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Discovering of the unobservable behaviour
of an Interpreted Petri Net model

Francesco Basile1, Gregory Faraut2, Luigi Ferrara1 and Jean-Jaques Lesage2

Abstract— This paper focuses on the problem of discovering
a Petri Net model from long event sequences generated by a
discrete event system. Precisely, it is assumed that the relations
between input and output events (i.e. the observable behaviour
of the system) are already modelled by a set of Interpreted
Petri Net fragments while the behaviour of the internal state
evolutions (i.e. the unobservable behaviour) must be discovered.
An approach inspired to net synthesis is proposed. It relies on
an optimization-based procedure for the identification of the
unobservable net structure and marking.

I. INTRODUCTION

The methods presented in the literature for the identifi-
cation of DESs produce a mathematical model expressed
as a Petri Net (PN) or a finite state automaton model of
the system behaviour from sequences observed during the
system operation [5]. When the resulting model is a PN,
like in this paper, the net structure (places, transitions and
arcs) and its initial marking must be computed. The language
of the identified model, that is the set of sequences it can
generate, in general contains a subset of sequences that do
not belong to the observed language. Such a subset represents
the exceeding language of the identified system. The size
of the exceeding language is a measure of the fitness of
the obtained model. Indeed, a large exceeding language is
certainly undesired when the identified model is used for
diagnostic or verification purposes.

In this work, the identification of closed-loop controlled
automation systems is considered. The behaviour of these
systems can be split into an Observable behaviour, related
to direct output changes depending on input changes, and an
Unobservable behaviour, related to evolutions of the internal
state (and variables) of the system without changes of observ-
able data (inputs and outputs). An identification algorithm
should provide a model expressing both I/O causal relation-
ships and internal state evolutions due to input changes [15].
This paper can be positioned as the continuation of [10], as
the papers [11], [12], [15]. The authors of [10] provide an
approach to discover the observable behaviour as Interpreted
PN (IPN) fragments from an I/O observed sequence. This
sequence is also converted into a firing sequence on the
alphabet of transitions (see first step in Fig. 1). Therefore,
the unobservable behaviour is discovered from such a firing
sequence, and the IPN fragments are completed by adding
connecting (unobservable) places (see second step in Fig. 1);
these places implement a proper ordering of the transition
firings and, thus, are essential in reducing the size of the
exceeding behaviour.

Solutions to implement the second step have been pre-
sented in [11], [12], [15]. In [11], [12] it is implemented
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Fig. 1. Identification procedure of closed-loop systems in two steps.

discovering the causal and concurrent relationships between
transition firings in the firing sequence obtained in the first
step. In [15] the projection of the firing sequence obtained
in the first step on subalphabets is used to discover specific
patterns that are characteristic of dependency relationships
between the transition firings. Both the approaches return as
identified model a 1-bounded net.

In this paper a different procedure is used to discover the
unobservable behaviour.

First, a synthesis approach is used to solve the problem
of reducing the exceeding language. There are approaches to
DES identification where it is assumed that either the whole
state space of the system, or the whole language generated
by it, is known [6], [7], [8]. If this is the case, the tackled
problem is more a net synthesis problem, rather than a net
identification one. In this paper a net synthesis approach
based on a graph is used. Precisely, the approach presented
in this paper, inspired to [13], forces the reachability graph of
the identified model to be isomorphic to a graph generating a
behaviour having empty exceeding language with respect to
words of lenght r, where r is a design parameter. Moreover,
the observable net, as well as the identified unobservable one,
are not required to be 1-bounded.

Second, the sequences of transition firings of the observ-
able net obtained as result of the first stage of the procedure
depicted in Fig. 1, are enriched by the observable markings
reached during the firing of the sequence of transitions by
the observable net model. The goal is the definition of an
exceeding language with respect to sequences of transitions
(associated to system inputs) and markings (associated to
system outputs) and not transition only to improve the
quality of the identified model in terms of accuracy. Indeed,



assume that a sequence t1t2 is generated by an identified net
model; if we consider also system outputs, it may happen
that m1t1m2t2m3 and m4t1m5t2m6 are generated by
the identified model, while only m1t1m2t2m3 has been
observed.

