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ABSTRACT 

BEPU evaluation is generally based on computer simulators such as thermal-

hydraulic system codes with expansive computational cost. Furthermore, two 

types of uncertainties are present in the BEPU evaluation: the aleatory uncertainty 

which describes the natural variability of random events and the epistemic 

uncertainty due to lack of knowledge. The former is usually modelled by 

probability theory where some conditions on data quantity and quality must be 

satisfied for probability density functions (pdfs) fitting. However, while the 

epistemic uncertainty is taken into account, with less and imprecise available data 

(i.e. parameters of physical model and correlations present in the computer 

simulator), the use of probabilistic methods on uncertainty modelling and 

propagation cannot be always justified.  

The Dempster-Shafer Theory (DST) of evidence provides an adapted framework 

for representing the parameters with epistemic uncertainty, when it is not possible 

to build a coherent probabilistic model from the available knowledge. In this 

theory, instead of pdfs, the parameters are modeled by focal sets with associated 

degrees of belief. Input uncertainty modeled by DST can be propagated within a 

BEPU evaluation by mapping input focal sets to the output space. The main 

problem is how to control the computation cost because the mapped results are 

obtained by finding the optimal values of the output in each input focal set.  

In this paper, we propose a new scheme to propagate epistemic uncertainties 

modelled by DST through a time-consuming computer simulator. Besides 

classical Monte Carlo method using Cartesian product input mass construction 

method, we propose a novel procedure using vacuous dimension extension and 

mass combination rules (e.g. Dempster's combination rule for independent input 

variables ) after mapping the input focal sets into the output space. This method 

significantly reduces the number of input focal sets. The obtained output function 

has less focal sets, but larger range. Thus, a complete coverage of the output focal 

set space can be provided. Epistemic uncertainty is estimated globally in a 

conservative point of view. As a result of a trade-off between calculation cost, 

estimation accuracy and the quantity of details on epistemic uncertainty 

presented, our proposal enables propagation of epistemic uncertainties modeled 

by DST with a very limited computation budget making possible its practical use 

within a BEPU evaluation. 
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1. INTRODUCTION 

The treatment of uncertainties in the analysis of complex system is essential for determining 

possible ranges on responses of interest such as safety margins or probabilities of exceeding 

failure criteria. Uncertainties can be categorized according to the character of their sources as 

either aleatory uncertainties, which represent the intrinsic randomness of a phenomenon, and are 

irreducible in nature, or epistemic uncertainties, which are reducible uncertainties resulting from 

lack of knowledge [1, 2, 3]. For aleatory uncertainties, sufficient data can generally enable the 

definition of input probability distributions and the use of probabilistic methods. By cons, for 

epistemic uncertainties, data is generally too sparse to enable precise probabilistic descriptions 

and consequently the uncertainties are often modelled by variation intervals deduced from expert 

judgment. In this case, the intervals are assimilated to uniform distributions, which enable a 

probabilistic treatment of epistemic uncertainties.  

However in order to skip the limitations of the probabilistic framework, different methods, that 

we will name extra-probabilistic approaches, have been proposed to model epistemic 

uncertainties such as fuzzy sets [4], Dempster-Shafer theory of evidence [5, 6], possibility theory 

[7], probability box (p-box) [8] and random set theory [9]. When both aleatory and epistemic 

uncertainties are present in the analysis of a complex system, it is often desirable to maintain 

distinction between both types of uncertainties. A common approach to quantifying the effects of 

mixed aleatory and epistemic uncertainties is the so-called Second-Order Probability (SOP) 

analysis [10]. The idea of SOP is to treat separately the aleatory variables and the epistemic 

variables and to perform a two-stage Monte Carlo simulation, typically by sampling the 

epistemic variables on the outer loop, then by sampling the aleatory variables on the inner loop. 

If the result of the inner loop is an empirical distribution of the response of interest, the SOP 

process yields a family of distributions. Then relevant statistics, such as mean or percentiles, may 

be computed based on this ensemble and the intervals obtained on the statistics can be 

interpreted as possible ranges for the statistics given the epistemic uncertainties. In the SOP 

analysis, the aleatory variables are treated generally by probabilistic methods and the epistemic 

variables may be considered either by probabilistic methods or by extra-probabilistic approaches, 

such as interval analysis [10, 11] or Dempster-Shafer theory [11] depending on the assumptions 

taken for these epistemic variables. 

