
HAL Id: hal-02415459
https://hal.science/hal-02415459

Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A standard branch-and-bound approach for nonlinear
semi-infinite problems

Antoine Marendet, Alexandre Goldsztejn, Gilles Chabert, Christophe Jermann

To cite this version:
Antoine Marendet, Alexandre Goldsztejn, Gilles Chabert, Christophe Jermann. A standard branch-
and-bound approach for nonlinear semi-infinite problems. European Journal of Operational Research,
2020, 282 (2), pp.438-452. �10.1016/j.ejor.2019.10.025�. �hal-02415459�

https://hal.science/hal-02415459
https://hal.archives-ouvertes.fr

A standard branch-and-bound approach for nonlinear
semi-infinite problems

Antoine Marendeta, Alexandre Goldsztejnb,∗, Gilles Chabertc, Christophe
Jermannd

aLaboratoire des Sciences du Numérique de Nantes, École Centrales de Nantes, 1 rue de la
Noë, Nantes, France

bCentre National de la Recherche Scientifique, Laboratoire des Sciences du Numérique de
Nantes, École Centrales de Nantes, 1 rue de la Noë, Nantes, France
cIRT Jules Verne, Chemin du Chaffault, 44340 Bouguenais, France

dLaboratoire des Sciences du Numérique de Nantes, Université de Nantes, 2 Chemin de la
Houssinière, Nantes, France

Abstract

This paper considers nonlinear semi-infinite problems, which contain at least
one semi-infinite constraint (SIC). The standard branch-and-bound algorithm
is adapted to such problems by extending usual upper and lower bounding
techniques for nonlinear inequality constraints to SICs. This is achieved by
defining the interval evaluation of parametrized functions and their generalized
gradients, by also adapting numerical constraint programming techniques to
quantified inequalities, and by introducing linear relaxations and restrictions
for SICs. The overall efficiency of our algorithm is demonstrated on a standard
set of benchmarks from the literature, in comparison with the best state of the
art alternative.

Keywords: Semi-infinite programming, branch-and-bound, relaxation,
restriction, constraint programming

1. Introduction

In this paper, we address semi-infinite programs (SIP), which are nonlinear
programs (NLP)

min
g(x)≤0
h(x)=0

f(x), (1)

where f : Rn → R, gi : Rn → R and hi : Rn → R with at least one semi-infinite
constraint (SIC) gi(x) ≤ 0, i.e.,

gi(x) = max
y∈Y

g̃i(x, y), (2)

∗Corresponding author
Email address: alexandre.goldsztejn@ls2n.fr (Alexandre Goldsztejn)

Preprint submitted to Elsevier October 11, 2019

-2 -1 0 1 2

-2

-1

0

1

2

-3 -2 -1 1 2 3
y

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

g(x ,y)

Figure 1: On the left-hand side, the feasible set of the SIC from Example 1 ; its infeasible set,
in blue, is approximated by a discretization of y ∈ [−π, π], hence the feasible set is the white
area. On the right-hand side, y 7→ g̃(x∗, y) for x∗ = (−1, 0)T .

where g̃i : Rn×Rmi → R is supposed to be continuously differentiable. We call
x ∈ Rn the decision variables, and y ∈ Rmi the parameters of the SIC gi(x) ≤ 0.
The maximization problem (2) is called the lower-level program. Enforcing the
SIC gi(x) ≤ 0 is equivalent to enforcing ∀y ∈ Y, g̃i(x, y) ≤ 0, hence actually
enforcing an inequality constraint for each parameter value inside Y . We restrict
our attention to box-constrained lower-level programs: We consider the set Y to
be a box [y] = {y ∈ Rmi : y ≤ y ≤ y} for given y, y ∈ Rmi such that y ≤ y (the
inequalities are defined component-wise). It contains infinitely many parameter
values when the box is not degenerated to a singleton, hence the name SIC. The
following example shows a typical SIC.

Example 1. The SIC g(x) := maxy∈[y] g̃(x, y) ≤ 0, with [y] := [−π, π] and

g̃(x, y) = x1 cos(y) + x2(sin(y) + y)− 1 (3)

is equivalent to ∀y ∈ [y], g̃(x, y) ≤ 0. For a fixed value of y, it is linear with
respect to x. Therefore, it is actually the conjunction of infinitely many linear
constraints. Its feasible set is depicted in Figure 1, where a finite subset of
the linear constraints are depicted. While g̃(x, y) is smooth, the feasible set of
g(x) ≤ 0 presents a “peak” at x∗ = (−1, 0)T . In fact, g(x) is not differentiable
at x∗. Figure 1 also displays g̃(x∗, y) as a function of y ∈ [−π, π] and shows that
maxy∈[y] g̃(x∗, y) = 0, i.e., g(x∗) = 0, is attained at two parameter maximizers
y = −π and y = π. Such a non-smoothness due to multiple global maximizers
of the lower-level program is a typical feature of SICs, which makes them hard
to solve. In particular, the generalized gradient, in the sense of Clarke [17], of
g(x) has to be considered instead of its usual gradient.

SIPs have been the topic of intensive studies during the past decades due to
their numerous applications, e.g., inventory and logistics, finance, revenue man-
agement, queuing networks, machine learning, energy systems and the public

2

good [24], but also control of robots, eigenvalue computations, mechanical stress
of materials, and statistical design [34]. Most of the research in this area has
focused on SIPs that are convex with respect to decision variables and have
specific dependance with respect to parameters, e.g., convex or linear depen-
dance [6] or concave dependance [35, 5, 55]. In general, proving the feasibility
of a SIC for a given point x amounts to solving a global optimization problem.
In this situation, dynamically populated discretization of the parameters do-
mains have been proposed, see, e.g., [12, 34], and have given rise to so-called
discretization methods [56, 43, 55]. See [34, 55] for reviews on these topics.

On the other hand, the branch-and-bound approach to solving (non-robust)
NLPs [51, 22] has been developed to the point where it has become efficient
enough to address the global optimization of important applications, e.g., in
robotics, control and engineering [36, 10, 13, 28]. Although branch-and-bound
algorithms are usually strongly sensitive to the number of variables, they turn
out to be useful for very nonlinear small scale problems.This approach has also
been successfully extended to larger classes of problems, e.g., multi-objective
nonlinear problems [21, 44].

Several branch-and-bound approaches have been proposed to solve SIPs.
Upper and lower bounding procedures are proposed in [23], which represent a
preliminary step toward a full branch-and-bound algorithm for SIP. A discretiza-
tion is used for the lower bounding and a convexification of the constraint with
respect to parameters is performed for the upper bounding. Another adaptation
of the branch-and-bound algorithm is proposed in [11], where a discretization
is used for the lower bounding, and a semi formal interval evaluation is used
for the upper bounding: The function g̃(x, y) is evaluated for the interval [y]
and kept formal for the decision variable x, leading to a non-smooth restric-
tion of the SIC. In both cases, the upper bounding process requires subdividing
the parameters domains. A branch-and-bound algorithm dedicated to quanti-
fied quadratic problems has also been proposed in [20], where the problem is
non-convex with respect to variables but linear with respect to parameters.

A different approach has been proposed by Mitsos [46] based on Blanken-
ship’s method [12]. This algorithm relies on successive global solving of several
auxiliary problems, which can be performed by a branch-and-bound algorithm
or other global solving methods for particular classes of problems, e.g., linear,
convex, polynomial, etc., leading to converging lower and upper bounds. At each
iteration k, a finite set of parameter samples Yk ⊆ Y is used to build relaxations
g̃(x, y) ≤ 0 for y ∈ Yk, which are then solved globally using a branch-and-bound
algorithm leading to successive minimizers x∗k of the relaxed problem. Between
each iteration, one new parameter sample is added to the set of parameter sam-
ples using one maximizer among argmaxy∈Y g̃(x∗k, y). This addition tightens the
relaxation and forces x∗k to converge to a minimizer of the SIP as k increases.
Meanwhile, upper bounds are computed by solving globally an auxiliary prob-
lem where the relaxations g̃(x, y) ≤ 0, y ∈ Yk, are changed into g̃(x, y) ≤ −ε,
y ∈ Yk for some positive scalar ε. The latter auxiliary problem is neither a
relaxation nor a restriction, but allows finding converging upper bounds. It has
been recently improved [19] using in addition the “oracle” technique previously

3

proposed in [58]. A complete comparison of [46, 19] with [23, 11] is difficult, but
some clues for a very favorable comparison were provided in [46], supported by
some experiments on a small set of benchmarks and different machines. Never-
theless, [19] is currently the best implementation for solving globally non-convex
SIPs. However, it presents the drawback of solving globally several instances of
the discretized SIP, which can turn out to be computationally very expensive
for hard problems.

In this paper, we revisit the adaptation of branch-and-bound algorithms to
SIPs by integrating SICs in the process just as regular non-linear constraints.
This is done by extending bounding methods used in the branch-and-bound
algorithm to SICs: In particular, we 1) show how to perform interval evaluations
of SICs and of their generalized gradients, 2) show how to apply numerical
constraint programming techniques to SICs, 3) derive rigorous linear relaxations
and linear restrictions of SICs, and 4) extend the convergent upper-bounding
process proposed in [41]. The necessary bisection of the SIC parameter domains
is performed transparently, and helps improving the efficiency of the method.
This allows taking full benefits of existing efficient implementations of branch-
and-bound algorithms: Experimental results in this paper are obtained using
the NLP solver IBEX [14], and they show that the proposed branch-and-bound
algorithm is competitive with the distributed implementation of [46, 19] based on
BARON [54], hence re-establishing the interest of branch-and-bound algorithms
for solving SIPs.

The paper is organized as follows: Section 2 presents some background about
interval analysis, numerical constraint solving and branch-and-bound algorithms
for NLPs. Section 3 presents the extension to SICs of standard bounding meth-
ods required in branch-and-bound algorithms. Finally Section 4 presents exper-
imental results on academic benchmarks from the literature.

2. Background

Branch-and-bound algorithms solve an optimization problem by recursively
considering subproblems with smaller domains. Computing upper and lower
bounds for these subproblems become simpler as subdomains get smaller, hence
eventually providing converging lower and upper bounds. Interval analysis al-
lows computing cheap verified upper and lower bounds of a nonlinear function
over a box domain, which converges to the actual range as the size of the domains
decreases. Therefore, it is used more or less directly in most implementations
of the branch-and-bound algorithm dedicated to NLPs. Basics of interval anal-
ysis are briefly recalled in Section 2.1, followed by a generic description of the
branch-and-bound algorithm in Section 2.3.

2.1. Interval analysis

Interval analysis (IA) is a branch of numerical analysis born in the 1960’s
[48]. It replaces computations with real numbers by computations with intervals
of real numbers, providing a framework for handling uncertainties and verified
computations (see [49, 36, 39] for a survey).