Third, an optimization approach based on an Integer Lin-
ear Programming (ILP) formulation is used for the synthesis
of unobervable places. This is in line with a recent trend in
PN-related research (see, e.g., [17], [9]).

II. PN BACKGROUND

A brief recall on Petri Nets is presented in this section. For
a complete review on PNs, the reader can refer to [14]. In
the following, given a set A, the cardinality of A is denoted
by |A|.

A Place/Transition net (P/T net) is a 4-tuple N =
(P, T,Pre,Post) where: P is a set of places, T is a set of
transitions and Pre and Post are the |P |×|T | sized, natural
valued, incidence matrices; Post(p, t) = w means that there
is an arc from t ∈ T to p ∈ P with weight w. A marking
(the net state) is a vector m : P → N that assigns to each
place a nonnegative integer number of tokens. The incidence
matrix C of the net is C = Post−Pre. A P/T system or
net system 〈N,m0〉 is a net N with an initial marking m0.
A transition t is state-enabled at m iff m ≥ Pre(·, t); its
firing yields a new marking m′ = m+C(·, t).

To make explicit the interaction of a PN model with
the external environment, we make use of Interpreted
Petri Nets (IPNs), whose structure is defined as N =
(P , T,Pre,Post, γ, β). The first advantage of IPNs is the
possibility to characterize each transition with a logic con-
dition depending on the system’s inputs; in particular, the
function β : T → {0, 1} associates a logical condition
to transitions ∀ti ∈ T, β(ti) = Fi(I, EI), where I is the
set of input signals and EI = {↑ ij(↓ ij) | ij ∈ I} is
the set their rising (falling) edges. Secondly, the system’s
outputs are explicitly represented in the net; in particular,
the set of places P is partitioned into observable P and
unobservable Pu (P = P ∪Pu, P ∩Pu = ∅) and, denoted
by O the set of output signals, the function γ : P →
O∪{ε} associates to each observable place an output signal
and to each unobservable place the symbol ε denoting a
null output. Thus, observable places are used to model the
output configurations of the DES while the unobservable
ones implement a proper ordering of the transition firings.

An IPN system 〈N,m0〉 is an IPN N with an initial
marking m0; a transition t fires at m if and only if it is
state enabled and logical condition enabled (β(t) = 1).

III. PROBLEM STATEMENT

We assume that an IPN system 〈N,m0〉 modelling the
system of interest is available. In addition, the set of I/O
sequences acquired from the system is available in the form
of interpreted sequences, i.e sequences consisting of transi-
tion firings and observable markings; such set is denoted by
IΣObs. The j-th interpreted sequence in IΣObs is defined as
iσj = m0,jt1,jm1,j ...tl−1,jml−1,j , being l its length; the
length of iσj is denoted by |iσj |. Notice that ti,j (mi,j)
refers to the transition (observable marking) occupying the
i-th position in the j-th observation, where 1 ≤ j ≤ |IΣObs|.
Each iσj ∈ IΣObs is supposed to represent a different
trajectory of the system starting from the same initial state;
as a consequence m0,j = m0,∀iσj ∈ IΣObs.
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Fig. 2. Creation of the Moore Machine Er for r = 4.

The minimal requirement for 〈N,m0〉 is to simulate
the observations: called IΣ(N,m0) the set of interpreted
sequences of any length that N can generate from m0, it
must hold IΣObs ⊆ IΣ(N,m0).

