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Shape transition and hydrodynamics of vesicles in tube flow

Paul G. Chen,1, ∗ J. M. Lyu,1 M. Jaeger,1 and M. Leonetti2, †

1Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France
2Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, Grenoble, France

The steady motion and deformation of a lipid-bilayer vesicle translating through a circular tube
in low Reynolds number pressure-driven flow are investigated numerically using an axisymmetric
boundary element method. This fluid-structure interaction problem is determined by three dimen-
sionless parameters: reduced volume (a measure of the vesicle asphericity), geometric confinement
(the ratio of the vesicle effective radius to the tube radius), and capillary number (the ratio of viscous
to bending forces). The physical constraints of a vesicle – fixed surface area and enclosed volume
when it is confined in a tube – determine critical confinement beyond which it cannot pass through
without rupturing its membrane. The simulated results are presented in a wide range of reduced
volumes [0.6, 0.98] for different degrees of confinement; the reduced volume of 0.6 mimics red blood
cells. We draw a phase diagram of vesicle shapes and propose a shape transition line separating the
parachute-like shape region from the bullet-like one in the reduced volume versus confinement phase
space. We show that the shape transition marks a change in the behavior of vesicle mobility, espe-
cially for highly deflated vesicles. Most importantly, high-resolution simulations make it possible for
us to examine the hydrodynamic interaction between the wall boundary and the vesicle surface at
conditions of very high confinement, thus providing the limiting behavior of several quantities of in-
terest, such as the thickness of lubrication film, vesicle mobility and its length, and the extra pressure
drop due to the presence of the vesicle. This extra pressure drop holds implications for the rheology
of dilute vesicle suspensions. Furthermore, we present various correlations and discuss a number of
practical applications. The results of this work may serve as a benchmark for future studies and help
devise tube-flow experiments.
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I. INTRODUCTION

The transport of deformable particles (such as drops, vesicles, capsules, red blood cells, etc.) in
microchannels has recently received much attention because of its key roles in applications ranging
from microcirculation of red blood cells (RBCs) [1–4] and biomimetic carriers [5, 6] to manipulat-
ing droplets in microfluidic chips [7, 8]. It is therefore of great interest to understand how those
fluid-particles deform in response to external forces in narrow tubes and how these forces affect
the hydrodynamic mobility of the deformable particles. In addition to the particle’s mobility [5],
which is defined as the ratio of the particle velocity to the suspending mean fluid velocity, the
other important quantity of interest in the context of blood rheology is the extra pressure drop due
to the presence of the particle in the capillary tube [1, 2]. Irrespective of the type of deformable
particles, their shapes are unknown a priori due to a highly nonlinear fluid-structure coupling,
and their dynamics are dictated by interfacial mechanics, boundary conditions on the walls, me-
chanical equilibrium at the interface, and other specific constraints (e.g., a fixed internal volume in
general and a fixed surface area in particular for vesicles).

A soft object transported in confined flows is essentially a fluid-structure interaction problem.
A variety of numerical models have been developed to predict the motion of a deformable entity.
They can be broadly classified into three categories, namely, mesh-based methods [9–11], particle-
based methods [12–14], and boundary-element method (BEM). We refer to recent review articles
for a comprehensive overview of the literature (e.g., Ref. [15] for capsules, Ref. [16] for vesicles,
and Ref. [17] for RBCs). The BEM is arguably the most popular simulation framework for highly
accurate prediction of the dynamics of deformable particles in inertialess Newtonian flows. A
major advantage of the BEM as compared with the domain-based numerical methods is that it
reduces the spatial dimensions of the computational domain by one, so the flow equations are
solved only for the unknown stress and velocity fields at the domain boundaries and at moving
interfaces. BEM’s theory and formulation are well described in the book by Pozrikidis [18], and its
efficiency has been demonstrated in the simulation of drops [19, 20], capsules [21], vesicles [22–26],
and blood cells [4, 27, 28].

