4 STEP 2: INITIAL SCREENING BASED ON
DEPENDENCE MEASURE

From the learning sample, a screening technique is
performed in order to identify the primary influen-
tial inputs (PII) on the model output variability. It has
been recently shown that screening based on depen-
dence measures (Da Veiga 2015, De Lozzo and Mar-
rel 2016, Raguet and Marrel 2018) or on derivative-
based global sensitivity measures (Kucherenko and
Iooss 2017, Roustant et al. 2017) are very efficient
methods which can be directly applied on a SFD.
One of their great interest is that, additionally to their
screening job, the sensitivity indices that they provide
can be quantitatively interpreted and used to order the
PII by decreasing influence, paving the way for a se-
quential building of metamodel. Note that Mara et al.
(2017) recently compared the efficiency of several
sensitivity measures to address the issue of factors fix-
ing setting: Sobol’indices estimated with sparse poly-
nomial chaos expansion method, density-based de-
pendence measure and derivative-based global sensi-
tivity measures.

In the considered LOCA test case, the adjoint
model is not available and the derivatives of the model
output are therefore not computed because of their
costs. This considerably limits the interest of using
derivative-based sensitivity measures. Moreover, as
the number of uncertain inputs is large and HSIC
dependence measures has showed good convergence
properties (De Lozzo and Marrel 2016), we choose to
use the latter for the screening step, directly estimated
from the inputs-output sample (metamodel-free esti-
mation).

4.1 Screening based on HSIC dependence measure

Da Veiga (2015) and more recently De Lozzo and
Marrel (2016) have proposed to use dependence mea-
sures for screening purpose, by applying them di-

rectly on a SFD. These sensitivity indices are not
the classical ones variance-based measures (see Iooss
and Lemaı̂tre 2015 or Borgonovo and Plischke 2016,
for a review on global sensitivity analysis methods).
They consider higher order information about the out-
put behavior in order to provide more detailed infor-
mation. Among them, the Hilbert-Schmidt indepen-
dence criterion (HSIC) introduced by Gretton et al.
(2005) builds upon kernel-based approaches for de-
tecting dependence, and more particularly on cross-
covariance operators in reproducing kernel Hilbert
spaces (RKHS).

If we consider two RKHS Fk and G of func-
tions Xk → R and Y → R respectively, the crossed-
covariance CXk,Y operator associated to the joint dis-
tribution of (Xk, Y ) is the linear operator defined for
every fXk

∈ Fk and gY ∈ G by:

〈fXk
,CXk,Y gY 〉Fk

= Cov (fXk
, gY ) . (2)

CXk,Y generalizes the covariance matrix by repre-
senting higher order correlations between Xk and Y
through nonlinear kernels. The HSIC criterion is then
defined by the Hilbert-Schmidt norm of the cross-
covariance operator:

HSIC(Xk, Y )Fk,G = ‖Ck‖2HS. (3)

From this, Da Veiga (2015) introduces a normalized
version of the HSIC which provides a sensitivity in-
dex of Xk:

R2
HSIC,k =

HSIC(Xk, Y )√
HSIC(Xk,Xk)HSIC(Y,Y )

. (4)

Gretton et al. (2005) also propose a Monte Carlo esti-
mator of HSIC(Xk, Y ) and a plug-in estimator can be
deduced for R2

HSIC,k. Note that Gaussian kernel func-
tions with empirical estimations of the variance pa-
rameter are used in our application (see Gretton et al.
2005 for details).

Then, from the estimatedR2
HSIC, independence tests

can be performed for a screening purpose. The ob-
jective is to separate the inputs into two sub-groups,
the significant ones and the non-significant ones. For
a given input Xk, it aims at testing the null hypoth-
esis “H(k)

0 : Xk and Y are independent”, against its
alternative “H(k)

1 : Xk and Y are dependent”. The
significance level1 of these tests is hereinafter noted
α. Several statistical hypothesis tests are available:
asymptotic versions, spectral extensions and boot-
strap versions for non-asymptotic case. All these tests
are described and compared in De Lozzo and Marrel
(2016); a guidance to use them for a screening pur-
pose is also proposed. At the end of the screening
step, the inputs selected as significant are also ordered
by decreasing R2

HSIC. This order will be used for the
sequential metamodel building in step 3.

1The significance level of a statistical hypothesis test is the
rate of the type I error which corresponds to the rejection of the
null hypothesisH0 when it is true.