Given an interpreted sequence iσj ∈ IΣ(N,m0), the
subsequence of length n ≤ |iσj | starting from the k-th
marking is a word wnk (iσj), where wnk,j ≡ wnk (iσj) =
mk,j tk+1,jmk+1,j ...mk+n−2,j tk+n−1,jmk+n−1,j ,
0 ≤ k ≤ |iσj | − n. Words wnk,j associated to iσj ∈ IΣObs,
are called known since they directly originate from
the observations. Given a length n, they can be
collected in the set of known words of length n,
Kn = {wnk,j , 0 ≤ k ≤ |iσj | − n, iσj ∈ IΣObs}, while
LnObs = {wl0,j , l ≤ n, iσj ∈ IΣObs} is called observed
language of length n and collects known words of maximum
length n starting from the initial marking. Similarly, the set
of unknown words of length n is defined Un(N,m0) =
{wnk,j ,∀ 0 ≤ k ≤ |iσj |−n, iσj ∈ IΣ(N,m0)∧wnk,j /∈ Kn},
and is due to unexpected transition firings.

Simulation admits that the model can enable unexpected
transition firings at each marking in addition to expected
ones. On the contrary, an accurate model only enables
expected transitions; formally, denoted by Ln(N,m0) =
{wl0,j , l ≤ n, iσj ∈ IΣ(N,m0)} the language of length
n generated by the identified net system from m0, the
exceeding language LnExc(N,m0) = Ln(N,m0) \ LnObs is
empty in an accurate model for each length n. Maximum
accuracy, however, is quite never the target for a good model.
In fact, since real systems usually exhibit a rich behaviour,
long sequences are needed to capture them; however, ob-
servations are generally not complete in practice, i.e. not
all the possible trajectories are observed. Thus, building a
model with maximum accuracy implies that new (future)
observations cannot be generated by the identified model.

The empirical experience usually suggests that it makes
sense to devise a tolerance length ñ able to preserve a rich
set of observations. In this case a good model is such that,
not only Lñ(N,m0) = ∅ holds, but also every produced
word of length n ≤ ñ is a known word; more formally,
called distance of length n the quantity dn(N,m0) =
|Un(N,m0) \ Kn|, the second constraint is expressed by
dñ(N,m0) = 0. Obviously ñ cannot exceed the length of
the longest observation.

The goal of this paper is to refine an IPN model to make
it more accurate. At this aim it is assumed that:
1) the automation system is already modelled by an IPN

system 〈NObs,m0〉 and the set IΣObs is available; it
is also called observable net, since it represents the I/O
observable behaviour of the automation system and only



contains observable places and transitions [12]; obviously,
〈NObs,m0〉 must simulate the acquired observations;

2) the refinement process consists in identifying the marked
unobservable places to be added to 〈NObs,m0〉;

3) ñ is given.
It is useful to characterize the accuracy through the design
parameter r ≥ ñ. The objective is thus to construct a
new IPN system 〈N ′,m0〉 such that: 1) dr(N ′,m0) = 0;
2) LrExc(N

′,m0) = ∅; If 1) and 2) hold, the new IPN
system is said to be r-complete. The two constraints are
both necessary: if only the first one is imposed, the model
just produces known words of length n ≤ r, but some words
could be produced from the initial marking even if they were
observed from a state of the system different from the initial
one; if the second one only is imposed, unknown words of
any length n could be produced after the first r − 1 firings
from the initial marking. Note that r-completeness entails
ñ-completeness (r ≥ ñ).

IV. A SOLUTION BASED ON ILP PROBLEMS SOLVING

A net synthesis approach is proposed to solve the identi-
fication problem stated in the previous section.

This task is accomplished by firstly constructing a Moore
machine Er representing the dynamics that 〈N ′,m0〉 should
exhibit. For the sake of simplicity, in this paper we suppose
that if it holds wr−10,i = wr−1k,j , k > 0, iσi, iσj ∈ IΣObs then
it also holds wr0,i = wrk,j ; therefore, if a word of length
r − 1 is produced both at the beginning of any observation
and also later, it must be followed by the same transition
firing and observable marking. This assumption can be easily
removed by slightly modifying the algorithm illustrated in
the following.