In this paper, we focus on Dempster-Shafer theory of evidence for epistemic uncertainty 

modeling. Dempster Shafer theory (DST), also known as the theory of belief functions or 

evidence theory, has been firstly introduced in [5] and then developed in [6]. Epistemic 

uncertainties are described by sets to which are associated degrees of belief. The challenge is to 

propagate the input uncertainties modeled by DST into the output space through either numerical 

simulators or metamodels (in case of too expensive simulators). A local optimization problem is 

necessary to find the upper and lower bounds of the output for a given set of inputs. For kriging 

metamodels, efficient global optimization (EGO) algorithm [12] has been proposed as one of the 

most effective method to solve the global optimization problem. Metamodel is optimized by 

adding sequentially new points suggested by the algorithm to its learning sample and then 

updated. But the same problem of computational cost rises as the new points have to be 

calculated by the expensive simulators. Consequently, the main issue that we have to deal with 

using EGO is how to reduce the number of new points demanded to be calculated while 

propagating DST input uncertainty into the output space. For this, we propose a novel scheme to 

propagate uncertainties modeled by Dempster-Shafer theory through expensive black-box 
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simulators. The main idea is first to identify the most influential input epistemic uncertainties 

using new sensitivity indexes proposed in this paper and then to propagate in a detailed way this 

important parameters while taking into account the other parameters in a more global way. This 

paper is organized as follows: Dempster-Shafer theory is introduced in Section 2; propagation of 

mapping function with DST is presented in section 3 with the two possibilities of dimension 

extension: Cartesian product and vacuous extension; in Section 4, new sensitivity indexes are 

proposed to study the impact of epistemic uncertainties on the output; the new scheme to 

propagate epistemic uncertainties modelled by DST through a time-consuming computer 

simulator is presented in Section 5; finally a numerical application is given in Section 6 to 

illustrate the efficiency of the proposed method. 

2. DEMPSTER-SHAFER THEORY 

The Dempster-Shafer theory of evidence (DST) [5,6] provides a flexible framework to represent 

and combine uncertainty information. The basic assessment function in DST is called the mass 

function which assigns a degree of belief (mass) to each subset of the whole definition domain 𝛺 

(called a frame of discernment) . By definition, 𝛺 = {ω1, ω2, · · · , ωn} is a mutually exclusive set 

of hypotheses for which exactly one hypothesis ωi is true. 𝛺 will contain 2n - 1 non-empty 

subsets (including 𝛺 itself) as well as the empty set. 

Then, given a variable X defined on 𝛺, its mass function is a mapping function: 
𝑚Ω: 2Ω →  [0,1] 

such that 

𝑚(∅) = 0         𝑎𝑛𝑑       ∑ 𝑚(𝐴)

𝐴⊆𝛺

 = 1 

Where 2𝛺 denotes the set containing all subsets of 𝛺, ∅ and 𝛺. All subsets with positive mass are 

called focal sets. Mass function m(A) measures the belief that X exactly belongs to A but not to 

any subsets of A. The belief affected to 𝛺 is called the degree of ignorance. A mass function is 

called vacuous if m(𝛺) = 1, which indicates total ignorance on the studied variable. The belief 

function (bel) and plausibility function (pl) over 𝛺 are defined respectively as: 

𝑏𝑒𝑙(𝐴) =  ∑ 𝑚(𝐵)

𝐵⊆𝐴

,          ∀ 𝐴 ⊆ 𝛺, 

𝑝𝑙(𝐴) = ∑ 𝑚(𝐵),

𝐵∩ 𝐴≠  ∅

    ∀ 𝐴 ⊆ 𝛺. 

Both functions summarize the information from the mass function and interpret it in different 

ways: the belief function tells the degree of justified support that X lies in A; the plausibility 

function gives the degree of maximal potential support of the same situation X in A. Moreover, 

the interval [bel(A), pl(A)] becomes the lower and upper bounds of belief on X in A. For 𝑋 ∈ ℝ, 

the two functions can be presented as a function of 𝑥 by fixing the form of input sets. The most 

used ones take the same interval as the definition of cumulative distribution function 𝐹(𝑥), ] −
∞, 𝑥], 𝑥 ∈ ℝ and are defined as  

𝑏𝑒𝑙(𝑥) = 𝑏𝑒𝑙(] − ∞, 𝑥]) 

𝑝𝑙(𝑥) = 𝑝𝑙(] − ∞, 𝑥]) 
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so that they can also be seen as the bounds of 𝐹(𝑥): 

𝑏𝑒𝑙(𝑥) ≤ 𝐹(𝑥) ≤ 𝑝𝑙(𝑥). 

Under the framework of DST (in form of mass functions), it is also possible to combine different 

information sources describing the same variable according to the source reliability and the 

relation between sources. Among different rules of combination, Dempster’s rule is the most 

popular one: let m1 and m2 be two reliable independent distinct mass functions describing the 

same variable X on 𝛺; the new mass function obtained by combining information from m1 and 

m2 using Dempster’s rule of combination is given by: 

𝑚12(𝐴) =
∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩ 𝐶=𝐴

1 − 𝑘
      ∀ 𝐴, 𝐵, 𝐶 ⊆ Ω 

where 𝑘 = ∑ 𝑚1(𝐵)𝑚2(𝐶)𝐵∩ 𝐶=∅   represents the conflict between the two mass functions. 

Other rules such as cautious rule and disjunctive rule exist to satisfy different conditions [13]. 