4

An interval is a closed connected subset of R. Intervals are denoted by
bracketed symbols, e.g. [x] ⊆ R. When no confusion is possible, lower and
upper bounds of an interval [x] are denoted by x ∈ R and x ∈ R, with x ≤ x,
i.e. [x] = [x, x] = {x ∈ R : x ≤ x ≤ x}. Hence, a real number x will be
identified with the degenerated interval [x, x]. Interval vectors, also called boxes,
are equivalently defined as vectors of intervals [x] = ([x]1, . . . , [x]n) ∈ IRn, with
[x]i ∈ IR, or as intervals of vectors [x] = [x, x] ∈ IRn, with x, x ∈ Rn. Similarly,
interval matrices are equivalently defined as matrices of intervals or intervals of
matrices: [A] = ([a]ij)1≤i≤n,1≤j≤m = [A,A] ∈ IRn×m. The lower and upper
bound of an interval object are also denoted using the operators inf and sup.
The midpoint of an interval or box [x] is mid [x] := 0.5(x+ x). The midpoint is
computed approximately using floating point operations, although it is assumed
that mid [x] ∈ [x] holds [31]. The width of a box [x] is denoted by wid[x], and
is the length of a longest edge, i.e., wid[x] = maxi(xi − xi). We consider only
the maximum norm, so the unit ball B is the cartesian product of intervals
[−1, 1]× · · · × [−1, 1].

The convex hull of a set E ⊆ Rn is denoted by convE. It is approximated
by the interval hull

∨
E which is the smallest box that contains E (and thus

convE). E.g.
∨
{x ∈ R2 : x21 + x22 ≤ 1} = ([−1, 1], [−1, 1])T . The interval hull

of two sets E1 and E2 is denoted by E1 ∨ E2, and is by definition the smallest
box that contains both E1 and E2.

A paving X = {[x1], [x2], . . . , [xk]} ⊆ IRn is a finite set of boxes, which allows
enclosing a set more accurately than a single box. In the rest of the paper, they
are denoted by calligraphic letters. The union

⋃
X of a paving is the union of

the boxes it contains, i.e., x ∈
⋃
X ⇐⇒ ∃[x] ∈ X , x ∈ [x].

An interval extension of a real function f : Rn → R is an interval func-
tion [f] : IRn → IR that satisfies [f]([x]) ⊇ f([x]), where f([x]) is the usual
extension of a real function on subsets of its domain, i.e. f([x]) := {f(x) :
x ∈ [x] ∩ dom(f)}. The construction of interval extensions relies on interval
arithmetic (IA), which defines how to compute any elementary operation with
interval operands. Elementary binary operators ◦ ∈ {+,×,−,÷} are extended
to intervals as follows:

[x, x] ◦ [y, y] :=
∨
{x ◦ y : x ∈ [x, x], y ∈ [y, y], (x, y) ∈ dom(◦)}. (4)

E.g., [1, 2] + [3, 5] = [4, 7] or [1, 2]/[−3, 5] = [−∞,− 1
3] ∨ [15 ,∞] = [−∞,∞].

Furthermore, continuous unary elementary functions like exp, log, sin, etc., are
also extended to intervals, leading as well to analytical formulas like exp[x] =
[expx, expx]. Since real numbers are identified with degenerated intervals, IA
actually generalizes real arithmetic, and mixed operations like 1 + [1, 2] = [2, 3]
are interpreted using IA.

The natural interval extension of a real function consists in replacing the ele-
mentary operations it involves by their interval counterparts. The fundamental
theorem of interval analysis states that such an interval evaluation of a real func-
tion gives rise to an interval extension of the original real function. E.g. the
interval extension of the standard scalar product satisfies [x]T [y] ⊇ {xT y : x ∈

5

[x], y ∈ [y]}. When the expression of a function contains only one occurrence
of each variable, its interval evaluation by natural extension is optimal, i.e., it
computes the interval hull of the range of the function with no over-estimation.
E.g. [x]T [y] =

∨
{xT y : x ∈ [x], y ∈ [y]}. However, if its expression contains

several occurrences of some variables, its natural extension is not optimal in
general. Nevertheless, under the mild hypothesis that the function is Lipschitz
continuous inside the interval arguments, the overestimation of its natural ex-
tension decreases proportionally to the width of the interval arguments, which
is generally sufficient to enforce the convergence of algorithms although often
not enough to avoid some cluster effects.

When interval arguments are small, the mean-value interval extension usu-
ally gives rise to better enclosures whose overestimation decreases quadrati-
cally with respect to the width of the interval arguments. For a differentiable
real function f : Rn → R, the mean-value extension is defined as [f](x̃) +
[Df]([x])([x] − x̃) ⊇ {f(x) : x ∈ [x]}, where [f] and [Df] are the (usually
natural) interval extensions of the function and its derivative, and x̃ ∈ [x].

An interval extension [f] of a function f is called convergent inside a bounded
box [x0] if for any exhaustive sequence of boxes as defined in [41], i.e., se-
quences ([xk])k∈N of nested non-empty boxes whose widths converges to zero,
wid[f]([xk]) also converges to zero. It is well-known that the natural extension is
convergent provided that interval extensions of elementary operations involved
in the expression are convergent.

Remark 2. The Minkowski sum between sets somehow generalizes the interval
addition to arbitrary sets. In the rest of the paper, we use the Minkowski sum
in particular to inflate a set E ⊆ Rn with a scaled maximum norm ball εB, e.g.,
E + εB = {x+ εy : x ∈ E, ‖y‖∞ ≤ 1}.

2.2. Numerical constraint programming

Numerical constraint programming [8] addresses the problem of finding the
solution set {x ∈ [x] ⊆ Rn : h(x) = 0, g(x) ≤ 0} to a constraint system defined
by a conjunction of equalities h(x) = 0 and inequalities g(x) ≤ 0 within a given
box domain [x].

Though part of the research in this area considers other topics (e.g., search
strategies or applications), most of the work in the numerical constraint pro-
gramming community has concentrated on the definition of efficient contracting
operators (contractors in short). A contractor [Cc] : IRn → IRn for a constraint
c(x) (typically c(x) ⇐⇒ h(x) = 0 or c(x) ⇐⇒ g(x) ≤ 0, or conjunctions of
such constraints) contracts a domain without loosing any solution, i.e.,

x ∈ [x] ∧ c(x) =⇒ x ∈ [Cc]([x]). (5)

The simple interval evaluation of a constraint gives rise to a “all-or-nothing”
contractor as it either fully rejects the domain or leaves it intact: The tests
for equalities 0 /∈ [h]([x]) or for inequalities [g]([x]) > 0 allow fully rejecting
the domain [x]. Stronger typical contractors are: HC4-revise [7] which employs

6

operator-wise evaluation and projection in order to enforce hull-consistency;
BC3-revise [7] which uses univariate Newton steps to find extremal solutions
within an interval domain and enforces box-consistency [9]; Octum [15] or
MOHC-revise [1] which exploits monotonicity and combines hull and box con-
sistencies. All these contractors usually consider one constraint at a time and
must thus be repeated, typically following an AC3-like fix-point propagation
principle [9]. Because this propagation mechanism may exhibit slow conver-
gence, heuristic stopping criteria are often employed, e.g., when the obtained
contraction drops below a given (relative) threshold called the improvement
factor.

More global operators comprise: Peeling (or shaving) operators [18, 42],
which iteratively discard slices on the boundaries of an interval domain using
local consistency based operators on all the constraints; Constructive interval
disjunction (CID) [57, 53] which considers a partition of the domain [x], propa-
gates other contracting operators (usually HC4-revise) onto each part, and takes
the hull of the contracted part as the new domain; And X-Newton [2], which
generalizes the standard interval Newton [49] dedicated only to square systems
of equations, considers linear enclosures of the equalities and inequalities of the
problem using interval evaluation of their derivatives and usually solves them
using several calls to the Simplex algorithm.

Contractors have proven to be powerful tools for reducing the search space
and avoiding large search efforts, allowing to address challenging problems, in
particular in control and robotics [36].

2.3. Generic branch-and-bound algorithm for NLPs

This section presents the branch-and-bound algorithm dedicated to solving
NLPs (1). We suppose the inequality constraints g(x) ≤ 0 contain at least bound
constraints that define an initial bounded box domain [x0]. This algorithm
interleaves lower and upper bounding operations with branching steps.

Given a subdomain [x] ⊆ [x0], lower bounding consists in finding a lower
bound of the objective function for the subproblem restricted to the subdomain
[x]. It is usually based on tractable relaxations of the subproblem. Upper
bounding consists in finding a feasible point, usually lying in the subdomain [x]
although this subdomain is sometimes used only as an initial guess to find a
feasible point that may lie outside. The objective value of such a feasible point
indeed provides a guaranteed upper bound on the minimum of the NLP. Upper
bounding is usually based either on tractable restrictions of the subproblem or
on local optimization with a feasibility check. Both processes allow proving that
a subdomain needs not be explored anymore if its (local) lower bound is greater
than the current (global) upper bound.

Branching consists in splitting the current subdomain [x] into two covering
non-overlapping subdomains [x′] and [x′′], i.e., [x] = [x′] ∪ [x′′] and [x′] ∩ [x′′]
has zero measure. The algorithm will then apply recursively bounding opera-
tions and branching steps to both [x′] and [x′′]. Branching is mandatory for
the convergence of the algorithm because bounding techniques are pessimistic,
but their inaccuracy decreases as the size of the current subdomain decreases.

7

The convergence of the lower bounding process is usually easily obtained us-
ing convergent lower bounding techniques and a search strategy that consists
in selecting the current subdomain that has the least computed upper bound
among the remaining subdomains to be explored. However, the convergence of
the upper bounding process usually requires some regularity assumption.

The contractors defined in the previous section have been included in branch-
and-bound algorithms [33, 40, 52, 59] in order to improve the lower bounding
process. Instead of simply discarding a subdomain when its lower bound is
greater than the current upper bound f∗, it is contracted with respect to the
constraints h(x) = 0, g(x) ≤ 0 and f(x) ≤ f∗. This leads to a more powerful
pruning since contracting according to the single constraint f(x) ≤ f∗ actu-
ally encodes the original rejection process using only upper and lower bounds.
Other contractors specific to NLPs are: Optimality conditions [40, 50, 29] that
discard subdomains that cannot contain any local optima according to first or
second order optimality criteria; And monotonicity tests [40, 33] which reduce a
domain to one of its bounds if the objective function is proved to monotonically
decrease/increase along the corresponding dimension.

3. Extension of bounding methods to SICs

In this section we consider a SIC g(x) ≤ 0 with

g(x) = max
y∈[y0]

g̃(x, y). (6)

The box-domain of the lower-level program is now denoted [y0] to emphasize
the fact that it is the initial lower-level program box-domain. We also consider
an initial decision variable domain [x0], which is supposed to be bounded and
will be used for studying the convergence of the bounding processes. Since g̃ is
supposed to be continuously differentiable inside ([x0], [y0]), it is also Lipschitz
continuous and we denote by L̃0 a Lipschitz constant for g̃ inside ([x0], [y0]). As
a consequence of Theorem 2.1 in [17], g is also Lipschitz, and we denote by L
its Lipschitz constant.

We define for such a SIC the main techniques that allow its treatment by a
standard branch-and-bound algorithm, namely:

• Interval evaluation of g and its generalized gradient ∂g (Section 3.1);

• Contractors based on linear relaxations and constraint programming ap-
plied to a discretization of the SIC (Section 3.2);

• Upper bounding by linear restrictions and directional search (Section 3.3).