The algorithm is based on a sliding window mechanism.
This window has a dynamic size and slides on each iσ ∈
IΣObs; at any moment, it only contains a sub-word of iσ.
The automaton is constructed by adding at each step a state
q associated to the sub-word w contained in the window,
briefly denoted by w = ω(q); in addition, to each state q an
observable marking m is associated as label, briefly denoted
by m = λ(q). We also denote by last(w) the last marking
of the word w. In detail:

1) The interpreted sequence iσj , j = 1 is firstly selected.
The window is positioned at the beginning of iσ1 (k = 0);
the length of the window is l = 1 and contains the word
w0 = wlk,j = w1

0,1 = m0: the initial state q0 is created,
such that ω(q0) = w0, λ(q0) = last(w0) = m0. The
window’s length l is then incremented by a unit and the word
w1 = w2

0,1 is encountered. A state q1 is thus constructed,
such that ω(q1) = w1, λ(q1) = last(w1) = m1,1; the state
q0 is linked to q1 by an arc labelled by t1,1. This procedure
repeats until l = r−2; then, l = r−1 is set (maximum length
of the window) and the word w = wr−10,1 is encountered. The
state qr−3 is linked to qr−2 through an arc labelled by tr−2,1;
2) The window, now, slides by one step (k = 1) keeping the
same length; the contained word is w′ = wr−11,1 . A new state
qr−1 is created and associated to w′. The previous state is
linked to qr−1 by an arc labelled by tr−1,1. The window
then slides again (k = 2). This process, whose details are
given in the following, continues until the window reaches
the end of iσ1; 3) When the processing for iσ1 is finished,
the following interpreted sequence (if it exists) is selected,
thus j is incremented and the procedure re-executed from
the step 1); new states and arcs are thus added to Er.

Figure 2 shows how steps 1 and 2 are applied on iσ1 when
building Er for r = 4.

If, during the process, it happens that a word w is en-
countered again in the window, the state associated to w and
created the first time that w was encountered, is re-used and
new input/output arcs added to it. In Fig. 2 it is exemplified
the case where the last word encountered in the window,
i.e. w = m|iσ1|−3,1t|iσ1|−2,1m|iσ1|−2,1t|iσ1|−1,1m|iσ1|−1,1
is equal to the word already associated to q3, i.e. w =
m1,1t2,1m2,1t3,1m3,1; thus q3 is re-used and t|iσ1|−1,1 is
added as input arc coming from the state associated to
w = m|iσ1|−4,1t|iσ1|−3,1m|iσ1|−3,1t|iσ1|−2,1m|iσ1|−2,1.

As a result of state re-using, a single state exists for
each encountered word in the window. At the end of the
procedure, the set of words associated to the states of Er is
Φ(r) = {Lr−2Obs ∪Kr−1}, since states associated to words in
Lr−2Obs are the ones created at step 1, while states associated
to words in Kr−1 are the ones created at step 2.

Once Er is built, a word w can be associated to
each direct path belonging to Er. Precisely, given a
direct path from a state qi to a state qj , the word
w = λ(qi)tiλ(qi+1)ti+1...tj−1λ(qj) can be devised, where
tk is one of the transitions associated to the arcs exiting from
qk. Once these words have been defined, as done for IPNs,
language and distance can be introduced in a similar way also
for Er. The automaton Er is r-complete by construction.

Being the net system 〈NObs,m0〉 not r-complete, some
sequences exist that can be produced in NObs from m0 but
not in Er from q0. In the general case, each one of these
sequences can be split in two parts: the first subsequence (that
can be empty) is still feasible in Er; the second one begins
with the first infeasible transition firing, i.e. the first transition
that is not expected in Er. The general idea is to add in
the IPN system a new unobservable place that blocks the
first unexpected transition firing of the infeasible (sub)path.
These places are synthetized by solving ILP problems based
on proper algebraic constraints, which are split into global
and local constraints.

A. Global algebraic constraints
In this section, we devise the set of constraints that each

unobservable place of the new IPN system 〈N ′,m0〉 must
ensure; more specifically:
(a) each interpreted sequence in IΣObs must fire from the

initial marking;
(b) each time a word w ∈ Φ(r) is generated by the IPN,

the marking reached at the end of w must be always the
same.