In this paper, we focus on the dynamical behavior of a confined axisymmetrical vesicle moving
through a circular tube in pressure-driven flow. Membranes of vesicles (∼ 4 nm thick) are made
of a lipid bilayer that behaves as a two-dimensional fluid contrary to polymer capsules. Under
stress, mechanical responses of membranes are resistance to an out-of-plane bending but not to an
in-plane flow. In most experimental configurations, the lipid bilayer membrane is incompressible,
a physical constraint ensured theoretically via a local Lagrange multiplier which has the same
dimensions as surface tension (i.e., N/m or J/m2). In addition, vesicles are only deformable if
they are initially deflated, a characteristic measured by reduced volume or excess area, which
explains why vesicles are singular particles [29]. Vesicles are often employed as a model system to
mimic the mechanical properties of red blood cells [29–31].

Recent semi-analytical progress has been achieved in the limit of highly confined axisymmetrical
vesicles in tube flow [32]. It means that dissipation is mainly governed by the lubrication in the
thin film between the vesicle and the tube wall. However, the lubrication equation derived from
the Reynolds equation and mechanical equilibrium (Eq. (5.27) in [32]) needs careful numerical
integration as done by the authors. Asymptotic solutions are only possible for vanishing bending
resistance – which corresponds to an infinite bending capillary number, a measure of the relative
importance of hydrodynamic stress compared to bending resistance. The most significant result
of Ref. [32] is a prediction of vesicle’s mobility and extra pressure drop in situations where the
gap size between the vesicle surface and the tube wall is small. Calculation of vesicle shape and
membrane stress in a confined configuration has begun with Trozzo et al. [33] who developed
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an axisymmetric BEM for vesicles moving through a circular tube. But several hydrodynamical
quantities of interest, such as vesicle’s velocity and extra pressure drop, were not provided. Three-
dimensional BEM simulations of confined vesicles have been performed recently in a range of
reduced volumes 0.7–0.99 [25]. The authors also presented an axisymmetric lubrication theory
based on the parallel-flow approximation [34]. This approximation is appropriate if the gap size
is small compared to the vesicle length. A comparison of vesicles shapes computed via 3D BEM
simulations and axisymmetric lubrication theory shows the relevance of the lubrication theory
provided that the gap size and the reduced volume are not too small (Fig. 9 of [25]). Indeed,
those highly confined regimes are difficult to reach numerically as an extremely refined meshing
is necessary to capture the hydrodynamic interaction in the lubrication layer; thus, axisymmetric
BEM simulations remain an interesting and promising approach. Also, it is expected that the
vesicle preserves a steady, axisymmetric configuration when it is highly confined.

Here, we study numerically the motion and deformation of an axisymmetric vesicle moving
inside a tube in a wider range of the reduced volumes, i.e., 0.6–0.98; the value of 0.6 corresponds to
the reduced volume of red blood cells. We also compute explicitly the thickness of the lubrication
film, which has not been considered in previous works. In Sec. II, we present problem formulation
and dimensionless parameters involved. In Sec. III, we outline the numerical method used in
this study. In Sec. IV, we present and discuss our main results. Firstly, we determine the vesicle
shapes with such reduced volumes at varying degrees of confinement. Secondly, we focus on
the transition between parachute shapes (concave rear like a droplet) and bullet shapes (convex
rear) as first studied in free space for quasi-spherical vesicles under quadratic flow (i.e., Poiseuille
flow but without walls) [35]. Comparisons with experiments on single vesicles [5] and on the
phase diagram [36] show very good agreement. Thirdly, we present numerical results of vesicle’s
mobility and extra pressure drop, and compare with previously reported results in the literature,
in particular, the 3D BEM simulations of Ref. [25] and the theoretical prediction of Ref. [32] as
confinement is approaching its critical value. Furthermore, we present several correlations and
discuss their practical implications. A summary of the main findings and concluding remarks
are presented in Sec. V. A lubrication theory, consolidated from previously reported works in
the literature, is supplied in the appendix to provide scaling relations in support of the present
numerical results.