Useful parameter values y ∈ [y0] are those that maximize g̃(x, y). This can
be interpreted as a parametric maximization problem, where decision variables
x now play the role of parameters. We therefore define the constraint parameter
maximizer y∗x for any decision variable value x as follows:

y∗x := argmax
y∈[y0]

g̃(x, y). (7)

8

As illustrated by Example 1, y∗x may contain several maximizers, in which case
g(x) may be non-differentiable. In order to perform interval evaluations, this
definition is extended to decision variable domains as follows:

y∗[x] :=
⋃
x∈[x]

y∗x. (8)

Then, g([x]) ⊆ g̃([x], y∗[x]) = {g̃(x, y) : x ∈ [x], y ∈ y∗[x]}. This inclusion is not

an equality in general because the vectors x ∈ [x] and y ∈ y∗[x] are considered

independently in g̃([x], y∗[x]), but it is the best enclosure we can aim for. It
is therefore crucial that the pessimism of this enclosure decreases when the
size of the decision variable domain decreases. This is proved by the following
proposition, which is provided here as an initial motivation but is not used
explicitly in the rest of the paper.

Proposition 3. We have wid g̃([x], y∗[x]) ≤ wid g([x]) + L̃0 wid[x].

Proof. Consider some arbitrary x ∈ [x] and y ∈ y∗[x]. Since y ∈ y∗[x], there exists

x′ ∈ [x] such that y ∈ y∗x′ , so g̃(x′, y) = g(x′). Now, |g(x′)− g̃(x, y)| = |g̃(x′, y)−
g̃(x, y)| ≤ L̃0‖x − x′‖∞ ≤ L̃0 wid[x]. In other words, every g̃(x, y) ∈ g̃([x], y∗[x])

is distant of at most L̃0 wid[x] of some g(x′) ∈ g([x]), which together with
g([x]) ⊆ g̃([x], y∗[x]) proves the statement.

All the bounding techniques presented in this section require a description
of the set y∗[x] for a given box [x]. The more accurate this description, the
more efficient the bounding process. This description takes the form of a paving
Y[x] ⊆ IRm, i.e., a finite set of parameter boxes Y[x] = {[y1], [y2], . . .}, which
satisfies the following requirement:

y∗[x] ⊆ ∪Y[x] ⊆ [y0]. (9)

Remark 4. The subscript decision variable domain [x] emphasizes the depen-
dence of the paving with respect to the current decision variable domain during
the branch-and-bound process. For clarity, only one SIC is considered in this
section and [y0] is not written explicitly with the paving Y[x], but such a paving
is computed and stored for each SIC of a SIP.

Requirement (9) forces Y[x] to contain all the parameter values that maximize
the SIC value for any decision variable value in the considered decision variable
domain [x]. It is then straightforward that, given an arbitrary x ∈ [x],

∀y ∈ [y0], g̃(x, y) ≤ 0 ⇐⇒ ∀[y] ∈ Y[x], ∀y ∈ [y], g̃(x, y) ≤ 0, (10)

or equivalently,

g(x) = max
y∈[y0]

g̃(x, y) ≤ 0 ⇐⇒ max
[y]∈Y[x]

max
y∈[y]

g̃(x, y) ≤ 0. (11)

Updating a valid parameter paving, i.e., that satisfies Requirement (9), is
done during the branch-and-bound algorithm. Note that a paving Y[x] that

9

is valid for a given box [x] is also valid for all subboxes of [x]. Hence, the
same paving could in principle be shared all along a given branch of the search
tree, since both branching and bounding steps only reduce the decision variable
domain [x]. However, in order to enforce the convergence of the bounding
methods, and therefore of the overall algorithm, the parameter paving has to
be refined when the decision variable domain [x] is reduced. This refinement
process is described in Section 3.4. It consists in splitting some boxes in the
paving and removing boxes that can be proved to not contain any parameter
maximizer. Informally, we expect such a refinement process to enforce the
paving to converge to active parameter values. Formally, the refinement process
is called convergent if for any exhaustive sequence of boxes ([xk])k∈N, with
∩∞k=0[xk] = {x∞}, we have both limk→∞widY[xk] = 0 with

widY[x] := max
[y]∈Y[x]

wid[y], (12)

and ∪Y[xk] converges to y∗x∞ for the Hausdorff distance, i.e.,

lim
k→∞

min{ε ≥ 0 : ∪Y[xk] ⊆ y
∗
x∞ + εB} = 0. (13)

The condition (13) is sufficient for the convergence of the Hausdorff distance
because Y[xk] ⊇ y∗x∞ holds for all k ∈ N, so y∗x∞ ⊆ ∪Y[xk] + εB holds trivially.
The refinement process presented in Section 3.4 will be proved to be convergent.

Finally, the convergence of the branch-and-bound algorithm dedicated to
NLP presented in [41] will be extended to SIP in Section 3.5.

3.1. Interval evaluation of SIC and their generalized gradient

In this section, we define interval extensions of the SIC (6) and its generalized
gradient. They are computed using interval extensions [g̃] and [∇x g̃] of the
function g̃ and its gradient with respect to x evaluated on decision variable
domain [x] and its associated parameter paving Y[x]. To this end, given a
paving Y[x], we define

Y [x] := max
[y]∈Y[x]

inf [g̃]([x], [y]) (14)

Y [x] := max
[y]∈Y[x]

sup [g̃]([x], [y]), (15)

i.e., Y [x], respectively Y [x], is the greatest lower bound, respectively greatest

upper bound, of the evaluation of [g̃] for the current decision variables domain
[x] and all parameters domains [y] of the parameter paving Y[x]. Some interval
extensions of g and ∂g are given by the following proposition.

Proposition 5. Consider interval extensions [g̃] of g̃, and [∇x g̃] of ∇x g̃. Then

[g]([x]) := [Y [x],Y [x]] (16)

[∂g]([x]) :=
∨

[y]∈Y[x]

[∇x g̃]([x], [y]) (17)

10

are interval extensions of g and ∂g, respectively.

Proof. Consider a box [x] and a point x ∈ [x]. Since maxy∈[y] g̃(x, y) is in
[g̃](x, [y]) ⊆ [g̃]([x], [y]), we have

inf[g̃]([x], [y]) ≤ max
y∈[y]

g̃(x, y) ≤ sup[g̃]([x], [y]). (18)

Therefore,

max
[y]∈Y[x]

inf[g̃]([x], [y]) ≤ max
[y]∈Y[x]

max
y∈[y]

g̃(x, y) ≤ max
[y]∈Y[x]

sup[g̃]([x], [y]). (19)

Finally, using (11), we obtain Y [x] ≤ g(x) ≤ Y [x]. Since this holds for all x ∈ [x],

we have proved that (16) is actually an interval extension of g.
By Theorem 2.1 in [17] we have ∂g(x) = conv{∇x g̃(x, y) : y ∈ y?x}. Using

Requirement (9), we obtain ∂g(x) ⊆ conv{∇x g̃(x, y) : y ∈
⋃
Y[x]}. Then, using

basic set properties and the fact that the interval hull includes the convex hull,
we obtain the following inclusions:

∂g(x) ⊆ conv
⋃

[y]∈Y[x]

{∇x g̃(x, y) : y ∈ [y]} (20)

⊆ conv
⋃

[y]∈Y[x]

[∇x g̃]([x], [y]) (21)

⊆
∨

[y]∈Y[x]

[∇x g̃]([x], [y]). (22)

Therefore (17) is an interval extension of ∂g(x).

It is crucial for the convergence of the branch-and-bound algorithm that
the interval extension (16) is convergent. The following proposition provides
a sufficient condition for this, and will be used in Section 3.5 to prove the
convergence of the lower bounding process of the overall algorithm.

Proposition 6. Suppose that the interval extension [g̃] is convergent and that
the refinement process of the parameter paving is convergent. Then the interval
extension (16) is convergent.

Proof. Consider an arbitrary exhaustive sequence of boxes ([xk])k∈N and the
corresponding parameter pavings Y[xk]. Define [yk] as the maximizer of the
problem (15). From (14) we see that [g]([xk]) ⊆ [g̃]([xk], [yk]) obviously holds.
By Definition (12) we have wid[yk] ≤ widY[xk], and since the parameter paving
refinement process is supposed convergent, we have widY[xk] converges to zero.
Therefore, wid[yk] also converges to zero. Finally, because the interval extension
[g̃] is supposed convergent, we have wid[g̃]([xk], [yk]) converges to zero and so
does wid[g]([xk]).

This is illustrated in the following example.

11

1

2

3

4

-2 -1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

Figure 2: In light green, feasible set of the SIC of Example 7. Four boxes are shown: A
feasible box [x1], an infeasible box [x2], two boundary boxes [x3] and [x4].

[x1] [x2] [x3] [x4]

[g]1([x]) [−2.65, 0.65] [−5.10, 3.10] [−3.56, 1.56] [−2.93, 0.93]

[g]100([x]) [−0.72,−0.18] [0.41, 1.01] [−0.22, 0.28] [−0.95, 0.75]

[∂g]1([x])
[−1, 1]

[−4.15, 4.15]
[−1, 1]

[−4.15, 4.15]
[−1, 1]

[−4.15, 4.15]
[−1, 1]

[−4.15, 4.15]

[∂g]100([x])
[−1, 0.91]
[0.86, 3.21]

[0.30, 0.73]
[1.43, 2.21]

[0.48, 0.93]
[−1.95,−0.74]

[−1,−0.98]
[−3.21, 3.21]

Table 1: Results of interval evaluation of the function and its generalized gradient from Ex-
ample 7.

Example 7. We consider the SIC from Example 1:

∀y ∈ [−π, π], x1 cos(y) + x2(sin(y) + y)− 1 ≤ 0. (23)

Its feasible set is depicted in Figure 2, where four boxes are considered. The
interval evaluations [g]k and [∂g]k given in Table 1 are computed using the paving
Y[x] obtained by splitting [y0] into k sub-intervals of equal width, and filtering
them following the rules given in Section 3.4, which maintain Requirement (9).

We can see that the more accurate is the paving Y[x] the sharper are the
interval extensions. In particular, the interval evaluation [g]100([x1]) is negative,
and therefore [x1] is proved to be feasible; the interval evaluation [g]100([x2]) is
positive, and therefore [x2] is proved to be infeasible.

The generalized gradient enclosure (17) readily allows using first order rejec-
tion tests [29] to reject decision variable domains that are proved not to contain
any local minimizer, and hence no global one. This is illustrated by the following
example.

Example 8. Suppose we minimize the objective f(x) = x1 subject to the
SIC (23), so the global minimizer x∗ = (−1, 0) is the only local minimizer.
Consider the box [x3] and the generalized gradient enclosure [∂g]100([x3]) pro-
vided in Table 1. Then the first order rejection tests proposed in [29] consists in
forming the interval matrix(

[∂g]([x3]) [∂f]([x3])
)

=

(
[0.48, 0.93] 1

[−1.95,−0.74] 0

)
(24)

12

and checking whether it is full rank or not. Here, the interval matrix (24) is
clearly full rank, therefore [x3] is proved not to contain any local minimizer and
can be rejected.