In order to formalize these constraints, we firstly denote
the sequence of transitions associated to iσj by σj =
t1,jt2,j ...t|iσj |−1,j ; denoted by |σj | its length, it holds |iσj | =
|σj |+1. Furthermore, the following definitions come in help:
1) The function Θ : w → {σ}, defined for each w ∈ Kn,

yields the observed (sub)sequences of transitions starting
from the initial marking that produce w in the last |w|−1

firings, i.e. Θ(w) = {σj(1, k+|w|−1) | ∃w|w|k,j = w, iσj ∈
IΣObs}, where σ(m,n) is the subsequence of σ having
all its elements from the m-th to the n-th; if n < m the
empty sequence is returned.

2) Consider an IPN N and let pU be an unobservable place
of N ; pU is said to be r−consistent if and only if ∀w ∈
Φ(r) it holds cU σi = cU σj where cU is the row of



the incidence matrix of N associated to pU , σi, σj ∈
Θ(w), i 6= j and σ ∈ N|T | is the firing count vector
associated to σ whose k-th component is the number of
occurrences of tk in σ. If σ = ti, then the associated
firing count vector is denoted by ti.

The previously enumerated constraints can now be for-
mally expressed. Chosen r, any unobservable place pU of
〈N ′,m0〉, identified by the incidence rows preU ,postU and
the initial marking mU

0 , must ensure the following algebraic
system:

mU
0 + cU σ̃1 ≥ preU σ̃2,

σ̃1 = σk(1, l − 1), σ̃2 = σk(l),

∀ iσk ∈ IΣObs,∀ 1 ≤ l ≤ |σk|;
cUσi = cUσj ,

∀σi, σj ∈ Θ(w),∀w ∈ Φ(r), i 6= j;

(1)

(2)

where cU = postU −preU , since global constraint (a) is
implemented by inequalities (1) that admit legal firings, and
global constraint (b) is implemented by equations (2) that
ensure r-consistency.

B. Local algebraic constraints

In this section, the sets of local constraints are presented;
we use the term local to remark that each set will be
implemented by a different unobservable place, which also
implements global constraints.

Local constraints are responsible for enforcing the dis-
abling of undesired transition firings; as a consequence,
they depend on the accuracy of the given net. For sake
of generality, it is convenient to suppose that the given net
system 〈N,m0〉 satisfies the hypothesis and already contains
some r-consistent unobservable places.

Let us consider the word w ∈ Φ(r) associated to a state of
Er. Constraint (2) guarantees that, by firing from the initial
marking any sequence σ that produces w in the last |w| − 1
firings (σ ∈ Θ(w)), the unobservable places always reach the
same marking. The same already occurs for the observable
places, by definition of interpreted sequence that always
terminates with an observable marking. Consequently, the
set of state-enabled transitions by the IPN system after the
generation of w is uniquely determined by w and we denoted
it by E(N,w). In addition we denote by Ar(w) the set of
transitions associated to the output arcs of the state of Er
associated to w.

Now, local constraints can be formally expressed as fol-
lows. Chosen a word w ∈ Φ(r) and selected a σi ∈
Θ(w), the unobservable place pU identified by the incidence
rows preU ,postU and the initial marking mU

0 , disables the
undesired firing of a transition tu ∈ {E(N,w)\Ar(w)} after
the firing of σi from mU

0 iff:{
mU

0 + cUσi < preUtu;

preU tu > 0;

(3)

(4)

where cU = postU − preU , since by inequality (3) the
disabling of the undesired firing is accomplished while by
(4) the blocking arc is imposed to the transition tu.

C. The core algorithm

In this section, the core algorithm that produces the desired
net system 〈N ′,m′0〉 is presented.

Algorithm 1: r-completeness enforcement
input : Er,Φ(r), IΣObs, r, 〈NObs,m0〉.
output: A new IPN system

〈N ′,m′
0〉 ≡ 〈(P

′
, T,Pre

′
,Post

′
, γ′, β′), m′

0〉
that tries to ensure r-completeness.