3. PROPAGATION OF MAPPING FUNCTION WITH DST 

3.1 Propagation using Dimension Extension with Cartesian Product 

Consider a continuous function 𝑓(𝑥):  𝑅𝑑 → 𝑅 taking 𝑑 independent input variables 𝑥 =

(𝑥1, … , 𝑥𝑑). Each input variable 𝑥𝑖 is modeled by a mass function 𝑚𝑥𝑖:  2Ωxi → [0,1] where 

𝛺𝑥𝑖 ⊆ 𝑅 denotes the definition field of 𝑥𝑖 so that the mass function of the input  𝑚𝑥: 2Ωx
→ [0,1] 

is given by: 

𝑚𝑥(𝑠𝑥) =  ∏ 𝑚𝑥𝑖(𝑠𝑥𝑖)

𝑑

𝑖=1

       ∀𝑠𝑥𝑖 ⊆ 𝛺𝑥𝑖 , 𝑖 = 1, . . , 𝑑 

where 𝑠𝑥 is a Cartesian product of subsets on all input dimensions , i.e. 𝑠𝑥  =  𝑠𝑥𝑖 × . . .×  𝑠𝑥𝑑 

and the definition field of 𝑥, 𝛺𝑥 = 𝛺𝑥𝑖 × . . .×  𝛺𝑥𝑑. We notice that the focal sets of input mass 

function are the Cartesian products of focal sets of mass functions on each input dimension.  

Then the mass function of the output 𝑦 = 𝑓(𝑥) can be defined as follows 

𝑚𝑦(𝑔(𝑠𝑥)) = 𝑚𝑥(𝑠𝑥) 

where function 𝑔:  2Ωx
→ 2Ωy

maps a set of input values to its correspondent output space which 

includes all possible output values given by the input set, i.e.  

{𝑦 = 𝑓(𝑥)|∀𝑥 ∈ 𝑠𝑥} ⊆  𝑔(𝑠𝑥). 

With the continuity of 𝑓, we can easily define the set mapping function 𝑔 as follows:  

𝑔(𝑠𝑥) = [ 𝑚𝑖𝑛
𝑥∈ 𝑠𝑥

𝑓(𝑥) , 𝑚𝑎𝑥
𝑥∈ 𝑠𝑥

𝑓(𝑥)]      ∀ sx ⊆ Ωx. 

3.2 Propagation using Dimension Extension with Vacuous Extension 

An alternative method is to propagate the mass function of each variable to the output space with 

vacuous mass functions on the other dimensions and then merge the partial output mass 

functions with Dempster’s rule of combination (shown in Algorithm 0)  
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The number of multidimensional input focal sets to be propagated to the output space is the sum 

of number of focal sets of all unidimensional input variables. Compared to the number obtained 

by the former method which is equal to the product of the focal set number of all variables, here 

the number of optimization searches demanded during the propagation is largely reduced. For 

example, if there are 4 input variables defined each by 3 focal sets, the number of 

multidimensional input focal sets to be propagated will be 34 = 81 with Cartesian product and 

only 4 x 3 =12 with vacuous extension. Vacuous extension avoids the fast calculation cost 

increase as more input variables are taken into account, which is very important for expensive 

optimization operations.  

Algorithm 0: initial proposal with vacuous extension  

Step 1: construct partial multidimensional input mass function for each input variable 𝑥𝑖 (𝑖 =
1, … , 𝑑) 

𝑚𝑖
𝑥(𝑠𝑖

𝑥) = {
𝑚𝑥𝑖(𝑠𝑥𝑖) 𝑖𝑓 𝑠𝑖

𝑥 = 𝛺𝑥1 × ⋯ 𝑠𝑥𝑖 × ⋯ × 𝛺𝑥𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Step 2: construct the partial output mass functions 𝑚𝑖
𝑦

 by propagating separately  𝑚𝑖
𝑥 to the 

output space (𝑖 = 1, … , 𝑑) 

𝑚𝑖
𝑦

(𝑔(𝑠𝑖
𝑥)) = 𝑚𝑖

𝑦
([ 𝑚𝑖𝑛

𝑥∈ 𝑠𝑖
𝑥

𝑓(𝑥) , 𝑚𝑎𝑥
𝑥∈ 𝑠𝑖

𝑥
𝑓(𝑥)]) = 𝑚𝑖

𝑥(𝑠𝑖
𝑥)               (1) 

Step 3: merge all partial output mass functions 𝑚𝑖
𝑦

 (𝑖 = 1, … , 𝑑) into one final output function 

𝑚𝑦 using Dempster’s rule of combination 

𝑚𝑦 = 𝑚1
𝑦

⊗ … ⊗ 𝑚𝑑
𝑦

. 

 

4. SENSITIVITY ANALYSIS WITH EPISTEMIC UNCERTAINTY 

In this section, we propose firstly two measures of epistemic uncertainty and then new sensitivity 

indexes useful within DST using the propagation results introduced in the previous section.  