Finally, when a SIC has to be evaluated at a point x̃ ∈ [x], i.e., at a degen-
erated interval [x̃, x̃] ⊆ [x], using the paving Y[x] induces a strong pessimism.
This happens for example for finding feasible points, see Section 3.3.1. In this
case, the paving Y[x] is temporarily refined to Y[x̃,x̃] using the refinement process
described in Section 3.4. The refined paving satisfies Requirement (9), i.e.,

argmax
y∈[y0]

g̃(x̃, y) ⊆ Y[x̃,x̃], (25)

and therefore allows obtaining a sharp interval evaluation of g(x̃).

3.2. Contractors

In the previous section, we have seen that the test [g]([x]) > 0 based on
the SIC interval evaluation can be used to reject an infeasible domain, hence
defining an all-or-nothing contractor for SIC. It is well known that this simple
contractor is not efficient, although sufficient to enforce the convergence of the
lower bounding process in the branch-and-bound algorithm. The first order
rejection test based on the interval evaluation of the generalized gradient is also
an all-or-nothing contractor, which turns out to be quite efficient in decreasing
the cluster effect, but which is still not enough on its own.

It is standard to build relaxations of SICs by sampling the parameter do-
mains: We build contractors for SICs by using standard contractors dedicated
to nonlinear inequality constraints (e.g., HC4, XTaylor, cf. Section 2.2) applied
to relaxations of the form g̃(x, ỹ) ≤ 0 for a finite set of samples y ∈ [y0]. In
the context of SIPs, this usage of standard contractors applied to relaxations
by sampling is strengthened here by two key features: First, the choice of the
parameter values ỹ is obviously critical to obtain efficient contractions. We
take advantage of the paving Y[x] to choose effective values ỹ of parameters by
considering the midpoints of each box in Y[x]. Since the paving is maintained
during the search in such a way that it converges to y∗[x] in the sense of (12)

and (13) (see Section 3.4 for the details of the refinement process, and the proof
of its convergence), these samples will also converge to optimal parameter val-
ues, leading to near-optimal contractions when the decision variables domain is
small enough. Second, each parameters sample gives rise to one SIC relaxation,
which are all included inside the constraint propagation algorithm.

The previous relaxation scheme can finally be enhanced using Blankenship’s
method [12], which allows discovering useful parameter values to build relax-
ations. Indeed, the minimization of the objective minoration subject to the con-
straint’s linear relaxations performed during the constraint propagation outputs
both a lower bound on the objective and the corresponding minimizer xrelax.
Blankenship proposes to use this relaxation minimizer to discover useful pa-
rameter values by maximizing the contraint with respect to parameters for the

13

decision variables fixed to xrelax. In our algorithm, this auxiliary parameter max-
imization problem is performed by simply evaluating [g](xrelax), which consists
in refining the initial paving Y[x] to Y[xrelax,xrelax] as in (25). Provided that the
maximizer is regular, the usage of the interval Newton operator in the paving re-
finement process results in tiny parameter boxes, one of them containing y∗xrelax

.
Their midpoints are used as additional parameter values to build relaxations.
Finally, the Blankenship process outputs one parameter value, while several
of them are usually needed to build an accurate relaxation. Therefore, the
computed Blankenship vectors are stored in a queue of size 2n, this size being
motivated by the fact that there are generically at most n active constraints at a
minimizer. This queue is updated following the branches of the search tree, and
the Blankenship parameter values are used for constraint propagation together
with the midpoints of the boxes from the parameter paving.

3.3. Upper bounding

In this section, we extend three methods for finding feasible points of NLPs
to SICs: The midpoint interval evaluation (Section 3.3.1), the corner linear re-
striction [3] (Section 3.3.2) and the directional search [41] (Section 3.3.3). Those
three methods output a feasible point xfeas when they succeed. In this case,
performing a simple dichotomous line-search between the non-feasible optimal
solution of the linear relaxation xrelax and the feasible solution of the directional
linear restriction and evaluating

[g]
(
(1− λ)xrelax + λxfeas

)
(26)

allows cheaply discovering better feasible points.

3.3.1. Midpoint evaluation

The most obvious way of finding a feasible point for the SIC (6) inside
the decision variable domain [x] is to perform its interval evaluation at one
point of this domain, usually the midpoint. Computing [y] := [g](mid[x]) is
done using Proposition 5 and sup[y] ≤ 0 is a sufficient condition for mid[x]
to be feasible. The midpoint evaluation technique is presented here only for
completeness, since it is far less efficient than the subsequent methods.

Remark 9. The feasibility of several constraints is obtained by checking them
independently.

3.3.2. Corner linear restriction

The interval evaluation [d] = [∇g]([x]) of the gradient of a differentiable
function g(x) allows building a piecewise linear upper-bounding function of g(x)
using the so-called interval centered form:

g(x) ≤ sup
(
g(x̃) + [d]T (x− x̃)

)
, (27)

which is valid for an arbitrary expansion point x̃ ∈ [x]. The right-hand-side
of (27) is actually piecewise linear because the expression of the interval product

14

[d]T (x− x̃) depends on the sign of each element of x− x̃, and when these signs
are fixed it gives rise to a linear function with respect to x. This piecewise linear
restriction (27) therefore becomes linear if the expansion point x̃ of the centered
form is chosen to be a corner of the domain [3]. For example, if the expansion
point is the lower bound of the domain, i.e., x̃ = x, then the right hand side
of (27) becomes g(x) + d T (x− x), that is, a linear upper-bounding function.

The following theorem extends this process to SICs. Given α ∈ {0, 1}n we
define the α-corner of a box [x] by xα = inf[x] + diag(α) wid[x]. The opposite
corner of xα is obviously the (1− α)-corner.

Theorem 10. Let [x] ∈ IRn, [y] ∈ IRm, α ∈ {0, 1}n and xα be the correspond-

ing corner of [x]. Define z[y] = sup [g̃](xα, [y]) and d
[y]
1−α as the (1 − α)-corner

of [d][y] = [∇x g̃]([x], [y]). Then, for all x ∈ [x]

max
y∈[y]

g̃(x, y) ≤ z[y] +
(
d
[y]
1−α

)T
(x− xα). (28)

Proof. The centered form in xα of g is expressed as

g̃(x, y) ∈[g̃](xα, y) +
(
[∇x g̃]([x], y)

)T
(x− xα) (29)

⊆[g̃](xα, [y]) +
(
[∇x g̃]([x], [y])

)T
(x− xα). (30)

Since we are interested in the upper bound of the right-hand side, we must

determine an upper bound of
(
[∇x g̃]([x], [y])

)T
(x − xα) =

(
[d][y]

)T
h, where

h = x − xα. For each component i, hi is positive if αi = 0 and negative if
αi = 1. Let P = {i : αi = 0} and N = {i : αi = 1}. Then(

[d][y]
)T
h =

∑
i∈P

[di]hi +
∑
i∈N

[di]hi (31)

≤
∑
i∈P

dihi +
∑
i∈N

dihi (32)

=
(
d1−α

)T
h. (33)

Since this is valid for all y ∈ [y],

max
y∈[y]

g̃(x, y) ≤ z[y] +
(
d
[y]
1−α

)T
(x− xα), (34)

which concludes the proof.

The following corollary then follows from considering the SIC (6) and its
equivalent expression (10).

Corollary 11. For an arbitrary [x] ∈ IRn and an arbitrary corner xα of this
box, the polyhedron

{x ∈ [x] : z[y] +
(
d
[y]
1−α

)T
(x− xα) ≤ 0, [y] ∈ Y[x]} (35)

where z[y] and d
[y]
1−α are defined as in Theorem 10, is a restriction of the feasible

set of the SIC (6).

15

-2 -1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

-2 -1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

Figure 3: In light green, the feasible set of the SIC of Example 7. In dark green, the restriction
obtained using Corollary 11.

Remark 12. A restriction for several constraints is obtained by intersecting
their restrictions, i.e., considering all constraints in (35).

Example 13. We consider again the SIC of Example 7 and apply Corollary 11
using a homogeneous paving of [y0] containing 50 boxes. The expansion point
is the lower bound of the domain, i.e., x̃ = x. Corollary 11 gives rise to the
restrictions depicted in Figure 3: On the left-hand side graphic, the domain is
[x] = ([−1, 1], [−1, 1])T ; on the right hand side graphic, the domain is [x] =
([−3, 3], [−3, 3])T , which gives rise to a sensibly smaller feasible restriction.

This example illustrates a drawback of the corner linear restriction: The
larger the domain, the farer the expansion point from the feasible set, and thus
the cruder the restriction. It may happen that this restriction is actually empty,
which makes it useless in this case.

3.3.3. Directional search

Another approach to discover feasible points of NLP was proposed in [41],
which is proved to provide convergent upper bounds in the context of NLP
under some mild constraint qualification condition. It consists in choosing a
finite set of vectors G ⊆ Rn that is supposed to approximate the gradients of
the active constraints at some arbitrary point in the decision variable domain.
Then a direction u ∈ Rn that potentially points toward feasibility is obtained
by solving the linear problem

u = argmin
u∈B

(
max
d∈G

dTu
)
, (36)

i.e., u minimizes the worst case ascent with respect to each constraint. As noted
in [41], this problem is equivalent to minu∈Rn,y∈R y subject to −1 ≤ ui ≤ 1 and
dTu ≤ y for all d ∈ G, a standard linear problem. Finally, a heuristic is used
to find a feasible point by performing a discretized line search in the direction
u starting from an arbitrary point in the current decision variable domain. We
now extend this approach to SICs, and its convergence in the context of SICs
will be proved in Section 3.5.

In [41], the vectors in G are chosen to be the gradients of the potentially
active constraints, i.e., whose interval evaluations contains zero, evaluated at

16

the midpoint of the decision variable domain. In the context of SICs, each
box of the parameter domain paving can be considered as a potentially active
constraint. Furthermore, any point inside the decision variable domain can be
chosen instead of the midpoint. Therefore we define

G = {∇x g̃(x̂, ŷ[y]) : [y] ∈ Y[x]}, (37)

where x̂ is an arbitrary point in [x] and ŷ[y] is an arbitrary point in [y]. The di-
rection u is then computed as in [41] by solving (36). Starting from an arbitrary
base point x̃ ∈ [x] (in practice we choose x̃ = xrelax which is foreseen to become
close to the minimizer), the directional search consists in finding t ≥ 0 such that
g(x̃ + tu) < 0. Unlike [41] where a discretization process in the direction u is
used, we propose here to use an approximate linear model: We define t using
an approximate directional derivative α of g(x̃+ tu) at t = 0 defined by

α = max
d∈G

dTu, (38)

where G is the set of vectors defined in (37). We expect α < 0, otherwise
the line search is foreseen not to discover any feasible point. The SIC is then
evaluated at the base point to obtain the value g(x̃), as explained in Section 3.1,
and for an arbitrary σ ∈ (0, 1) we define t as the solution of the affine equation
g(x̃) + ασt = 0, that is

t = −g(x̃)

ασ
. (39)

The shifting factor σ is fixed during the search to ensure convergence (in fact
it may vary but should stay bounded away from zero), a reasonable value is
σ = 0.9. If g(x̃) > 0 then t is positive and g(x̃ + tu) is evaluated for checking
feasibility. In the other case, the base point is feasible and no directional search
is performed.