4.2 Application on LOCA test case

From the learning sample of N = 500 simulations,
R2

HSIC dependence measures are estimated and boot-
strap tests with α = 0.1 are performed. Eleven inputs
are selected as significantly influential. Ordering them
by decreasing R2

HSIC reveals the predominance influ-
ence of X10 (R2

HSIC ≈ 0.39), followed by X2, X12 and
X22, (R2

HSIC ≈ 0.04, 0.02 and 0.02 respectively). X15,
X13, X9, X5, X14, X26 and X27 have a lower influence
(R2

HSIC around 0.01)) and the others variables are con-
sidered as negligible by statistical tests.

Note that the estimated HSIC and the results of
significant tests are relatively stable when the learn-
ing sample size varies from N = 300 to N = 500.
Only two or three selected variables with a very low
HSIC (R2

HSIC around 0.01) can differ. This confirms
the robustness of the HSIC indices and the associated
significance tests for qualitative sorting and screening
purpose.

In the next steps, the eleven significant inputs are
considered as the explanatory variables, denoted PII,
in the joint metamodel and will be successively in-
cluded in the building process. The other sixteen vari-
ables will be joined in a so-called uncontrollable pa-
rameter.

5 STEP 3: JOINT GP METAMODEL WITH
SEQUENTIAL BUILDING PROCESS

Among all the metamodel-based solutions (polyno-
mials, splines, neural networks, etc.), we focus our
attention on the Gaussian process (Gp) regression,
which extends the kriging principles of geostatistics
to computer experiments by considering the correla-
tion between two responses of a computer code de-
pending on the distance between input variables. The
Gp-based metamodel presents some real advantages
compared to other metamodels: exact interpolation
property, simple analytical formulations of the predic-
tor, availability of the mean squared error of the pre-
dictions and the proved efficiency of the model (Sant-
ner et al. 2003).

However, for its application to complex indus-
trial problems, developing a robust implementation
methodology is required. Indeed, fitting a Gp model
implies the estimation of several hyperparameters in-
volved in the covariance function. In complex situ-
ations (e.g. large number of inputs), some difficul-
ties can arise from the parameter estimation proce-
dure (instability, high number of hyperparameters, see
Marrel et al. 2008 for example). To tackle this issue,
we propose a progressive estimation procedure which
combines the result of the previous screening step and
a joint Gp approach (Marrel et al. 2012).

5.1 Sequential building process based on
successive inclusion of explanatory variables

At the end of the screening step, the inputs selected as
significant (group of PII) are ordered by decreasing
influence. The sorted PII are successively included
in the metamodel explanatory inputs while the other
inputs (remaining PII and the sixteen non-selected
inputs) are joined in a single macro-parameter which
is considered as an uncontrollable parameter (i.e. a
stochastic parameter, notion detailed in section 5.2).
Thus, at the jth iteration, a joint Gp metamodel is
built with, as explanatory inputs, the j sorted PII.
The definition and building procedure of a joint
Gp is fully described in Marrel et al. (2012) and
summarized in the section 5.2.

However, building a Gp or a joint Gp involves to
perform a numerical optimization in order to esti-
mate all the parameters of the metamodel (covari-
ance hyperparameters and variance parameter). As we
usually consider in computer experiments anisotropic
(stationary) covariance, the number of hyperparame-
ters linearly increases with the number of inputs. In
order to improve the robustness of the optimization
process and deal with a large number of inputs, the
estimated hyperparameters obtained at the (j − 1)th

iteration are used, as starting points for the optimiza-
tion algorithm. This procedure is repeated until the in-
clusion of all the PII. Note that this sequential estima-
tion process is directly adapted from the one proposed
by Marrel et al. (2008).

5.2 Joint Gp metamodel

In the framework of stochastic computer codes, Za-
balza et al. (1998) proposed to model the mean and
dispersion of the code output by two interlinked Gen-
eralized Linear Models (GLM), called “joint GLM”.
Marrel et al. (2012) extends this approach to sev-
eral nonparametric models and obtains the best results
with two interlinked Gp models, called “joint Gp”. In
this case, the stochastic input is considered as an un-
controllable parameter denoted Xε (i.e. governed by a
seed variable).

We extend this approach to a group of non-
explanatory variables. More precisely, the input vari-
ables X = (X1, . . . ,Xd) are divided in two sub-
groups: the explanatory ones denoted Xexp and the
others denoted Xε. The output is thus defined by y =
g(Xexp,Xε). Under this hypothesis, the joint meta-
modeling approach yields building two metamodels,
one for the mean Ym and another for the dispersion
component Yd:

Ym(Xexp) = E(Y |Xexp) (5)

Yd(Xexp) = Var(Y |Xexp) =E
[
(Y − Ym(Xexp))

2|Xexp
]
.