1 Initialize: 〈N ′,m′
0〉 = 〈NObs,m0〉

fmin = (preU + postU ) · 1 +mU
0

2 for each w ∈ Φ(r) do
3 Select a random σi ∈ Θ(w)
4 T treated

u = ∅
5 while {{E(N ′, w) \ Ar(w)} \ T treated

u } 6= ∅ do
6 Select a random

tu ∈ {E(N ′, w) \ Ar(w)} \ T treated
u

7 Add in the set of constraints, named S, (1), (2),
(3), (4) devised from w, tu and σi

8 if @ pU ∈ P ′
s.t. S is satisfied then

a new unobservable place pU is constructed:
[preU ,postU ,mU

0 , solved] =
solveILP (S, fmin)

9 if solved then
P

′
= P

′ ∪ pU , γ′(pU ) = ε,

Pre
′

=

[
Pre

′

preU

]
,

Post
′

=

[
Post

′

postU

]
, m′

0 =

[
m′

0

mU
0

]
10 T treated

u = T treated
u ∪ tu

Theorem 1: The net system 〈N ′,m′0〉 produced by Al-
gorithm 1 is r-complete if and only if all the ILP prob-
lems admit a solution, otherwise it holds dr(N ′,m0) ≤
dr(NObs,m0) and LrExc(N

′,m0) ⊆ LrExc(NObs,m0).
Proof: The algorithm cycles over each word w ∈

Φ(r) and constructs a set of algebraic constraints for each
transition tu whose firing is not expected after the generation
of w; if not already implemented by any previously added
place, each set is given to an ILP solver which, if it exists,
returns as a solution the new unobservable place. Such a
place disables the firing of tu (due to (3) and (4)) and
satisfies the global constraints; thanks to (2) the disabling
is performed independently on how w is generated by the
net system, even if enforced on a single σi ∈ Θ(w).

If at least one ILP admits a solution, the exceeding
language and the distance are reduced since an undesired
firing is disabled; if all the sets are implemented, the new
system is r-complete.

Note that the unsolvability of some ILPs is due to the
nature of a Petri net place: it is mostly like a counter since
it only maintains memory of its current status. Being it
insensible to the order in which increments and decrements
occur, it is not able to implement any constraint that is
order-sensible. In addition, note that the algorithm produces
unobservable places with minimum arcs weight and minimal



Fig. 3. Er for the sorting system and r = 5.

initial tokens, as the function fmin = (preU + postU ) ·
1 + mU

0 imposes, where 1 is a column vector having all
elements equal to 1; theorem 1 still holds if the three terms
(preU ,postU ,mU

0 ) are differently weighted. The produced
net system is in general not 1-bounded.

V. A CASE STUDY

The purpose of the system in figure 5 is to sort parcels
according to their size. It has nine sensors whose signals
are k1, k2, a0, a1, a2, b0, b1, c0, c1 and four actuators whose
signals are A+, A−, B,C. The size of a parcel arriving on
conveyor 1 is detected as either small (k1) or big (k2). The
small (resp. big) parcel is then pushed from the cylinder A
to the cylinder B (resp. C) that pushes it on conveyor 2 (resp.
3). The pushing of Cylinder B (C) is detected by means of
b0 (c0) and b1 (c1). Cylinder A moves the parcel as soon
as A+ is asserted; if a1 (resp. a2) rises, it means that the
cylinder B (resp. C) has been reached and, thus, the cylinder
A is retracted by enabling A−, until a0 rises. The system is
sequential: it works only one parcel at a time.

During the observation step described on figure 1, a single
observation V of 222 I/O vectors is carried out, which
captures the treatment of 20 parcels and completely acquires
the system dynamics. From the analysis of I/O vectors, it
results that the treatment of each parcel consists of four
transition firings, then it is reasonable to assume ñ = 5.
Then, we have considered r ≥ 5. Figure 4 shows the first
eight I/O vectors in V ; they correspond to the arrival and
sorting of a small parcel.