II. GOVERNING EQUATIONS: A FLUID-STRUCTURE INTERACTION PROBLEM

A. Hydrodynamics

We consider a neutrally buoyant vesicle that is transported in a pressure-driven flow through
a straight, circular tube of radius R. Fluid flows at an imposed, constant volumetric flow rate
Q (≡ πR2U , giving a mean bulk velocity U ) driven by a pressure difference between inlet and
outlet cross-sections. A schematic description of the problem is shown in Fig. 1 with axisymmetric
cylindrical basis (ex, er, eφ). The suspending fluid and the fluid inside the vesicle membrane are
incompressible and Newtonian with dynamic viscosity η and η̄, respectively. We assume that the
Reynolds numbers for both interior and exterior fluids are sufficiently small compared with unity,
so that the inertial terms in the equations of motion may be neglected, the governing equations
thereby reduce to the Stokes equations for creeping motion. Under these circumstances, experi-
mental evidence [5] shows (and we will assume) that the flow and vesicle shapes are axisymmet-
ric and that a vesicle initially positioned at the tube axis will translate with a steady velocity V ex
(which is unknown a priori) along the axis of the tube.
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FIG. 1. Schematic illustration of a vesicle flowing along the centreline of a circular tube of radius R in a
pressure-driven flow. The system is rotationally symmetric about the x-axis. The boundaries of the control
volume (D) are the inlet and outlet sections I and O, the solid surface of the tube wall W , and the mem-
brane/medium interface Γ, i.e., ∂D ≡ I ∪ O ∪ W ∪ Γ. The vesicle shape and the gap size between the
membrane and the tube wall are denoted by h̄ and h(≡ R − h̄), respectively. The vesicle enclosed volume is
denoted by Ω.

In the absence of any vesicle, we obtain an unperturbed Poiseuille flow with a parabolic velocity
profile:

u∞(x) = 2U

(
1− r2

R2

)
ex, x ∈ D, (1a)

with U =
G0R2

8η
, ∆p0 =

8ηULw
R2

, R0
H =

8ηLw
πR4

, (1b)

where G0 is the negative (uniform) pressure gradient applied along a tube of length Lw, namely,
G0 = ∆p0/Lw, ∆p0 is the pressure difference or pressure drop required for the Poiseuille flow, and
R0
H is the hydraulic resistance (≡ ∆p0/Q).
The presence of a vesicle causes a change in the hydraulic resistance of the system (i.e., tube +

vesicle): it increases, meaning that to maintain the same volumetric flow rate πR2U , it is necessary
to increase the pressure difference by a quantity ∆p+ called extra pressure drop. Finding that extra
pressure drop, together with the vesicle shape deformation and its mobility, is the essential part of
the investigations in the present work.

In the creeping-flow regime, the motion of the fluid inside and outside the vesicle is governed
by the Stokes equations,

∇ · u = 0, ∇ · σ = −∇p+ η∇2u = 0, x ∈ D \ Ω, (2)

where u, σ and p denote the exterior fluid velocity, stress tensor and pressure, respectively. Similar
equations hold for the interior fluid velocity ū, stress tensor σ̄ and p̄ for x ∈ Ω. The fluid motion is
coupled with the interface motion via the kinematic boundary condition,

u(x) = ū(x) =
dx

dt
= uΓ, x ∈ Γ, (3)

where x is the membrane position. The dynamic boundary condition at the interface establishes a
nonlinear interaction between the ambient flow and membrane mechanics,

∆f + fm = 0, x ∈ Γ, (4)
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wherein we assume the membrane is in quasi-static mechanical equilibrium; the membrane force
density fm balances the net traction ∆f (≡ (σ− σ̄) ·n) exerted on the membrane by the bulk fluids.
Here and throughout this paper, the unit normal vector of a surface n is pointing inward into the
suspending fluid.