(6)

To fit these mean and dispersion components, we
propose to use the methodology proposed by Marrel
et al. (2012). First, an initial Gp denoted Gpm,1 is es-
timated for the mean component with homoscedas-
tic nugget effect. A nugget effect is required to re-
lax the interpolation property of the Gp metamodel,
which would yield zero residuals for the whole learn-
ing sample. Then, a second Gp, denoted Gpv,1, is
built for the dispersion component with, here also,
an homoscedastic nugget effect. Gpv,1 is fitted on the
squared residuals from the predictor ofGpm,1. Its pre-
dictor is considered as an estimator of the dispersion
component. The predictor of Gpv,1 provides an esti-
mation of the dispersion at each point, which is con-
sidered as the value of the heteroscedastic nugget ef-
fect. The homoscedastic hypothesis is so removed and
a new Gp, denoted Gpm,2, is fitted on data, with the
estimated heteroscedastic nugget. Finally, the Gp on
the dispersion component is updated from Gpm,2 fol-
lowing the same methodology as for Gpv,1.

Remark 5.1 Note that some parametric choices are
made for all the Gp metamodels: a constant trend
and a Matérn stationary anisotropic covariance are
chosen. All the hyperparameters (covariance param-
eters) and the nugget effect (when homoscedastic hy-
pothesis is done) are estimated by maximum likeli-
hood optimization process.

5.3 Assessment of metamodel accuracy

To evaluate the accuracy of the metamodel, we use the
predictivity coefficient Q2:

Q2 = 1−
∑ntest

i=1

(
y(i) − ŷ(i)

)2∑ntest
i=1

(
y(i) − 1

ntest

∑ntest
i=1 y

(i)
)2 (7)

where (x(i))1≤i≤ntest is a test sample, (y(i))1≤i≤ntest are
the corresponding observed outputs and (ŷ(i))1≤i≤ntest

are the metamodel predictions. Q2 corresponds to
the coefficient of determination in prediction and can
be computed on a test sample independent from the
learning sample or by cross-validation on the learn-
ing sample. The closer to one the Q2, the better the
accuracy of the metamodel.

5.4 Application on LOCA test case

The joint Gp metamodel is built from the learning
sample of N = 500: the eleven PII identified at the
end of the the screening step are considered as the ex-
planatory variables while the sixteen others are con-
sidered as the uncontrollable parameter. Gps on mean
and dispersion components are built using the sequen-
tial building process described in section 5.1 where
PII ordered by decreasing R2

HSIC are successively in-
cluded in Gp.Q2 coefficient of mean componentGpm

Table 1: Evolution of Gpm metamodel predictivity during the
sequential process building, for each new additional PII.

Additional PII X10 X2 X12 X22 X15 X13

Q2 0.60 0.64 0.70 0.79 0.81 0.83
Additional PII X9 X5 X14 X26 X27

Q2 0.85 0.85 0.87 0.87 0.87

is computed by cross validation at each iteration of
the sequential building process. The results which are
given by Table 5.4 show an increasing predictivity un-
til its stabilization around 0.87, which illustrates the
robustness of building process. The first four PII make
the major contribution yielding a Q2 around 0.8, the
four following ones yield minor improvements (in-
crease of 0.02 on average for each input) while the
three last PII does not improve the Gp predictivity.
Thus, only 13% of the output variability remains not
explained by Gpm, this includes both the inaccuracy
of the Gpm (part of Ym not fitted by Gp) and the total
effect of the uncontrollable parameter, i.e. the group
of non-selected inputs.

6 STEP 4: VARIANCE-BASED SENSITIVITY
ANALYSIS

Sensitivity Analysis (SA) methods allow to answer
the question “How do the input parameters varia-
tions contribute, qualitatively or quantitatively, to the
variation of the output?” (Saltelli et al. 2008). These
tools can detect non-significant input parameters in
a screening context, determinate the most significant
ones, measure their respective contributions to the
output or identify an interaction between several in-
puts which impacts strongly the model output. From
this, engineers can guide the characterization of the
model by reducing the output uncertainty: for in-
stance, they can calibrate the most influential inputs
and fix the non-influential ones to nominal values.
Many surveys on SA exist in the literature, such as
Kleijnen (1997), Frey and Patil (2002) or Helton et al.
(2006). SA can be divided into two sub-domains: the
Local SA (LSA) and the Global SA (GSA). The first
one studies the effects of small input perturbations
around nominal values on the model output (Cacuci
1981) while the second one considers the impact of
the input uncertainty on the output over the whole
variation domain of uncertain inputs (Saltelli et al.
2008). We focus here on one of the most widely used
GSA indices, namely Sobol’ indices which are based
on output variance decomposition.