4.1 Existing Sensitivity Indexes 

Sensitivity analysis studies the impact of the variation of input variables on the output. In 

probability theory, variance analysis, where variance is used as a measure of dispersion, is 

widely applied. The first-order sensitivity index of an input variable 𝑋𝑖, introduced by I.M. Sobol 

[14], is defined as follows: 

𝑆𝑖
 =

𝑉𝑎𝑟(𝐸(𝑌|𝑋𝑖))

𝑉𝑎𝑟(𝑌)
 

It measures the effect on output variance of varying 𝑋𝑖 alone, but averaged over variations in 

other input parameters; therefore it represents the contribution to the output variance of the main 

effect of 𝑋𝑖. So its value is large when the contribution of 𝑋𝑖 is important. 

Similar to variance method, for imprecise probability, a p-box method is proposed in [15] which 

quantifies the aleatory and epistemic uncertainties by surface between the upper and lower 

cumulative distribution functions of the output. The p-box sensitivity index is given by:  
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𝑆𝑖
𝑝 =

𝐴𝑖

𝐴
=

∫  (𝐹𝑖(𝑦) − 𝐹𝑖𝛺′ (𝑦)) 𝑑𝑦

∫ (𝐹(𝑦) − 𝐹
𝛺′ (𝑦)) 𝑑𝑦

 

where  𝐹 and 𝐹 are the upper and lower cumulative distribution functions estimated over the 

whole variation domains of all input variables and 𝐹𝑖 and 𝐹𝑖 are the ones obtained over the whole 

variation domains of variables 𝑋𝑖 with given default values for the other input variables. It 

indicates the global importance in terms of uncertainty of 𝑋𝑖 on the output. 

4.2 Proposed Measures of Epistemic Uncertainty 

We propose to measure the epistemic uncertainty based on the surface constituted by the mass 

function or by the surface bounded by the belief and plausibility functions on ] − ∞, 𝑥], ∀ 𝑥 ∈
Ω ⊆ ℝ, i.e.   

𝐴𝑚𝑎𝑠𝑠 = ∫ ∫ 𝑚([𝑎, 𝑏])(𝑏 − 𝑎)𝑑𝑏𝑑𝑎
𝑏∈Ω𝑎∈Ω

 

𝐴𝑏𝑒𝑙𝑝𝑙 = ∫ [ 𝑝𝑙(] − ∞, 𝑥]) − 𝑏𝑒𝑙(] − ∞, 𝑥])] 𝑑𝑥.
𝑥∈Ω

 

The measure 𝐴𝑚𝑎𝑠𝑠 depends on the range and mass value of the focal sets of the mass function 

𝑚. The value of 𝐴𝑚𝑎𝑠𝑠 will increase if the range of any focal set becomes larger for an 

unchanged mass value. The measure 𝐴𝑏𝑒𝑙𝑝𝑙
 has the same property as it just summarizes the 

information provided by the mass function.  

𝐴𝑚𝑎𝑠𝑠and 𝐴𝑏𝑒𝑙𝑝𝑙
 measure the epistemic uncertainty in a mass function: smaller (or larger) 

𝐴𝑚𝑎𝑠𝑠and 𝐴𝑏𝑒𝑙𝑝𝑙
 values signify more (or less) precise information and less (or more) epistemic 

uncertainty provided by the mass function; the maximum values (𝐴Ω
𝑚𝑎𝑠𝑠 = 𝐴Ω

𝑏𝑒𝑙𝑝𝑙 = max
𝑥∈Ω

𝑥 −

min
𝑥∈Ω

𝑥) come from a vacuous mass function, i.e.  𝑚(Ω) = 1, which corresponds the notion of 

total ignorance (maximal degree of epistemic uncertainty); probability cumulative distributions, 

which can also be seen as mass functions whose focal sets are only singletons ({𝑥}), produce the 

minimums of both measures (𝐴𝐹
𝑚𝑎𝑠𝑠 = 𝐴𝐹

𝑏𝑒𝑙𝑝𝑙 = 0). 

4.3 New Sensitivity Indexes 

The initial idea of our proposed sensitivity indexes is to compare the difference on degree of 

epistemic uncertainty over the obtained output mass function with and without information 

provided by the mass function describing a certain input variable. The degree of epistemic 

uncertainty is measured by 𝐴𝑚𝑎𝑠𝑠 or by 𝐴𝑏𝑒𝑙𝑝𝑙
, defined previously.  

In order to avoid fixing a default values for the input variable, as in the existing indexes (§4.1), 

we propose to characterize the effect of  variable 𝑋𝑖 by the partial output function 𝑚𝑖
𝑦

 obtained in 

Step 2 of algorithm 0. Indeed, each focal set of 𝑚𝑖
𝑦

 is obtained by searching the optimums of the 

output over one corresponding focal set for 𝑋𝑖 and the whole field for the other input variables. 
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According to (1), the range of the output focal sets shows the impact of variation of 𝑋𝑖 on the 

output in term of degree of epistemic uncertainty. 