Additional boundary conditions for the velocity field include the no-slip condition at the tube
wall,

u(x) = 0, x ∈W, (5)

and vanishing far-field flow perturbation,

u(x) = u∞(x), x ∈ I ∪O. (6)

The velocity of the vesicle center of mass is given by

V =
1

Ω

∫
Ω

ūxd3x =
1

Ω

∫
Γ

x(uΓ · n)dS(x). (7)

The enclosed volume

Ω =

∫
Ω

d3x =
1

3

∫
Γ

(x · n)dS(x) (8)

is fixed, as the vesicle membrane is considered to be impermeable, at least on typical experimental
time scales. The axial coordinate of the vesicle center of mass is defined by

xG =
1

Ω

∫
Ω

xd3x =
1

2Ω

∫
Γ

x2(n · ex)dS(x). (9)

B. Membrane mechanics

A biomembrane is invariably a lipid bilayer, which is classically described as a two-dimensional,
incompressible fluid elastic. This means that there exist a surface tension and bending energy
associated with the ”out-of-the-plane” motions of the membrane. Its elastic energy due to the
Helfrich energy functional [37] is given by

E =

∫
Γ

[
2κH2(x) + γ(x)

]
dS(x), (10)

where κ (∼ 10−19 J) is the bending modulus, H is the local mean curvature (with the convention
that curvature is positif for a sphere), and γ is the membrane tension, which is, in fact, identical
with the Lagrange multiplier used to enforce the surface incompressibility condition,

∇S · uΓ = 0, x ∈ Γ, (11)

where ∇S = (I− nn) ·∇ is the surface gradient.
The membrane force density fm, by the principle of virtual work, is the variational derivative of

Eq. (10) with respect to small deformations of the surface [38],

fm = −δE
δx

= f b + fγ , x ∈ Γ, (12a)

with f b = 2κ
[
∆SH + 2H(H2 −K)

]
n, fγ = −2γHn + ∇Sγ, (12b)
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where f b denotes the bending surface force density, which is purely normal, fγ is the tension sur-
face force density, K is the Gaussian curvature, and ∆SH = ∇S · ∇SH is the Laplace-Beltrami
operator of the mean curvature, which contains the fourth derivative of the surface position, pos-
ing serious algorithmic and numerical challenges to compute the bending forces [39].

C. Dimensionless parameters

The volume Ω and surface areaA of a vesicle remain constant and define a volume-based radius
R0 ≡ (3Ω/(4π))1/3 and an area-based radius RA ≡ (A/(4π))1/2, respectively. Together with the
tube radius R, the system geometry is completely parametrized by two dimensionless parameters
which are independent of the flow conditions: the reduced volume ν (alternatively, the excess area
∆) and the confinement λ,

ν ≡
4
3πR

3
0

4
3πR

3
A

=

(
R0

RA

)3

= 6
√
πΩA−3/2, (13a)

∆ ≡ 4π

(
4πR2

A

4πR2
0

− 1

)
= 4π

(
1

ν2/3
− 1

)
, (13b)

λ ≡ R0

R
. (13c)

Here, we use the volumetric radius R0 as the reference length. The reduced volume (0 < ν ≤ 1)
or the excess area (∆ ≥ 0), characterizing the ability for the vesicle to deform and change shape,
is commonly used in the literature, and they are related to each other by (13b). The confinement
measures the size of the vesicle relative to the radius of the tube. Natural scales for velocities and
time are the mean velocity U of the ambient flow and R0/U , respectively. Pressure and hydrody-
namic stress are scaled by the typical viscous stress ηU/R0, and membrane tension is scaled by ηU .
The relative importance of membrane bending force density and viscous traction in the balance of
normal stress on the membrane (Eqs. (4) and (12b)) defines the bending-based capillary number
CaB ≡ ηUR2

0/κ. Finally, there is no viscosity contrast between the fluid inside and outside the
vesicle as we are interested in the stationary axisymmetric shapes which do not depend upon the
inner viscosity [34, 40]. Hence, the vesicle motion is determined by three independent dimension-
less parameters: the reduced volume ν, the confinement λ, and the (bending) capillary number
CaB. We note that while ν is a fixed quantity for a given vesicle, namely independent of which
reference length is used, the other two parameters depend on that length. However, solutions un-
der different scalings are easily converted from one to another in terms of ν and λ. For example,
the surface area-based confinement λA ≡ RA/R = λ/ν1/3, and the tube’s radius-based capillary
number CaR ≡ ηUR2/κ = CaB/λ

2. Occasionally, we nondimensionalize physical quantities using
the scalings of cited references in order to facilitate the comparison with those results.