6.1 Sobol’ indices

A classical approach in GSA consists of comput-
ing the first-order and total Sobol’ indices which are
based on the output variance decomposition (Sobol
1993, Homma and Saltelli 1996). If the variables
X1, . . . ,Xd are independent and if E[g2(X)] < +∞,
we can apply the Hoeffding decomposition to the ran-



dom variable g(X) (Hoeffding 1948):

g(X) =
∑

u⊂{1,...,d}

gu(Xu) (8)

where g∅ = E[g(X)], gi(Xi) = E[g(X)|Xi]− g∅ and
gu(Xu) = E[g(X)|Xu] −

∑
v⊂u gv(Xv), with Xu =

(Xi)i∈u, for all u ⊂ {1, . . . , d}. All the 2d terms in (8)
have zero mean and are mutually uncorrelated with
each other. This decomposition is unique and leads
to the Sobol’ indices. These are the elements of the
g(X) variance decomposition according to the dif-
ferent groups of input parameter interactions in (8).
More precisely, for each u ⊂ {1, . . . , d}, the first-
order and total Sobol’ sensitivity indices of Xu are
defined by:

Su =
V ar [gu(Xu)]

V ar [g(X)]
and ST

u =
∑
v⊃u

Sv.

Su represents the part of the output variance ex-
plained by Xu, independently from the other inputs,
and ST

u is the part of the output variance explained by
Xu considered separately and in interaction with the
other input parameters.

In practice, we are usually interested in the
first-order sensitivity indices S1, . . . , Sd, the total
ones ST

1 , . . . , S
T
d and sometimes in the second-order

ones Sij , 1 ≤ i < j ≤ d. The model g is devoid of
interactions if

∑d
i=1Si ≈ 1.

Sobol’ indices are widely used in GSA because
they are easy to interpret and directly usable in a di-
mension reduction approach. However, their estima-
tion (based on Monte-Carlo methods for example) re-
quires a large number of model evaluations, which
is intractable for time expensive computer codes. An
common solution consists in using a metamodel to
compute these indices. Note that, when the Q2 of the
metamodel is estimated on a probabilized sample of
the inputs, it provides an estimation of the part of
variance unexplained by the metamodel. This can be
kept in mind when interpreting the Sobol’ indices es-
timated with the metamodel.

6.2 Sobol’ indices with a joint Gp metamodel

In the case where a joint Gp metamodel is used to
take into account an uncontrollable input Xε, we have
shown in Marrel et al. (2012) how to deduce Sobol’
sensitivity indices from this joint metamodel. Indeed,
the variance of the output variable Y (Xexp,Xε) can be
rewritten and deduced from the two metamodels:

VarY (Xexp,Xε)VarXexp [Ym(Xexp)] +EXexp [Yd(Xexp)]

(9)

where EX (resp. VarX) denotes the mean (resp. vari-
ance) operator with respect to the pdf of X . Further-
more, the variance of Y is the sum of the contributions
of all the d controllable inputs Xexp = (X1, . . . ,Xd)
and the uncontrollable one Xε:

Var(Y ) = Vε(Y ) +
d∑

i=1

∑
|J |=i

[VJ(Y ) + VJε(Y )] (10)

where Vε(Y ) = VarXε [EXexp(Y |Xε)],
Vi(Y ) = VarXi [EX−i(Y |Xi)], Viε(Y ) =
VarXiXε [EXexp,−i(Y |XiXε)] − Vi(Y ) − Vε(Y ),
Vij(Y ) = VarXiXj

[EX−i,−j(Y |XiXj)] − Vi(Y ) −
Vj(Y ). . .

Variance of the mean component Ym(X) denoted
hereafter Ym can be also decomposed:

Var(Ym) =
d∑

i=1

∑
|J |=i

VJ(Ym) . (11)

As Vi(Ym) = VarXiEXexp,−i [EXε(Y |Xexp)|Xi] =
Vi(Y ), Sobol’ indices according to input variables
Xexp = (Xi)i=1...d can be derived and estimated from
Ym:

SJ =
VJ(Ym)

Var(Y )
for any J ⊂ Xexp. (12)

Similarly, the total sensitivity index of Xε is given
by:

Stot
ε =

Vε(Y ) +
∑d

i=1

∑
|J |=i VJε(Y )

Var(Y )
=

EXexp [Yd(Xexp)]

Var(Y )
.