Therefore we define the ratios 
𝐴𝑦𝑖

𝑚𝑎𝑠𝑠

𝐴
Ω𝑦
𝑚𝑎𝑠𝑠  and 

𝐴𝑦𝑖

𝑏𝑒𝑙𝑝𝑙

𝐴
Ω𝑦
𝑏𝑒𝑙𝑝𝑙  where 𝐴𝑦𝑖

𝑚𝑎𝑠𝑠or 𝐴𝑦𝑖

𝑏𝑒𝑙𝑝𝑙
 denote respectively the 

surfaces created by 𝑚𝑖
𝑦

 and  𝑏𝑒𝑙𝑖
𝑦

/𝑝𝑙𝑖
𝑦
, i.e.  

𝐴𝑦𝑖

𝑚𝑎𝑠𝑠 = ∫ 𝑚𝑖
𝑦(𝑠)|𝑠|𝑑𝑠

2Ωy
= ∑ 𝑚(𝑠𝑥𝑖)[ max

𝑥∈(×j≠i Ω
𝑥𝑗) ×𝑠𝑥𝑖

𝑀(𝑥) − min
𝑥∈(×j≠i Ω

𝑥𝑗) ×𝑠𝑥𝑖
𝑀(𝑥)]

𝑠𝑥𝑖⊆Ω𝑥𝑖

 

𝐴𝑦𝑖

𝑏𝑒𝑙𝑝𝑙 = ∫ 𝑝𝑙𝑖
𝑦(] − ∞, 𝑥] ) − 𝑏𝑒𝑙𝑖

𝑦(] − ∞, 𝑥] )𝑑𝑥
𝑥∈ℝ

 

and  𝐴Ω
𝑚𝑎𝑠𝑠 = 𝐴Ω

𝑏𝑒𝑙𝑝𝑙
 is the surface constituted by the mass function of the response obtained by 

vacuous extension.. They represent the ratios of output epistemic uncertainty given only the mass 

function of 𝑋𝑖 and with total ignorance on all input variables. They measure the diminution of 

epistemic uncertainty on the output while the available information on 𝑋𝑖 is added in DST. As 

the measures become larger, the focal sets of 𝑚𝑖
𝑦

cover larger range and show less impact on 

limiting the output value variation. On the contrary, a smaller measure indicates that the focal 

sets of 𝑚𝑥𝑖 plays an important role on reducing the epistemic uncertainty and variation of the 

output.  

Finally the sensitivity indexes that we propose are defined as follows:  

𝑆𝑚𝑎𝑠𝑠
𝑦𝑖 = 1 −

𝐴𝑦𝑖

𝑚𝑎𝑠𝑠

𝐴Ω𝑦
𝑚𝑎𝑠𝑠  , 

𝑆𝑏𝑒𝑙𝑝𝑙
𝑦𝑖 = 1 −

𝐴𝑦𝑖

𝑏𝑒𝑙𝑝𝑙

𝐴Ω𝑦
𝑏𝑒𝑙𝑝𝑙

 

𝑆𝑚𝑎𝑠𝑠
𝑦𝑖  and 𝑆𝑏𝑒𝑙𝑝𝑙

𝑦𝑖  can be seen as sensitivity measures of epistemic input uncertainty on output 

within the framework of DST. 

5. MIXED SCHEME PROPOSAL  

The ranking of the 𝑆𝑚𝑎𝑠𝑠
𝑦𝑖  and/or the 𝑆𝑏𝑒𝑙𝑝𝑙

𝑦𝑖  over all input variables (𝑖 = 1, … , 𝑑), makes possible 

the selection of the most influential epistemic variables, that is the ones which reduce 

significantly the range output focal sets and provide more precise information on the output. We 

know that dimension extension with Cartesian product gives more input focal sets and details but 

is more costly; and that the vacuous method needs less calculation resources but provides very 

conservative result and larger epistemic uncertainty estimate. In order to improve the algorithm 

(Algorithm 0) initially proposed while keeping the advantage of vacuous extension and adding 

more precise information, an improved algorithm (Algorithm 1) is proposed using both methods: 

for input variables with evident impact on output mass function, dimension extension using 

Cartesian product is used; for other less influential variables, vacuous extension is applied. The 

selection of influential input variables is determined according to the ranking the 𝑆𝑚𝑎𝑠𝑠
𝑦𝑖  and/or 

the 𝑆𝑏𝑒𝑙𝑝𝑙
𝑦𝑖 .  
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The cost of this calculation is limited by the number of input variables chosen in Step 3 and the 

propagation method in Step 4. Since the number of focal sets of the multidimensional mass 

function obtained in Step 3 by Cartesian dimension extension is equal to the product of numbers 

of focal sets of all the selected variables, the number of focal sets to be propagated is controlled 

by limiting the number of selected variables. It is also possible to use Monte-Carlo method 

instead of complete propagation over all focal sets in Step 4 in order to reduce computation cost. 

 

Algorithm 1: Improved algorithm (mixed scheme) (see Figure 1)) 

Step 1: calculate the partial mass functions of the output  𝑚𝑖
𝑦

, (𝑖 = 1, … , 𝑑) with vacuous 

dimension extension, i.e. 