Remark 14. When several constraints gi(x) ≤ 0 are involved, we consider
the equivalent constraint g(x) := maxi gi(x) ≤ 0, which is also a SIC if one
of the gi(x) ≤ 0 is a SIC. In practice, each constraint parameter pavings are
independently used to build G in (37), and the largest t is used, or equivalently,
the maximum of all gi(x̃).

3.4. Branching decision and parameter domains

The parameter domain paving Y[x] is used in all operations related to SICs.
It has to enclose accurately y∗[x] and therefore has to be refined when the decision

variable domain [x] is updated. This happens in two steps of the branch-and-
bound algorithm: First, when [x] is contracted to a new box [x′] the paving Y[x]
simply has to be refined. Second, when [x] is bisected into two new boxes [x′]
and [x′′], the paving Y[x] has to be copied to two new pavings Y[x′] and Y[x′′],
which are refined with respect to their respective new domains.

Refining a paving with respect to an updated domain is necessary in order to
enforce it to converge to y∗[x] when the width of the decision domain [x] converges
to 0. To this end, boxes of the paving have to be split and useless boxes have
to be removed. This is done in four distinct steps:

17

1. To enforce the convergence, the parameter box that has the largest width
is split at the midpoint of a longest edge.

2. Each box of the paving is tested for potential splitting. The aim is to split
boxes only when necessary in order to prevent the paving from containing
too many boxes. We have tested several criteria for deciding whether a
box should be split or not, and the most robust is the following: Given a
parameter box [y], we split at the midpoint of a longest edge and obtain
two boxes [y′] and [y′′]. We then perform the three interval evaluations
[z] = [g̃]([x], [y]), [z′] = [g̃]([x], [y′]) and [z′′] = [g̃]([x], [y′′]). Finally, we

replace [y] in the paving by [y′] and [y′′] if one of the ratios ‖wid[z′]‖
‖wid[z]‖ or

‖wid[z′′]‖
‖wid[z]‖ is less than a given threshold, in practice 0.8. Crudely speaking,

the box [y] is split only if this improves significantly the interval evaluation
of the constraint.

3. A parameter box [y] such that sup[g̃]([x], [y]) < Y [x] cannot contain any

maximizer of g̃(x, y) for any x ∈ [x], and can therefore be rejected.

4. Five rules1 are then applied to each box [y] of the paving Y[x] to reduce
or reject it, keeping the inclusion ∪Y[x] ⊇ y∗[x] valid:

• If [∇yi g̃]([x], [y]) < 0 and y0
i
< y

i
then [y] can be rejected.

• If [∇yi g̃]([x], [y]) < 0 and y0
i

= y
i

then [yi] can be replaced by the
degenerated interval y

i
.

• If [∇yi g̃]([x], [y]) > 0 and yi < y0i then [y] can be rejected.

• If [∇yi g̃]([x], [y]) > 0 and yi = y0i then [yi] can be replaced by the
degenerated interval yi.

• If [y] ⊆ int[y0] then we apply an interval Newton operator to the
system ∇y g([x], y) = 0.

This refinement process works like a simplified branch-and-bound algorithm that
maximizes the function g̃([x], y) with respect to y. Encapsulating this simplified
maximization process as a constraint refinement during the search allows both
including SICs transparently within the branch-and-bound algorithm, hence
taking benefit of its overall efficiency, and using meaningful parameter values
in the construction of relaxations and restrictions. This section is ended by
proving that this refinement process is convergent.

Proposition 15. The refinement process consisting of the refinement steps 1
and 3 is convergent provided that the interval extension [g̃] is convergent.

Proof. Consider an exhaustive sequence of boxes ([xk])k∈N generated by the
algorithm. Denote by x∞ the limit of this sequence, i.e., ∩∞k=0[xk] = {x∞}.
Each new iterate [xk] has gone through at least one parameter paving refinement.

1The first four tests are similar to standard monotonicity tests [40, 33], which were already
used in the context of SICs in [30] in a simpler form.

18

As a consequence, the usual split strategy used at step 1 enforces widY[xk] to
converge to zero, hence (12) holds.

We now prove (13). Choose y∞ ∈ y∗x∞ and consider an exhaustive sequence
of boxes ([yk])k∈N such that [yk] ∈ Y[xk] and ∩[yk] = {y∞} (such a sequence
exists because y∞ ∈ ∪Y[xk] by (9) and updating a paving consists only in split-
ting or contracting boxes). Now assume, by way of contradiction, that (13)
is false, that is, there exists ε > 0 such that ∪Y[xk]\(y∗x∞ + εB) 6= ∅ for all
k ∈ N. Since ∪Y[xk] are nested, nonempty and compact by construction, so are

∪Y[xk]\ int(y∗x∞ + ε
2), where int notes the interior of a set (the difference of a

closed set by an open set is closed). Therefore, by Cantor’s intersection theorem
we have

∞⋂
k=0

∪Y[xk]\ int(y∗x∞ +
ε

2
) 6= ∅. (40)

Pick ỹ∞ in this set and an exhaustive sequence of boxes ([ỹk])k∈N such that
[ỹk] ∈ Y[xk] and ∩∞k=0[ỹk] = {ỹ∞}. Since ỹ∞ /∈ y∗x∞ we have g̃(x∞, y∞) >
g̃(x∞, ỹ∞). The interval extension of g̃ being convergent, there exists K ∈ N
such that inf[g̃]([xK], [yK]) > sup[g̃]([xK], [ỹK]) and Step 3 rejects the parameter
box [ỹK]. Therefore, the exhaustive sequence of boxes ([ỹk])k∈N cannot exist, a
contradiction.

The refinement steps 1 and 3 are sufficient for enforcing the refinement pro-
cess to be convergent. However, the remaining refinement steps are critical for
the efficiency of the algorithm.

Remark 16. Since only active constraint are to be considered in the branch-
and-bound process, we replace the condition sup[g̃]([x], [y]) < Y [x] in Step 3

by sup[g̃]([x], [y]) < 0. This does not impact the correctness of the algorithm
but slightly reduces the size of the parameter paving and therefore the overall
computational timings.

3.5. Convergence of the algorithm

The convergence of the algorithm is proved for one SIC g(x) ≤ 0, but the
proof holds more generally if several constraints gi(x) ≤ 0 are involved by con-
sidering one constraint g(x) := maxi gi(x) ≤ 0, as in Section 3.3.3. This con-
straint is a SIC provided that one of the constraints gi(x) ≤ 0 is a SIC, and
satisfies all the properties of SICs. In practice, one may also consider extended
parameters of the form (i, y) ∈

⋃m
k=1{k} × Rmk with corresponding parameter

domains Y =
⋃m
k=1{k} × [yk], integers denoting indices of constraints. The

universal quantification over this extended parameter domain enforces the uni-
versal quantifications over all SIC independently and the parameter pavings
to converge independently (non-SIC constraints can be included using singleton
parameter domains). Obviously, the convergence of the branch-and-bound algo-
rithm depends on strategy for the choice of the next decision variable domain to
be proceeded in the search tree and the bissection strategy. We use the standard
strategies, which are also used in [41]: The selected decision variable domain

19

that has the smallest objective lower bound and bisect the decision variable
domain at the midpoint of its largest edge.

3.5.1. Convergence of the lower bounding process

The constraint propagation on the constraints g(x) ≤ 0 and f(x) ≤ f∗,
where f∗ is the current upper bound, enforces a decision variable domain [x] to
be rejected if [g]([x]) > 0 or [f]([x]) > f∗. This corresponds to M-dependent
lower bounding procedure used to fathoming in [41]. This procedure is conver-
gent provided that both interval extensions [g] and [f] are convergent, and mono-
tone because the interval evaluation is monotone2. As a consequence, Propo-
sition 4.2 of [41] applies and shows that the branch-and-bound lower bound
process is convergent.

3.5.2. Convergence of the upper bounding process

The convergence of the upper bound process proposed in [41] has to be
adapted, mainly because in the context of SICs, active constraints cannot be
identified exactly (they are real values of parameters and there may be in-
finitely many active constraints). The convergence of the upper bounding pro-
cess is proved under a typical Mangasarian-Fromovitz constraint qualification
(MFCQ): We require that every global minimizer x∗ has a direction u∗ where
g has a strictly negative directional derivative.

We suppose that the feasible set is nonempty. We make the generic assump-
tion that the problem has a unique global minimizer3, denoted by x∗, and that
this global minimizer satisfies the MFCQ. We define

α∗ := max
d∈G∗

dTu∗, (41)

with G∗ = {∇x g(x∗, y) : y ∈ y∗(x∗)}, so that ∂g(x∗) = convG∗ and α∗ is the
directional derivative of g in the direction u∗. The MFCQ then reads α∗ < 0.

In the rest of the section, we consider an exhaustive sequence of boxes
([xk])k∈N produced by the branch-and-bound algorithm that converges to a
global minimizer x∗ (such a sequence exists because the lower bounding process
is convergent, see the proof of Proposition 4.2 in [41]). For clarity, we define
Yk := Y[xk]. We furthermore define Gk to be the set of vectors (37) for the box
[xk], i.e.,

Gk = {∇x g̃(x̂k, ŷ[y]) : [y] ∈ Yk}, (42)

where ŷ[y] is an arbitrary point in [y] and x̂k is an arbitrary point in [xk]. Let
xk ∈ [xk] be the base-point of the directional search. As the exhaustive sequence
of boxes ([xk])k∈N converges to x∗, so do (xk)k∈N and (x̂k)k∈N.

2Monotonicity is actually not required in the proof given in [41], as the branch-and-bound
algorithm enforces monotonicity of the lower bounds of subdomains.

3In the non generic case where there are several global minimizers, one may either assume
the MFCQ for each of them, or conduct a finer analysis to prove the branch-and-bound
algorithm actually accumulates to each of them, one of them being MFCQ-qualified.

20

We need the following three lemmas. Lemma 17 shows that the gradients
in Gk converges to the gradient in G∗ for the Hausdorff distance provided that
the parameter paving refinement process is convergent.

Lemma 17. Suppose that the parameter paving refinement process is conver-
gent. Then Gk ⊆ G∗ + εkB and G∗ ⊆ Gk + εkB with limk→∞ εk = 0.

Proof. Let Ŷk be the set of parameters used to compute Gk, i.e.,

Gk = ∇x g̃({x̂k} × Ŷk), (43)

where the standard evaluation of a function over a set is used. Then we have
Ŷk ⊆ ∪Yk ⊆ y∗(x∗) + ε′kB, the second inclusion holding because the parameter
paving refinement process is supposed convergent. Let wk := widY[xk], which
converges to zero since the refinement process is supposed convergent. Now we
also have y∗(x∗) ⊆ ∪Yk ⊆ Ŷk+wkB (because [y] ⊆ ŷ+wid[y]B for an arbitrary
ŷ ∈ [y]). As a consequence,

dH(y∗(x∗), Ŷk) ≤ max{ε′k, wk}, (44)

which converges to zero. Since dk := ‖x∗ − x̂k‖ converges to zero, so

dH({x∗} × y∗(x∗), {x̂k} × Ŷk) ≤ max{ε′k, wk, dk} (45)

also converges to zero. Finally, ∇xg̃ is continuous in the compact set [x0]×[y0], it
is therefore uniformly continuous, and its set extension is (uniformly) continuous
for the Hausdorff distance. Therefore

dH(∇xg̃({x∗} × y∗(x∗)),∇xg̃({x̂k} × Ŷk)) (46)

also converges to zero. Since (46) is exactly dH(G∗, Gk), this proves the state-
ment.