(13)

Note that, as Yd(Xexp) is a positive random variable,
positivity of Stot

ε is guaranteed. In practice, Var(Y )
can be estimated from the data or from simulations of
the fitted joint model, using equation (9).

Stot
ε is interpreted as the total sensitivity index of

the uncontrollable process. The limitation of this
approach is that only the total part of uncertainty
related to Xε is estimated; its individual effect is
not distinguished from its interaction with the other
parameters. However, these potential interactions
could be pointed out, considering all the primary and
total effects of all the other parameters. The SA of Yd
can also be a relevant indicator: if an input variable
Xi is not influential on Yd, we can deduce that Siε is
equal to zero.



Table 2: First Sobol’ indices of PII (in %), estimated with Gpm
metamodel.

Input X10 X2 X12 X22 X15 X13

1st Sobol’ index 59 3 8 8 2 1
Input X9 X5 X14 X26 X27

1st Sobol’ index 2 0 2 0 0

6.3 Results on LOCA test case

From the joint Gp built in section 5.4, Sobol’ indices
of PII are estimated fromGpm metamodel using equa-
tion (12), Var(Y ) being estimated with Gpm and Gpd
using equation (9). For this, intensive Monte Carlo
methods are used (see e.g. pick-and-freeze estimator
of Gamboa et al. 2016). The first Sobol’ indices of
PII are given by Table 6.3 and represent 85 % of the
total variance of the output. X10 remains the major
influential input with 59 % of explained variance, fol-
lowed to a lesser extend by X12 and X22 with for each
of them 8% of variance. The partial total Sobol’ in-
dices involving only PII and derived from Gpm show
that additional 4 % of variance is due to interaction
between X10, X12 and X22. The other PII have neg-
ligible influence. Lastly, all PII explain around 89 %
of the output variance, of which 79 % is only due to
X10, X12 and X22. From Gpd metamodel and using
equation (13),the total effect of the uncontrollable pa-
rameter, i.e. the group of the sixteen not-explanatory
inputs, is estimated to 9.7 %. This includes the effect
of the uncontrollable parameter alone and in interac-
tion with the PII. To further investigate these interac-
tions, Sobol’-based SA and HSIC-based statistical de-
pendence tests are applied on Yd and reveal that only
X10, X14, X2, X22 and X4 potentially interact with the
uncontrollable parameter.

7 CONCLUSION AND PROSPECTS

Using an efficient sequential building process, we
fitted a predictive joint Gp metamodel on a high
dimensional thermal-hydraulic test case simulating
accidental scenario in a Pressurized Water Reactor
(LOCA test case). An initial screening step based on
advanced dependence measures and associated sta-
tistical tests enabled to identify a group of significant
inputs, allowing dimension reduction. The efforts of
optimization when fitting the metamodel fitting can
be concentrated on the main influential inputs and
the robustness of metamodeling is thus increased.
Moreover, thanks to the joint metamodel approach,
the non-selected inputs are not completely removed:
the residual uncertainty due to dimension reduction is
integrated in the metamodel and the global influence
of non-selected inputs is so controlled.

From this joint Gp metamodel, several statistical
analyses, not feasible with the numerical model due
to its computational cost, become accessible. Thus,
on LOCA application, a sensitivity analysis based on
variance decomposition is performed using the joint

Gp: Sobol’ indices are computed and reveal that the
output is mainly explained by four uncertain inputs:
one input is strongly influential with around 60% of
output variance explained, the three others being of
minor influence. The quite less influence of all the
other inputs is also confirmed.

The next step is to use the joint Gp metamodel to
perform uncertainty propagation for the estimation of
failure probabilities and quantiles. In the LOCA test
case, we are particularly interested by the estimation
of high quantile (at the order of 95% to 99%) of the
model output temperature. In nuclear safety, meth-
ods of conservative computation of quantiles (Nutt
and Wallis 2004) have been largely studied. However,
several complementary information are often useful
and are not accessible in a high-dimensional context.
Then, we expect that the joint Gp metamodel could
help to access this information: the uncertainty of the
influential inputs will be directly and accurately prop-
agated through the mean component of the joint meta-
model while a confidence bound could be derived
from the dispersion component in order to take into
account the residual uncertainty of the other inputs.
On this last point, the interest of heteroscedastic ap-
proach in joint Gp could also be illustrated and com-
pared with its homoscedastic version.
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