𝑚𝑖
𝑦

(𝑔(𝑠𝑖
𝑥)) = {

𝑚𝑥𝑖(𝑠𝑥𝑖) 𝑖𝑓 𝑠𝑖
𝑥 = Ω𝑥1 × ⋯ 𝑠𝑥𝑖 ×  ⋯ × Ω𝑥𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Step 2: calculate sensitivity indexes of epistemic uncertainty 𝑆𝑚𝑎𝑠𝑠
𝑦𝑖  and 𝑆𝑏𝑒𝑙𝑝𝑙

𝑦𝑖   and select the 

input variables (e.g. 𝑋𝑗 and 𝑋𝑘) with greatest 𝑆𝑚𝑎𝑠𝑠
𝑦𝑖  and/or 𝑆𝑏𝑒𝑙𝑝𝑙

𝑦𝑖  values  

Step 3: merge mass functions of the selected input variables by Cartesian dimension extension, 

for example  

Step 4: propagate the merged mass function into the output space while the search area of the 

non-selected parameters is the whole definition field  

Step 5: combine the mass function obtained in Step 4 with the partial output mass functions 

obtained in step1 of the non-selected parameters 

 

 

Figure 1 - Illustration of Algorithm 1 
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6. NUMERICAL APPLICATION 

The benchmark we used to illustrate and test our proposed methods is the Borehole function [16] 

with eight independent input variables. This Borehole function models water flow through a 

borehole. It is widely used for testing a wide variety of methods in computer experiments thanks 

to its simplicity and quick evaluation. The output is the water flow rate (in m3/yr) calculated as 

follows:  

𝑓(𝑥) =
2𝜋 𝑇𝑢 (𝐻𝑢 − 𝐻𝑙)

𝑙𝑛(𝑟/𝑟𝑤)(1 +
2𝐿𝑇𝑢

𝑙𝑛 (
𝑟
𝑟𝑢

) 𝑟𝑤
2𝐾𝑤

+
𝑇𝑢

𝑇𝑙
)
 

Instead of modelling the input variables by probability density functions as is usually done in the 

classical BEPU evaluation, the input variables are here modelled by mass functions (shown in 

Table 1). For the purpose of this numerical application, the values associated to the mass 

functions have been arbitrary chosen but in a real application they may have been obtained by 

expert elicitation. For example, the mass function of the variable Hu (shown in Figure 2) may 

correspond to the judgement of one expert giving the input range of the variable and three 

quantiles (25%, 50% and 75%) or to the combination of several expert judgements. In all cases, 

this type of representation by mass function enables to handle, in case of epistemic uncertainty, 

less precise information than probability density functions. 

 

Parameter Description Mass function Parameter Description Mass function 

rw Radius of 
borehole (m) 

𝑚𝑟𝑤([0.05, 0.075]) = 0.25 

𝑚𝑟𝑤([0.075,0.10]) = 0.25 

𝑚𝑟𝑤([0.10, 0.12]) = 0.2 

𝑚𝑟𝑤([0.12, 0.15]) = 0.3 

Tl Transmissivity of 
lower aquifer (m2/yr) 

𝑚𝑇𝑙([63.10, 80]) = 0.25 

𝑚𝑇𝑙([80, 86]) = 0.25 

𝑚𝑇𝑙 ([ 86, 116]) = 0.2 

𝑚𝑇𝑙  ([100,116]) = 0.3 

r Radius of 
influence (m) 

𝑚𝑟( [100, 2000]) = 0.3 

𝑚𝑟( [2000, 2230]) = 0.2 

𝑚𝑟( [ 2230, 5000]) = 0.45 

𝑚𝑟( [ 2500, 50000]) = 0.05 

Hl Potentiometric head of 
lower aquifer (m) 

𝑚𝐻𝑙([700 , 760 ]) = 0.3 

𝑚𝐻𝑙([ 730 , 750]) = 0.2 

𝑚𝐻𝑙([  750 , 780]) = 0.2 

𝑚𝐻𝑙([ 760 , 820]) = 0.3 

Tu Transmissivit

y of upper 
aquifer 

(m2/yr) 

𝑚𝑇𝑢([63070 , 72000]) = 0.25 

𝑚𝑇𝑢( [72000 , 89335]) = 0.25 

𝑚𝑇𝑢( [89335, 94000]) = 0.25 

𝑚𝑇𝑢([94000, 115600]) = 0.25 

𝐿 Length of borehole 

(m) 
𝑚𝐿([1120, 1200]) = 0.1 

𝑚𝐿([1200, 1352]) = 0.4 

𝑚𝐿 ([ 1352, 1405]) = 0.3 

𝑚𝐿([ 1405, 1680]) = 0.2 

Hu 

 

Potentiometri

c head of 

upper aquifer 
(m) 

𝑚𝐻𝑢 ([990, 1010]) = 0.25 

𝑚𝐻𝑢([1010, 1050]) = 0.25 

𝑚𝐻𝑢([1050, 1080]) = 0.25 

𝑚𝐻𝑢([1080, 1110]) = 0.25 

Kw Hydraulic conductivity 

of borehole (m/yr) 
𝑚𝐾𝑤( [9855, 10050])
= 0.25 

𝑚𝐾𝑤( [ 10050, 10950])
= 0.25 

𝑚𝐾𝑤( [ 10950, 11050])
= 0.25 

𝑚𝐾𝑤( [11050, 12045])
= 0.25 

Table 1 - Borehole function - Description of the input variables and their mass functions 
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Figure 2 – Mass function of variable Hu (Bel = belief function and Pl = plausibility function) 

In this example, optimization search for the corresponding output focal sets are conducted by a 

genetic method provided by R package rgenoud [17]. 