Lemma 18 provides some convergence property for an approximate linear
model of a Lipschitz function.

Lemma 18. Let (uk)k∈N with ‖uk‖ ≤ 1, (xk)k∈N converges to x∗ and (tk)k∈N
converges to 0. Suppose that G∗ ⊆ Gk + εkB with lim εk = 0. Define gk(t) =
g(xk + tuk) and αk = maxd∈Gk

uTk d. Then gk(tk) ≤ gk(0) + αktk + ε′ktk with
lim ε′k = 0.

Proof. By the mean-value theorem for Lipschitz function [16], gk(tk) ∈ gk(0) +
tku

T
k ∂g(xk + skuk) for some sk ∈ [0, tk]. Considering the worst case we obtain

gk(tk)− gk(0) ≤ tk max
d∈∂g(xk+skuk)

uTk d. (47)

Since the generalized gradient is set-valued upper hemicontinuous [16] and xk +
skuk converges to x∗, we have ∂g(xk + skuk) ⊆ ∂g(x∗) + ε′′kB with lim ε′′k = 0.
We obtain the following upper bounds:

gk(tk)− gk(0) ≤ tk max
d∈∂g(x∗)+ε′′kB

uTk d ≤ tk max
d∈∂g(x∗)

uTk d+ tkn ε
′′
k , (48)

21

where uTk d ≤ n because both have maximal norm less than 1. Maximizing a
linear function v → uTk d over ∂g(x∗) = convG∗ is equivalent to maximizing it
over G∗. Using furthermore G∗ ⊆ Gk + εkB we obtain

gk(tk)− gk(0) ≤ tk max
d∈Gk+εkB

uTk d+ tkε
′′
k ≤ tk max

d∈Gk

uTk d+ tkn (εk + ε′′k). (49)

This ends the proof with ε′k := n(εk + ε′′k), which converges to 0.

Lemma 19 provides some limit property on optimization problems with Lip-
schitz cost function and outwardly convergent feasible sets.

Lemma 19. Let h : E → R be Lipschitz, Pk ⊆ E and P∗ ⊆ E such that
Pk ⊆ E ∩

(
P∗ + εkB

)
and limk→∞ εk = 0. Then

lim sup
k→∞

max
u∈Pk

h(u) ≤ max
u∈P∗

h(u). (50)

Proof. We have

max
u∈Pk

h(u) ≤ max
u∈E∩

(
P∗+εkB

)h(u) = max
u∈P∗
‖δ‖≤εk
u+δ∈E

h(u+ δ) ≤ max
u∈P∗

h(u) + Lhεk, (51)

the last inequality holding because h is Lh Lipschitz. The statement follows
taking the superior limits of the two sequences.

The following theorem shows the convergence of the upper bounding process
defined Section 3.3.3.

Theorem 20. Suppose that the parameter paving refinement process is conver-
gent. Suppose furthermore that the feasible set is nonempty, so that the exhaus-
tive sequence of boxes ([xk])k∈N that converges to the MFCQ-qualified unique
global minimizer x∗ is proved to exist. Pick an arbitrary directional search base
point x̃k ∈ [xk] and suppose that for all k ∈ N the inequality g(x̃k) > 0 holds4.
Let σ ∈ (0, 1) and define mk(u) := maxd∈Gk

dTu, αk := minu∈Bmk(u) and
uk = argminu∈Bmk(u), so αk = mk(uk) and αk and uk correspond to (38)
and (36) respectively. Then there exists K ≥ 0 such that for all k ≥ K we have

both 2αk ≤ α∗ and g(x̃k+tkuk) < 0 with tk defined as in (39), i.e., tk := − g(x̃k)
αkσ

,

which is well defined since α∗ < 0. As a consequence, x̃k + tkuk is feasible and
converges to x∗.

Proof. Define αk∗ := mk(u∗). Since αk it minimizes mk for u ∈ B we have
αk ≤ αk∗. The function d → dTu∗ is Lipschitz and, by Lemma 17, we have
Gk ⊆ G∗ + εkB with lim εk = 0. Therefore Lemma 19 proves

lim sup
k→∞

max
d∈Gk

dTu∗ ≤ max
d∈G∗

dTu∗, (52)

4The other case g(x̃k) ≤ 0 happens, e.g., when no constraint is active at the globale

minimizer. Defining tk := max{0,− g(x̃k)
αkσ

} instead of tk := − g(x̃k)
αkσ

in the statement allows

finding a feasible point in this case too. The convergence proof skips this detail for clarity.

22

that is, lim supk→∞ αk∗ ≤ α∗. Together with the previously proved inequality
αk ≤ αk∗ we obtain lim supk→∞ αk ≤ α∗. Since α∗ < 0, there exists K ′ such
that αk ≤ α∗

2 holds for k ≥ K ′. In particular, αk is bounded away from zero
for k ≥ K ′.

Since αk is less than and bounded away from 0 and g(x̃k) converges to zero,
tk is the quotient of a numerator that converges to zero and a denominator
that is bounded away from zero. Therefore tk converges to 0. Furthermore
by Lemma 17 we have G∗ ⊆ Gk + εkB with limk→∞ εk = 0. Therefore, all
hypothesis of Lemma 18 are satisfied so gk(tk) ≤ gk(0) + αktk + ε′ktk with
lim ε′k = 0. Using the expression of tk we obtain

gk(tk) ≤ gk(0)− αk
g(x̃k)

αkσ
+ ε′k

g(x̃k)

|αk|σ
= gk(0)

(
1− 1

σ
+

ε′k
|αk|σ

)
. (53)

Finally, since gk(0) = g(x̃k) > 0 by hypothesis, and 1
σ > 1, |αk| ≥ |α∗|2 > 0 and

lim ε′k = 0, there exists K ≥ K ′ such that for all k ≥ K we have gk(tk) < 0.
Finally, since x̃k converges to x∗ and tk converges to zero and ‖uk‖ ≤ 1, we
have x̃k + tkuk converges to x∗.

4. Experiments

In this section, we present experimental evidence of the interest of the algo-
rithm we have introduced in the previous section.

Our implementation of this algorithm is written in C++ using the interval
solving library Ibex [14], based on the interval arithmetic library GAOL [32].
The solver for LP subproblems is SoPlex 3.1.1 [61]. The program is compiled
with G++ 5.4.0 with the flags -std=c++11 -O3 -DNDEBUG. The tests are run
on an Intel Xeon E3-1280 v6 @ 3.90GHz running Ubuntu 16.04.3. The source
code is available and can be installed as a plugin of the Ibex library called sip.
Problem models are available in the benchs subdirectory of the plugin.

In the bisection process of the parameter paving, parameter boxes are not
bisected further if their diameter is smaller than 10−10. Variables are bisected
as long as it is possible.

We first propose in Section 4.1 an experiment inspired from [29] focusing on
the clustering effect around optima of SIPs. Next in Section 4.2.2, we propose
a general comparison to the state-of-the-art alternative from [19], which is to
our knowledge the best general SIP solving algorithm to date5. Finally, in Sec-
tion 4.4 we present the resolution of a recently proposed difficult SIP model for
telescope design.

4.1. Clustering effect for SIPs

When solving NLPs using an interval-based branch-and-bound method, it is
usual to obtain an accumulation of small boxes around the optima that cannot

5[19] presents comparison to [46], and [46] presents comparisons to [23, 11].

23

be rejected efficiently because they are both almost feasible and almost optimal.
The number of such boxes typically grows with the prescribed precision, mak-
ing the resolution inefficient in case this cluster effect is not correctly handled.
See [51, 60, 38] for more details on the cluster effect. The following experiment
demonstrates simultaneously that there exists a clustering effect around the op-
tima of SIPs similar to the one observed for NLPs, and that our port of the
rejection test based on first-order optimality conditions with generalized gradi-
ents (see Section 3.1) and our linear relaxation-based lower-bounding technique
(see Section 3.2) handle this clustering effect.

To this end, we consider the following scalable SIP:

min f(x) :=

i=n∑
i=1

xi (54)

s.t. g(x) := max
y∈[−1,1]

i=n∑
i=1

x2i + y (x1 + 1)− n ≤ 0. (55)

This is the same problem as in Section 5.2 of [29], where the original nonsmooth

constraints g(x) :=
∑i=n
i=1 x

2
i + |x1 + 1| −n ≤ 0 is now replaced by its equivalent

semi-infinite expression (55).
The clustering effect when solving the initial non-smooth NLP problem is

studied in [29] by varying two solving parameters: The dimension of the problem
n, and the solving precision εx. An asymptotic formula of the number of boxes
of size εx generated by the algorithm in the configuration where it uses only
constraint propagation without linear relaxations as lower bounding process is
given in [29]:

O
(
ε
−n−2

2
x

)
. (56)

This number becomes extremely high for small values of εx even for relatively
small vales of n. It was confirmed in [29] that the solving time is approximately
proportional to this number of boxes. We study the clustering effect when
solving our SIP adaptation (55) with the same parameters. The results are
depicted in Figure 4. The upper-left diagram in Figure 4 shows that the solving
time follows quite accurately the cluster effect model (56), which are displayed
in gray-dashed lines, demonstrating the existence and impact of the clustering
effect for SIPs. In contrast, the results in the other diagrams show the positive
impact of the techniques we have introduced in our branch-and-bound in order
to address this effect, and their complementarity. These results are in line with
those in [29].

4.2. Comparative benchmarking

We now propose a comparison of the performance of our branch-and-bound
method with the Hybrid, Blankenship-based, approach in [19]. The GAMS
implementation of this method is that provided by the authors as supplementary

24

●
●●

●●
●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.10.010.001

10

100

1000

10000

100000

●●

●
●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

0.10.010.001

10

100

1000

●

●

●

●
●

●
●

●●

●

●
●

●●

●

●

●
●

●●

●

●

●

●
●

●

●
●

0.10.010.001

10

100

1000

●

●

●●

●
●

●

●

●

●●

●●
●

●●

●●

●

●●

●

●●

●

●
●

●

0.10.010.001

10

100

Figure 4: Solving time in seconds (in ordinate) depending on the precision (in abscissa) and
the dimension (n=2 in blue, n=3 in yellow, n=4 in green, n=5 in red). Upper-left: branch-
and-bound without any anti-clustering technique. Upper-right: branch-and-bound with the
lower-bounding technique described in Section 3.2. Lower-left: branch-and-bound with the
first-order rejection technique described in Section 3.1. Lower-right: branch-and-bound with
both techniques.

material with their paper6. We have measured its computation times on our
computer, with the parameters specified in [19], however with a more recent
version of GAMS 28.2.0 [25] and BARON 19.7.13 [54]. Settings of ibexopt-sip
are the same as [19]: both an absolute and relative termination criterion set to
10−3.