III. BOUNDARY ELEMENT METHOD SIMULATION

The fluid-cell membrane interaction problem described in Sec. II is solved using an axisym-
metric boundary element method (BEM) [33], which is based on the numerical method for 3D
model [41], therefore, only the complementary information is provided below.

First, in view of the linearity of the Stokes equations, we decompose the total velocity field
around the vesicle into an undisturbed component u∞ and a disturbance component u+ due to
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the presence of the vesicle, namely, u = u∞ + u+. The disturbance velocity at a point x0 that lies
inside the control volume D or on its boundaries ∂D can be represented as a boundary integral
equation [18, 42],

u+(x0) = − 1

8πη

∫
∂D

G(x0,x) · f+(x)dS(x), (14)

where G is the free-space Green’s function, f+ ≡ σ+ · n is the disturbance surface traction. Since
the perturbation flow in tube generated by a point-force distribution decays exponentially with
distance from the vesicle [33, 43], if the inlet and outlet are sufficiently far from the vesicle, then
the flow perturbation near the inlet and outlet sections virtually vanishes. Furthermore, if we
consider axisymmetric flow configuration only, the surface integrals can be explicitly integrated
in the azimuthal direction with dS = rdφdl, where dl is the differential arc length of the trace of
the boundary ∂D in the x-r azimuthal plane [18, 33]. Finally, we obtain a more specific form to
Eq. (14), yielding the total velocity field as follows:

uα(x0) = u∞α (x0) +
1

8πη

[∫
Γ

Mαβ(x0,x)fmβ (x)dl(x)−
∫
W

Mαβ(x0,x)fwβ (x)dl(x)

+ p+
in

∫
I

Mαx(x0,x)dl(x)

]
, (15)

where the Greek subscripts α and β are either x or r, representing the axial and radial components
respectively. Here, x = xex + rer, M is the free-surface axisymmetric Green’s function [18, 33],
fw(≡ fwx ex + fwr er) stands for the disturbance stress distribution at the tube wall with the shear
stress fwx and the normal stress fwr (= −p+,x ∈W ), and p+

in the disturbance pressure over the inlet
while setting, without loss of generality, p+

out = 0 for the disturbance pressure over the outlet.
Application of Eqs. (5) and (15) leads to an additional integral boundary equation that allows

the calculation of the disturbance wall stress fw,

∫
W

Mαβ(x0,x)fwβ (x)dl(x) =

∫
Γ

Mαβ(x0,x)fmβ (x)dl(x)

+ p+
in

∫
I

Mαx(x0,x)dl(x), x0 ∈W. (16)

The extra pressure drop can be obtained using the reciprocal theorem [42] of the Stokes flow; it
is expressed in terms of the membrane load and the ambient velocity field,

∆p+ ≡ p+
in − p+

out = − 1

Q

∫
Γ

fm(x) · u∞(x)dS(x)

= − 4

R2

∫
Γ

r

(
1− r2

R2

)
fmx (x)dl(x). (17)

The membrane is discretized by Nm piecewise linear 2D elements, consisting of a collection
of points of {xn(t), n ∈ 0 . . . Nm}. The points are distributed according to the magnitude of the
membrane’s mean curvature H , thereby allowing the local mesh refinement in high-curvature re-
gions. This is important given large deformations of vesicles involved in flows. The mesh points
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at the tube wall, composed of Nw linear elements, are uniformly distributed. The differential sur-
face operators, which are involved in the calculation of surface incompressibility (11) and bending
forces (12b), are computed on each element of the membrane with a parametrization (Γ, φ) of the
surface.

Starting from some initial configuration of the vesicle shape, the preceding three integral equa-
tions, together with the membrane incompressibility condition (11), allow the computation of ∆p+,
fw, the interfacial velocity uΓ and the membrane tension γ at each time step via the boundary ele-
ment method, as described in [33, 41]. The vesicle translational velocity V is computed from (7).