After executing Step 2, two or three input variables are selected according to their sensitivity 

measures (Table 2). When three variables are selected, the choices based on one or the other of 

the two indexes are the same (rw, Hu ,L). When two variables are selected, the choices are 

slightly different: (rw, L) according to 𝑆𝑚𝑎𝑠𝑠
𝑦𝑖  and (rw, Hu) according to 𝑆𝑏𝑒𝑙𝑝𝑙

𝑦𝑖 . 

Input 
variable 

𝑨𝒚𝒊
𝒎𝒂𝒔𝒔 𝑨𝒚𝒊

𝒃𝒆𝒍𝒑𝒍
 𝑺𝒎𝒂𝒔𝒔

𝒚𝒊  𝑺𝒃𝒆𝒍𝒑𝒍
𝒚𝒊  

rw 160.5616 212.9625 0.468 0.2942 

r 301.0632 301.2724 0.002 0.002 

Tu 301.7553 301.7556 << 0.001 << 0.001 

Hu 263.9355 282.8121 0,125 0.063 

Tl 301.3379 301.5718 0.001 < 0.001 

Hl 274.2439 284.0597 0,091 0.059 

L 263.6856 283.5106 0.126 0.060 

Kw 277.4571 288.1576 0.081 0.045 

Table 2 - Borehole function – Epistemic sensitivity measures 

On Step 4, the input mass functions 𝑚𝑟𝑤𝐻𝑢

𝑥 (or 𝑚𝑟𝑤L
𝑥 ) and 𝑚𝑟𝑤𝐻𝑢𝐿

𝑥  containing the information on 

the selected input variables extended using Cartesian product method with ignorance on the other 

variables are propagated to the output space. Then we obtain the corresponding output mass 

functions   𝑚𝑟𝑤𝐻𝑢

𝑦
 (or   𝑚𝑟𝑤𝐿

𝑦
) and 𝑚𝑟𝑤𝐻𝑢𝐿

𝑦
. Compared with the output mass functions 𝑚𝑟𝑤

𝑦
⊗

𝑚𝐻𝑢

𝑦
and 𝑚𝑟𝑤

𝑦
⊗ 𝑚𝐻𝑢

𝑦
⊗ 𝑚𝐿

𝑦
, intermediate results obtained on Step 3 in Algorithm 0 and 

containing exactly the same information, these new intermediate results show smaller value on 

𝐴𝑦
𝑚𝑎𝑠𝑠 and 𝐴𝑦

𝑏𝑒𝑙𝑝𝑙
 and indicate less epistemic uncertainty and a more precise description of the 

output (see Table 3).  
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Method Selected input variables 𝑨𝒚
𝒎𝒂𝒔𝒔 𝑨𝒚

𝒃𝒆𝒍𝒑𝒍
 

Algorithm 0 

 

(rw, Hu) 149.3 192.3 

(rw, L) 147.4 195.1 

(rw, Hu ,L) 144.7 185.5 

Algorithm 1 

 

(rw, Hu) 132.5 147.4 

(rw, L) 133.5 147.6 

(rw, Hu ,L) 106.6 110.8 

Table 3 - Sensitivity measures of intermediate results 

Since the next operation (i.e. merging these intermediate results with the other partial output 

mass functions using Dempster’s rule of combination) is the same for both intermediate results  

it is normal to observe similar results in the final results (shown in Figure 3 and Table 4): the 

final output mass function obtained by Algorithm 1 is less conservative than the one obtained by 

Algorithm 0 using vacuous extension. The rapid decrease on epistemic uncertainty measures as 

more input variables enter into Step 2 corresponds well to our initial objectives.  

Table 4 gives also the number of output focal sets and so an idea of the calculation costs in each 

case. The mixed scheme proposed in Algorithm 1 can be seen as an intermediate solution 

between Algorithm 0 with complete vacuous extension and the method with total Cartesian 

extension before propagation. Starting with Algorithm 0, as more variables are selected, this 

improved method tends to the latter one, presenting less epistemic uncertainty and more details 

but becoming more costly.  

As Cartesian product method using complete propagation (or Monte-Carlo simulations) through 

expensive simulators is generally impossible, this improved method enables a trade-off, within a 

BEPU evaluation, between the calculation costs and how conservative is the final output mass 

function. 