4.2.1. Benchmark

All the problems in our benchmark are from the Mitsos SIP test set [45].
Problems 2, 5, 6, 7, 8, 9, H, N, S, 4 3, 4 6 are simple problems with only one
quantified constraint, at most 6 variables and at most 2 quantified parameters.
The objective function is linear for 8, 9, H, N, 4 3, 4 6 and polynomial for 2, 6
and 7. The SIC is linear in the variables for problems 7, 8, 9, 4 3, 4 6 implying
the gradient of the constraint does not depend on the variables, dramatically
increasing the accuracy of linearizations.

Problems Dn1 n2 n3 are derived from a design centering problem described
in [45], where n1, n2, n3 are three integers: n1 describes the containing set,
n2 the type of objective function (linear or quadratic) and n3 the number of
circles used in the problem. A graphic representation of the problems and
their solutions can be found in [46]. The number of quantified constraints is

6Electronic supplementary material on https://link.springer.com/article/10.1007/

s10898-016-0476-7

25

https://link.springer.com/article/10.1007/s10898-016-0476-7
https://link.springer.com/article/10.1007/s10898-016-0476-7

n1n3, with one quantified parameter each. There are also several non quantified
constraints. The variables represent the coordinates and radius of the circles,
therefore there are 3 decision variables if n3 = 1 and 6 if n3 = 2.

4.2.2. Results

Table 2 shows computation times for the compared algorithms. Column Prob-
lem is the problem name as presented in the previous section, column Hy-
brid GAMS is the computation time of the Hybrid algorithm from [19], col-
umn Hybrid Ibex is the computation time of the Hybrid algorithm using an
Ibex implementation, and column ibexopt-sip is the computation time of our
algorithm implemented with Ibex. Hybrid GAMS uses the same parameters as
in [19], with rg = 1.2. Hybrid Ibex uses IbexOpt as the sub-problems solver,
with εg,0 = 0.1, rg = rLLP = 1.5, εUBD,0 = εLBD,0 = εRES,0 = εLLP,0 = 10−4

and lmax = 20. The best solving time for each problem is emphasized (bold-
face).

Problem Hybrid GAMS Hybrid Ibex ibexopt-sip
2 0.01 0.10 0.10
4 3 0.10 0.05 0.02
4 6 0.78 0.43 0.06
5 0.08 0.11 0.03
6 1.10 0.26 0.02
7 0.05 0.17 0.09
8 0.95 1.41 0.35
9 0.20 ∞(?) 0.07
H 0.53 0.27 0.01
N 0.12 0.04 0.01
S 4.28 0.60 0.09
D101 0.16 0.13 0.03
D102 22.48 21.60 1.26
D111 0.14 0.15 0.02
D112 14.40 3.01 0.24
D201 0.74 0.42 0.09
D202 13.43 10.21 2.28
D211 1.37 0.48 0.10
D212 36.29 8.68 1.41
DP 0.36 0.71 0.01

Total 97.62 49 6.26

Table 2: Comparison between the hybrid algorithms and Ibexopt-sip. Timings are in seconds.
0.01s means that the solving time is less than 0.01s.
(?) Problem 9 cannot be solved within the time limit with Hybrid Ibex unless the antici-
pated upper bounding feature of IbexOpt is deactivated (this feature accelerates the branch-
and-bound algorithm by limiting the cluster effect but prevents the algorithm to find new
parameters values for Problem 9). In that case, the solving time is 0.017s.

26

We can see that on most instances, our algorithm fares better than Hybrid.
Surprizingly, problem 9 is solved quite efficiently by our method while its op-
timum is associated to a continuous set of corresponding parameters values,
instead of a discrete set for the other problems. This theoretically reduces the
efficiency of our parameter filtering strategy, but this difficulty is in fact over-
come by the linear restrictions and the Blankenship heuristic in our algorithm.

4.3. Detailed analysis

In this section, numerical experiments are performed to analyze the influence
of the different features exposed in this article for lower bounding and upper
bounding. For each identified feature, the number of problems solved in less
than x seconds is measured. Results are shown in Figure 5 and Figure 6. As
deactivating specific features can compromise the convergence of the algorithm
on some problems, a timeout has been set to 100 seconds.

4.3.1. Pruning and lower bounding

��� ��� � � �� ��
��� �	
�(�)

�

��

��

�

�� ������
� ������

���� �������	

���
�� �����-
�	�� ����

���
�� �
�������� ��
������
�

���
�� ������ ��������
��

Figure 5: Number of problems from the Mitsos Sip test set solve in less than x seconds, with
a timeout set to 100s, when deactivating specified lower-bounding feature.

As shown in Section 3.2, our algorithm uses three separate approaches to
pruning and lower bounding : linear relaxations of constraints, constraint pro-
gramming and a first-order optimality test. As can be seen in Figure 5, deacti-
vating constraint propagation or linear relaxations leads to severe performance
losses. For example, problems 8 and 4 6 cannot be solved in less than 100s
without relaxations and D2 0 2 solving time goes from 2.28s to 48s when deac-
tivating constraint propagation. More generally, Dn1n2n3 greatly benefit from
constraint propagation.

On the contrary, the first-order test has almost no effect on performance:
most problems do not show any difference, except D2 0 2 which shows a 17%
degradation in computation time without the test. But as discussed in Sec-
tion 4.1, it is very useful on problems prone to clustering, thus its inclusion in
the final algorithm. This also highlights a deficiency of the Mitsos SIP test set,
which does not contain problems prone to clustering.

27

4.3.2. Upper bounding

��� ��� �
��� �	
�(�)

�

��

��

��

�

�� ������
� ������

���� �������	

���
����

��� ������

Figure 6: Number of problems from the Mitsos Sip test set solve in less than x seconds, with
a timeout set to 100s, when deactivating specified upper-bounding feature.

Feasible points are all found by the line search procedure described in Sec-
tion 3.3.3. There are two main approaches to find a search direction: one is the
generalization to SIPs of Stein’s directional search approach (Section 3.3.3), and
the other is the use of corner linear restrictions (Section 3.3.2). Figure 6 shows
that corner restrictions can greatly increase search speed. On the whole problem
set, the corner strategy in enough to solve the bench, however the Stein strat-
egy is necessary to enforce the convergence of the algorithm and only slightly
degrades performance on this bench, especially on D202, which goes from 2.30s
to 1.58s when removing Stein. Removing the corner strategy leads to severe
performance degradation, especially on D212, which goes from 0.23s to 2.28s,
but also on Problem 8, D102, D202, and D212. Overall the performance loss
when deactivating the corner strategy is 120%. It is interesting to note that for
D202 the combination of both strategies is the best strategy.

4.4. Telescope design problem

The following SIP appears in [4]:

Minimize t, (57)

subject to − t ≤ J1(πα)

α

m∑
k=1

ak cos (
2π

d
ukα) ≤ t, ∀α ∈ [αmin, αmax], (58)

uk+1 − uk ≥ d, for k = 1, ...,m− 1, (59)
m∑
k=1

ak =
1

2
, (60)

ak ≥ 0, for k = 1, ...,m, (61)

28

where J1 is the first-order Bessel function of the first kind. In theory, we need
to implement this Bessel function for intervals. On a bounded domain, it is
however possible to precompute Taylor coefficients in order to obtain a sufficient
computational precision. We used the following approximation:

J1(πα)

α
=

9∑
p=0

(−1)p
(π

2

)2p+1 1

p!(p+ 1)!
x2p +O(x2p) (62)

which is the power series of order 18. The maximum error on the evaluation of
J1(πα)
α and its derivative on the interval [0.25, 0.75] using this approximation is

less than 10−12. Another solution would be to use the Arb interval library [37]
which provides interval arithmetic for Bessel functions but linking [37] with
Ibex is problematic. From [4], αmin = 0.25 and αmax = 0.75, m = 4 and d = 1,
which gives 9 decision variables and two SICs with a scalar parameter. We
have α ∈ [0.25, 0.75], and we chose u ∈ [0, 5]m and a ∈ [0, 1]m. This problem
was solved in 265 seconds with ibexopt-sip. Results are shown in Table 3. The
minimizer value is similar and the optimum is improved by 15% with respect
to [4]. We cannot use GAMS with Baron to solve this problem, because Baron
does not solve problems with trigonometric functions. Hybrid Ibex could not
solve this problem or even find a feasible point in 1 hour.

Variable [4] ibexopt-sip
t? 0.00289906377301 0.00246502446622
ā? (1.0000, 0.7277, 0.36344, 0.1044) (1.0000, 0.7269, 0.3634, 0.1036)
u? (0.5054, 1.5167, 2.5299, 3.5510) (0.5044, 1.5134, 2.5241, 3.5406)

Table 3: Numerical solutions to the telescope design problem presented in [4], with ā? = a?/a1.

5. Conclusion

A new branch-and-bound algorithm for semi-infinite problems has been pro-
posed, extending methods already used in NLP solvers to semi-infinite con-
straints (SICs). In particular, interval evaluation, first-order rejection test based
on generalized gradients interval evaluation, numerical constraint propagation
and linear relaxations and restrictions have been extended to SICs. These
bounding techniques rely on a paving that approximates the maximal parameter
values of each SIC, refined during the search. Experiments have been performed
on standard benchmarks from the literature: First the proposed bounding tech-
niques handle efficiently the cluster effect: Linear relaxations and the first order
rejection test are actually complementary. Second, our implementation of our
branch-and-bound algorithms outperforms the currently best algorithm dedi-
cated to general SIPs proposed by Djelassi and Mitsos [19], implemented by
both its authors using GAMS–Baron and ourselves using Ibex.

One advantage of following the standard branch-and-bound algorithm is
modularity: Other bounding techniques like [47] may also be included and their

29

efficiency within a branch-and-bound algorithm can be assessed. In addition,
the proposed framework can be readily applied to more general problems, like
multi-objective semi-infinite problems [44, 27, 62, 26].

The extension of this framework from SIPs with box-constrained lower-level
programs to SIPs with lower-level programs with general nonlinear inequality
constraints is straightforward by handling inner and boundary boxes in the
parameter paving. Extending it to generalized SIP presents more subtle issues,
and is currently under work.

Aknowledgment

This work was partially supported by the French Agence National de la
Recherche (ANR) [grant number ANR-16-CE33-0024].

[1] Araya, I., Trombettoni, G., 2010. Exploiting monotonicity in interval con-
straint propagation. In: In Proceedings of the 24th AAAI Conference on
Artificial Intelligence, AAAI.

[2] Araya, I., Trombettoni, G., Neveu, B., 2012. A contractor based on con-
vex interval taylor. In: Beldiceanu, N., Jussien, N., Pinson, É. (Eds.),
Integration of AI and OR Techniques in Contraint Programming for Com-
binatorial Optimzation Problems: 9th International Conference, CPAIOR
2012, Nantes, France, May 28 – June1, 2012. Proceedings. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 1–16.

[3] Araya, I., Trombettoni, G., Neveu, B., Chabert, G., 2014. Upper bound-
ing in inner regions for global optimization under inequality constraints.
Journal of Global Optimization 60 (2), 145–164.

[4] Armand, P., Benoist, J., Bousquet, E., Delage, L., Olivier, S., Reynaud,
F., 2009. Optimization of a one dimensional hypertelescope for a direct
imaging in astronomy. European Journal of Operational Research 195 (2),
519 – 527.