The vesicle interface is advected according to

dx(t)

dt
= un(x)n(x), (18)

where x is an interface node and un = uΓ · n is given by (15). This means the movements of
the bilayers in the normal and tangential directions are treated differently, namely in Lagrangian
fashion for the former and with a Eulerian description for the latter. Indeed, the tangential move-
ment of nodes, which does not change the membrane shape, offers the possibility of a redistribu-
tion of nodes–remeshing along the membrane. At each time we employ a keeping-the center-of-
mass strategy that the vesicle is re-centered at the origin by subtracting the vesicle center of mass
(xG, 0) from the membrane position. Since this process, which is equivalent to replacing un by
u′n = un − V · n in (18), does not modify the stress field, the vesicle shape remains unchanged.
Equation (18) is solved numerically by a semi-implicit time stepping scheme [41] in which the
bending forces are computed at the advected, new position of the membrane and, therefore im-
proving long term stability of the algorithm. A steady state is obtained when the maximum ab-
solute normal velocity |u′n|/U is less than a chosen tolerance (∼ 10−5). The number of elements
Nm varies from 130 to 500, and Nw from 300 to 1500, depending upon the reduced volume ν and
the confinement λ. The tube has a total length of Lw = O(10R0), so the outlet and inlet sections
are located at a distance x = ±Lw/2 from the vesicle center of mass. The dimensionless time step
U∆t/R0 (∼ 5 × 10−3 − 5 × 10−5) decreases as ν decreases and as either Nm or λ increases. Since
both the volume and surface area of the vesicle are conserved, the change in the enclosed volume
and surface area during simulations provides an indication of the accuracy of the computations.
The relative volume and surface area variations were found to be ∼ 0.01% − 0.1% over a typical
full simulation (∼ 104 − 105 time steps).

TABLE I. Comparison of droplet relative velocity V/U and dimensionless extra pressure drop ∆p+/(ηU/R)
as a function of the capillary number Ca = ηU/γ for λ = 0.8 to those reported in Ref. [19].

V/U ∆p+/(ηU/R)
Ca Present work Ref. [19] Present work Ref. [19]
0.05 1.4218 1.42 2.6591 2.65
0.1 1.4543 1.45 2.2532 2.25
0.2 1.5311 1.53 1.4981 1.50
0.3 1.5999 1.60 1.0063 1.01
0.5 1.7021 1.70 0.4889 0.49

While several studies have already been conducted in [33] to validate the axisymmetric BEM
code, there is a need to check the numerical procedure that calculates the hydrodynamical quan-
tities like the relative velocity V/U and extra pressure drop ∆p+. This procedure, which is equiv-
alent to data post-processing, is independent of soft objects studied as long as the shape of the
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soft object and its interfacial velocity and stress are given (cf. Eqs. (7) and (17)). A simple way of
validating such a calculation seems to compare the well-known example of a (clean, surfactant-
free) drop in tube flow, for which very highly accurate numerical computations are available in
the literature (e.g., Ref. [19]). The motion of the drop is characterized by the capillary number
Ca = ηU/γ with γ constant surface tension. The axisymmetric BEM code has been accommodated
to simulate drop dynamics in tube flow in the following ways: (i) we set bending force f b = 0
while fγ = −2Hn/Ca (cf. Eq. (12b); (ii) surface-area incompressibility, i.e., Eq. (11) is no longer
used for drop dynamics because of a prescribed surface tension (or inversely the capillary num-
ber); and (iii) there is no viscosity contrast between inner and external flows. The motion of the
drop for given confinement λ is determined solely by the capillary number Ca. Our numerical
results are compared with those reported in Ref. [19]. The comparison in Table I shows excellent
agreement.

We also compared in Fig. 2 the present axisymmetric BEM simulations with the very recent
3D BEM simulations [25]. This comparison has not been properly made in Ref. [25] due to the
different scalings used in the two simulations. The corrected, new comparison (Fig. 2) shows a
better agreement between the predicted vesicle shapes but more pronounced differences in the
radial membrane stress. Such a large discrepancy is attributed to the different numerical schemes
adopted in the two simulations to compute the membrane tension γ. The present simulations
rigorously satisfying the surface-area incompressibility (i.e., Eq. (11)) resulted in a relatively large
membrane tension compared to the 3D BEM simulations, which is reflected in a slightly smaller
gap size between the vesicle surface and the tube wall (cf. Fig 2(a)). However, the vesicle velocity
and extra pressure drop in two simulations are not so much affected by that discrepancy as these
two quantities are governed by the vesicle shape and the axial membrane stress (cf. Eq. (17)).
Indeed, a comparison of the relative velocity V/U and extra pressure drop ∆p+ between the two
simulations shows a very good agreement (see, Sec. IV D).