𝑘1 𝑘2 𝑎0 𝑎1 𝑎2 𝑏0 𝑏1 𝑐0 𝑐1 𝐴+ 𝐴− 𝐵 𝐶
𝑉(1) 0 0 1 0 0 1 0 1 0 0 0 0 0
𝑉(2) 1 0 1 0 0 1 0 1 0 1 0 0 0
𝑉(3) 1 0 0 0 0 1 0 1 0 1 0 0 0
𝑉(4) 0 0 0 0 0 1 0 1 0 1 0 0 0
𝑉(5) 0 0 0 1 0 1 0 1 0 0 1 1 0
𝑉(6) 0 0 0 1 0 0 0 1 0 0 1 1 0
𝑉(7) 0 0 0 0 0 0 0 1 0 0 1 1 0
𝑉(8) 0 0 0 0 0 0 1 1 0 0 1 0 0

Fig. 4. First eight acquired I/O vectors for the sorting system.

The observable IPN system 〈NObs,m0〉 is then
computed in [16]; it is depicted by solid lines in figure 6.
Then V is translated into an interpreted sequence iσ =
iσ1iσ2iσ3iσ1iσ3iσ1iσ1iσ3iσ3iσ1iσ3iσ3iσ3iσ3iσ3iσ2iσ1
iσ2iσ2iσ1, where iσ1 = m0t1m5t2m4t3m1t4m0,
iσ2 = m0t1m5t2m4t4m3t3m0 and iσ3 =
m0t5m5t6m2t7m1t4m0, where m0 = [0000]T ,m1 =
[0010]T ,m2 = [0011]T ,m3 = [0100]T ,m4 =

[0110]T ,m5 = [1000]T . The set of observed interpreted
sequences is simply IΣObs = {iσ} and the initial marking
is m0.

Fig. 5. A simple system to be modelled.

𝑝5

1
𝑝7

𝑝9

1
𝑝8

1𝑝6

Fig. 6. IPN system 〈N ′,m′
0〉.

By choosing r = 5, the automaton Er in figure 3
is obtained. The new Petri net system 〈N ′,m′0〉 is then
computed; it is represented in figure 6 (added unobservable
places and added arcs in dot lines).

The computed net system is not 5-complete, as figure
7 shows, since L2

Exc(N
′,m′0) 6= ∅; for example, the

exceeding word w = m0t5m5 can be produced from the
initial marking, even if it is not expected in Er. However,
the exceeding language is greatly reduced with respect to the
observable IPN system.

In [16] the unobservable places of NObs are computed
as well, producing the system 〈N ′′,m′′0〉. The comparison
with 〈N ′,m′0〉, shows that both the exceeding language
and the distance are larger, as depicted in figure 8. It
is interesting to observe that for small values of n the



Fig. 7. Comparison between the exceeding language of 〈NObs,m0〉 and
the computed 〈N ′,m′

0〉. Green points mean no exceeding words.

Fig. 8. Comparison of the exceeding language and the distance of the IPN
system computed by the proposed method w.r.t the IPN computed in [16].

exceeding languages produced by these two nets is quite
similar, while the distances are not; the cause is that the
distance, differently from the exceeding language, is a global
measure which depends from the initial marking and also all
the markings reachable from it. As a consequence, deviating
behaviours that the exceeding language can show only for
great values of the length n are immediately represented for
smaller distance lengths. For example, 〈N ′′,m′′0〉 reaches
the illegal observable marking m = [1100]T by firing the
sequence of transitions σ = t1t2t4t5; this is represented by
d1(N ′′,m′′0) > 0, but requires a length n ≥ 5 in order to be
shown up in LnExc(N

′′,m′′0).
To conclude, the resulting model obtained with the pro-

posed approach is a general net, while previous solutions
only return 1-bounded nets. However, the proposed approach
works on logical models, while the explicit consideration
of time is becoming crucial for the specification and verifi-
cation of systems such as transportation systems [4], real-
time systems, as well as the study of problems such as
state estimation, and fault diagnosis [1]. First results to the
identification of timed net models have been proposed in [3],
[2] to identify a Time Petri Net from sequences of timed
transition firings; future research will be devoted also on the
identification of timed IPN models.
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