[5] Ben-Tal, A., den Hertog, D., Vial, J.-P., Feb 2015. Deriving robust coun-
terparts of nonlinear uncertain inequalities. Mathematical Programming
149 (1), 265–299.

[6] Ben-Tal, A., Ghaoui, L. E., Nemirovski, A., 2009. Robust Optimization.
Princeton Series in Applied Mathematics. Princeton University Press.

[7] Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F., 1999. Revising
hull and box consistency. In: Int. conf. on logic programming. MIT press,
pp. 230–244.

[8] Benhamou, F., Granvilliers, L., 2006. Chapter 16 - continuous and interval
constraints. In: Francesca Rossi, P. v. B., Walsh, T. (Eds.), Handbook of
Constraint Programming. Vol. 2. Elsevier, pp. 571 – 603.

30

[9] Benhamou, F., McAllister, D., Hentenryck, P. V., 1994. CLP(Intervals)
Revisited. In: International Symposium on Logic Programming. pp. 124–
138.

[10] Berger, N., Soto, R., Goldsztejn, A., Caro, S., Cardou, P., 2010. Finding
the maximal pose error in robotic mechanical systems using constraint pro-
gramming. In: Garćıa-Pedrajas, N., Herrera, F., Fyfe, C., Beńıtez, J. M.,
Ali, M. (Eds.), Trends in Applied Intelligent Systems. Springer Berlin Hei-
delberg, Berlin, Heidelberg, pp. 82–91.

[11] Bhattacharjee, B., Green, W. H., Barton, P. I., 2005. Interval methods
for semi-infinite programs. Computational Optimization and Applications
30 (1), 63–93.

[12] Blankenship, J. W., Falk, J. E., 1976. Infinitely constrained optimization
problems. Journal of Optimization Theory and Applications 19 (2), 261–
281.

[13] Caro, S., Chablat, D., Goldsztejn, A., Ishii, D., Jermann, C., 2014. A
branch and prune algorithm for the computation of generalized aspects of
parallel robots. Artificial Intelligence 211, 34 – 50.

[14] Chabert, G., 2019. Ibex 2.8 : Interval-based explorer, http://

www.ibex-lib.org/, GitHub project: https://github.com/ibex-team/

ibex-lib.

[15] Chabert, G., Jaulin, L., 2009. Hull consistency under monotonicity. In:
Principles and Practice of Constraint Programming CP 2009. Vol. 5732 of
Lecture Notes in Computer Science. Springer, pp. 188–195.

[16] Clarke, F. H., 1981. Generalized gradients of lipschitz functionals. Advances
in Mathematics 40 (1), 52 – 67.

[17] Clarke, H. C., 1975. Generalized gradients and their applications. Transac-
tions of the AMS 205, 247–262.

[18] Collavizza, H., Delobel, F., Rueher, M., 1999. Comparing partial consis-
tencies. Reliable Computing 5 (3), 213–228.

[19] Djelassi, H., Mitsos, A., 2016. A hybrid discretization algorithm with guar-
anteed feasibility for the global solution of semi-infinite programs. Journal
of Global Optimization, 1–27.

[20] Domes, F., Goldsztejn, A., 2017. A branch and bound algorithm for quan-
tified quadratic programming. Journal of Global Optimization 68 (1), 1–22.

[21] Fernández, J., Tóth, B., 2009. Obtaining the efficient set of nonlinear
biobjective optimization problems via interval branch-and-bound methods.
Computational Optimization and Applications 42 (3), 393–419.

31

http://www.ibex-lib.org/
http://www.ibex-lib.org/
https://github.com/ibex-team/ibex-lib
https://github.com/ibex-team/ibex-lib

[22] Floudas, C., 2013. Deterministic global optimization: theory, methods and
applications. Vol. 37. Springer.

[23] Floudas, C. A., Stein, O., 2008. The adaptive convexification algorithm:
A feasible point method for semi-infinite programming. SIAM Journal on
Optimization 18 (4), 1187–1208.

[24] Gabrel, V., Murat, C., Thiele, A., 2014. Recent advances in robust opti-
mization: An overview. European Journal of Operational Research 235 (3),
471 – 483.

[25] GmbH, G. S., 2017. Gams : General algebraic modeling system,
https://www.gams.com.

[26] Goberna, M., Guerra-Vazquez, F., Todorov, M., 2016. Constraint qualifi-
cations in convex vector semi-infinite optimization. European Journal of
Operational Research 249 (1), 32 – 40.

[27] Goberna, M., Jeyakumar, V., Li, G., Vicente-Prez, J., 2015. Robust so-
lutions to multi-objective linear programs with uncertain data. European
Journal of Operational Research 242 (3), 730 – 743.

[28] Goldsztejn, A., Caro, S., Chabert, G., 2016. A three-step methodology for
dimensional tolerance synthesis of parallel manipulators. Mechanism and
Machine Theory 105, 213 – 234.

[29] Goldsztejn, A., Domes, F., Chevalier, B., 2014. First order rejection tests
for multiple-objective optimization. J Glob Optim 58, 653–672.

[30] Goldsztejn, A., Michel, C., Rueher, M., 2008. Efficient Handling of Univer-
sally Quantified Inequalities. Constraints 14 (1), 117–135.

[31] Goualard, F., 2014. How do you compute the midpoint of an interval? ACM
Trans. Math. Softw. 40 (2), 11:1–11:25.

[32] Goualard, F., 2015. Gaol 4.2: Not just another interval arithmetic library,
http://sourceforge.net/projects/gaol.

[33] Hansen, E., Walster, G. W., 2003. Global Optimization Using Interval
Analysis - Revised And Expanded. CRC Press.

[34] Hettich, R., Kortanek, K. O., 1993. Semi-infinite programming: Theory,
methods, and applications. SIAM Review 35 (3), 380–429.

[35] Houska, B., Diehl, M., 2013. Nonlinear Robust Optimization via Sequential
Convex Bilevel Programming. Mathematical Programming, Series A 142,
539?577.

[36] Jaulin, L., Kieffer, M., Didrit, O., Walter, E., 2001. Applied interval anal-
ysis: with examples in parameter and state estimation, robust control and
robotics. Springer Verlag.

32

[37] Johansson, F., Aug 2017. Arb: Efficient arbitrary-precision midpoint-radius
interval arithmetic. IEEE Transactions on Computers 66 (8), 1281–1292.

[38] Kannan, R., Barton, P. I., 2017. The cluster problem in constrained global
optimization. Journal of Global Optimization 69 (3), 629–676.

[39] Kearfott, R. B., 1996. Interval Computations: Introduction, Uses, and Re-
sources. Euromath Bulletin 2 (1), 95–112.

[40] Kearfott, R. B., 1996. Rigorous Global Search: Continuous Problems.
Kluwer Academic Publishers.

[41] Kirst, P., Stein, O., Steuermann, P., Jul 2015. Deterministic upper bounds
for spatial branch-and-bound methods in global minimization with noncon-
vex constraints. TOP 23 (2), 591–616.

[42] Lhomme, O., 2005. Quick Shaving. In: Proceedings of the 20th National
Conference on Artificial Intelligence - Volume 1. AAAI’05. AAAI Press, pp.
411–415.

[43] Lopez, M., Still, G., 2007. Semi-infinite programming. European Journal
of Operational Research 180 (2), 491 – 518.

[44] Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C., 2017. Con-
straint propagation using dominance in interval branch & bound for non-
linear biobjective optimization. European Journal of Operational Research
(EJOR) 260 (3), 934 – 948.

[45] Mitsos, A., 2009. Test set for semi-infinite pro-
grams. Tech. rep., Massachusetts Institute of Technology,
http://web.mit.edu/mitsos/www/pubs/siptestset.pdf.

[46] Mitsos, A., 2011. Global optimization of semi-infinite programs via restric-
tion of the right-hand side. Optimization 60 (10-11), 1291–1308.

[47] Mitsos, A., Lemonidis, P., Lee, C., Barton, P., 2008. Relaxation-based
bounds for semi-infinite programs. SIAM Journal on Optimization 19 (1),
77–113.

[48] Moore, R., 1966. Interval Analysis. Prentice-Hall.

[49] Neumaier, A., 1991. Interval Methods for Systems of Equations. Cambridge
University Press.

[50] Neumaier, A., 1996. Second-order sufficient optimality conditions for local
and global nonlinear programming. Journal of Global Optimization 9 (2),
141–151.

[51] Neumaier, A., 2004. Complete search in continuous global optimization and
constraint satisfaction. Acta Numerica, 271–369.

33

[52] Neumaier, A., 5 2004. Complete search in continuous global optimization
and constraint satisfaction. Acta Numerica 13, 271–369.

[53] Neveu, B., Trombettoni, G., Araya, I., 2015. Adaptive constructive interval
disjunction: algorithms and experiments. Constraints, 1–16.

[54] Sahinidis, N. V., 2017. BARON : Global Optimization of Mixed-Integer
Nonlinear Programs, http://archimedes.cheme.cmu.edu/?q=baron.

[55] Stein, O., 2012. How to solve a semi-infinite optimization problem. Euro-
pean Journal of Operational Research 223 (2), 312–320.

[56] Still, G., Oct 2001. Discretization in semi-infinite programming: the rate
of convergence. Mathematical Programming 91 (1), 53–69.

[57] Trombettoni, G., Chabert, G., 2007. Constructive interval disjunction. In:
Bessière, C. (Ed.), Principles and Practice of Constraint Programming CP
2007. Vol. 4741 of Lecture Notes in Computer Science. Springer, pp. 635–
650.

[58] Tsoukalas, A., Rustem, B., Nov 2011. A feasible point adaptation of the
blankenship and falk algorithm for semi-infinite programming. Optimiza-
tion Letters 5 (4), 705–716.

[59] Van Hentenryck, P., Michel, L., Deville, Y., 1997. Numerica: A Modeling
Language for Global Optimization. MIT press.

[60] Wechsung, A., Schaber, S. D., Barton, P. I., 2014. The cluster problem
revisited. Journal of Global Optimization 58 (3), 429–438.

[61] Wunderling, R., 1996. Paralleler und objektorientierter Simplex-
Algorithmus. Ph.D. thesis, Technische Universität Berlin.

[62] Zamani, M., Soleimani-damaneh, M., Kabgani, A., 2015. Robustness in
nonsmooth nonlinear multi-objective programming. European Journal of
Operational Research 247 (2), 370 – 378.

34

http://archimedes.cheme.cmu.edu/?q=baron

	Introduction
	Background
	Interval analysis
	Numerical constraint programming
	Generic branch-and-bound algorithm for NLPs

	Extension of bounding methods to SICs
	Interval evaluation of SIC and their generalized gradient
	Contractors
	Upper bounding
	Midpoint evaluation
	Corner linear restriction
	Directional search

	Branching decision and parameter domains
	Convergence of the algorithm
	Convergence of the lower bounding process
	Convergence of the upper bounding process

	Experiments
	Clustering effect for SIPs
	Comparative benchmarking
	Benchmark
	Results

	Detailed analysis
	Pruning and lower bounding
	Upper bounding

	Telescope design problem

	Conclusion