 
(a) Input variables (rw, L) selected 

 
(b) Input variables (rw, Hu) selected 

 
(c) Input variables (rw, Hu ,L) selected 

Figure 3 - Borehole function –1) mass functions (rectangles) and Bel/Pl functions (solid lines) of 

the output obtained by Algorithm 1 with 2 or 3 input variables selected 2) Bel/Pl functions of the 

output obtained by Algorithm 0 with vacuous dimension extension (dashed lines) 
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Method Selected input variables 𝑨𝒚
𝒎𝒂𝒔𝒔 𝑨𝒚

𝒃𝒆𝒍𝒑𝒍
 

Number of output 

focal sets 

Algorithm 0 - 143.2 182.6 32 

Algorithm 1 (rw, Hu) 126.4 137.7 32+16 

Algorithm 1 (rw, L) 127.6 137.5 32+16 

Algorithm 1 (rw, Hu ,L) 105.5 108.6 32+64 

Table 4 - Borehole function - sensible measures of the finally obtained output mass functions 

using different proposed methods (Algorithm 0 and Algorithm 1) 

7. NUCLEAR POWER PLANT APPLICATION 

Our method has been applied within the framework of a BEPU analysis of a “Loss Of Coolant 

Accident” (LOCA) in a pressurized water reactor. The thermal-hydraulic analysis is performed 

by the CATHARE2 code [18]. In our application, 27 independent CATHARE2 input parameters 

related to the modeling of physical phenomena (e.g. friction or condensation coefficients) are 

considered as epistemic uncertainties. The response of interest calculated by CATHARE2 is the 

maximal peak cladding temperature (PCT), obtained during the LOCA transient. The objective 

of our analysis is to quantify the epistemic uncertainty of the PCT and to identify among the 27 

input parameters the most important contributors to this uncertainty. 

The mass functions of the input parameters have been built from the information, obtained by 

expert judgement, on their ranges of variation and on three quantiles (25%, 50% and 75%). Thus 

each input parameter is defined by 4 focal sets. 

Due to the large cpu-time cost associated to each evaluation by the CATHARE2 code, an 

improved optimization for the search of the output (i.e. PCT) focal sets has been used. The 

optimisation scheme used is based on the efficient global optimization (EGO) algorithm [12] 

where the computer code is surrogated by a kriging metamodel. In order to build this metamodel, 

CATHARE2 simulations are performed following a design of experiments based on a space-

filling LHS. In our approach, the EGO algorithm has been adapted to locally (i.e. at the level of a 

focal set) improve the accuracy of the metamodel for optimization purpose. 

As for the Borehole function (see section 6), we have compared, in Figure 4, the results obtained 

by vacuous extension and Dempter’s rule (algorithm 0) and by the mixed scheme (algorithm 1). 

In the mixed scheme, the two or three most important input parameters have been identified 

thanks to the calculation of the epistemic sensitivity indexes (see section 4.3). For algorithm 0, 

the number of focal sets to be propagated is equal to 108 (i.e. 27 x 4); for algorithm 1, it is 124 

(i.e. 27 x 4 + 42) when two parameters are selected or 172 (i.e. 27 x 4 + 43) when three 

parameters are selected. In the last case, the corresponding number of CATHARE2 simulations 

necessary to evaluate the output mass function, is 698. 

This application shows the possibility of applying the DST in the case of a large number of input 

epistemic variables (27 in our case). Algorithm 0 gives a complete but conservative global 

representation of the simulator response (i.e. the PCT). In the case of using the mixed scheme, 

the domain delimited by the belief and plausibility functions is substantially reduced, allowing a 

less conservative representation of the PCT epistemic uncertainty. The interest of this mixed 
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scheme for propagating epistemic uncertainties with DST is also to adapt the number of selected 

input variables (in Step 2) to the calculation budget. 

 

 
Figure 4 – LOCA application – Belief and plausibility functions of the response (PCT) obtained 

by the mixed scheme with three selected parameters (dashed lines) and by the algorithm 0 (solid 

lines)  

8. CONCLUSION 

In this paper, we have first proposed new sensitivity indexes focusing on epistemic uncertainty 

useful within the framework of DST. Then we have proposed a new scheme to propagate 

epistemic uncertainties modelled by DST through a time-consuming computer simulator. 

Starting from a selection of the most influential input variables based on these new sensitivity 

indexes, the method consists in using dimension extension by Cartesian product for input 

variables with evident impact on output mass function and to apply vacuous extension for other 

less influential variables. Finally, mass combination rules (e.g. Dempster's combination rule for 

independent input variables) are used after mapping the input focal sets into the output space. 

Besides classical Monte Carlo method using Cartesian product input mass construction method, 

this method significantly reduces the number of input focal sets. The obtained output function 

has less focal sets, but larger range. Thus, a complete coverage of the output focal set space can 

be provided. Epistemic uncertainty is estimated globally in a conservative point of view. As a 

result of a trade-off between calculation cost, estimation accuracy and the quantity of details on 

epistemic uncertainty presented, our proposal enables propagation of epistemic uncertainties 

modeled by DST with a limited computation budget making possible its practical use within a 

BEPU evaluation. 
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