Additionally, we have checked in two ways whether a numerical discretization, in terms of the
number of elements (of both Nm and Nw), was fine enough to sufficiently resolve the drainage
fluid of thin liquid film between the membrane and the tube wall: (i) can a stationary solution be
achieved ? and, most importantly, (ii) is the steady velocity ratio V/U larger than unity? An insuffi-
cient discretization was found to result in significantly large viscous and confinement-dependent
friction on the membrane and therefore a smaller velocity ratio V/U , which sometimes is much
less than unity. Under high confinement, especially for highly deflated vesicles (i.e., ν ≤ 0.7) when
λ approaches its critical value, a substantially large number of elements, say Nm = O(500) and
Nw = O(1500) for ν = 0.6, is needed to accurately resolve the vesicle shape and membrane trac-
tion. Our numerical experiments suggest an empirical relationship between the mesh size and the
film thickness h:

δxm ≈ h, δxw ≈ 1

2
h, (19)

where δxm and δxw denote a typical mesh size (i.e., element length) on the membrane and at the
tube wall, respectively, in the region of the liquid film.
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FIG. 2. Comparison of the present axisymmetric BEM simulations with the 3D BEM simulations of Ref. [25]
(figure 4, ν = 0.84, λA = 1.2, and CaR = β−1 = 100). This setting corresponds to λ = 1.132 and CaB =
128 in the present simulations. (a) Steady-state vesicle shape. (b) Dimensionless radial membrane stress
−fm

r R/(ηU) (Eq. (12)). (c) Dimensionless axial membrane stress −fm
x R/(ηU) (Eq. (12)).

IV. RESULTS AND DISCUSSION

A. Phase diagram of shapes and shape transition

In aqueous solution, lipid vesicles exhibit a large variety of shapes and shape transforma-
tions [29, 30], in particular, they can exhibit a biconcave shape typical of red blood cells. The
equilibrium shape of a vesicle is determined by minimization of the Helfrich energy (10) of the
membrane, resulting in different families of solutions with respect to the reduced volume ν. The
global minimum is for a prolate if ν ∈ [0.652 : 1], an oblate if ν ∈ [0.592 : 0.651], and a stomatocyte
if ν ∈ [0.05 : 0.591]. When confined in capillary tubes subject to a pressure-driven flow, how-
ever, vesicles assume complex shapes and behave in different ways due to the nonlinear interplay
between bending elasticity, hydrodynamic stresses, and confinement. For the axisymmetric case
being considered in this study, there are two commonly steady-state shapes which are classified
as bullet-like and parachute-like shapes, the latter being characterized by a concave (negative
curvature) rear part.

Figure 3 shows steady-state shapes for a vesicle of ν = 0.84 confined in a tube flow with unity
radius ratio (i.e., λ = 1) for increasing flow rates characterized by the bending capillary number
CaB. Two limiting cases are clearly illustrated in Fig. 3. One is no flow (CaB = 0), in which
the equilibrium shape – symmetric between the front and the rear – is determined solely by the



11

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4

Ca
B

=0

1

10

50

∞

r/R

x/R
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FIG. 4. Steady-state vesicle shapes as a function of the confinement λ for a wide range of reduced volumes ν
(CaB = 50): (a) ν = 0.98, (b) ν = 0.9, (c) ν = 0.8, and (d) ν = 0.6.

minimization of the bending energy. The other is CaB → ∞, which corresponds to an infinitely
small bending resistance. For this particular combination of parameter groups, the rear part of
the vesicle becomes almost flat (i.e., zero curvature). This result is interesting because, for a given
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FIG. 6. (a) Shape transition line from parachute (low limit in error bars) to bullet (up limit in error bars) in
the (ν, λ) space (CaB = 50). Vesicles are flowing from left to right. The two typical vesicles are characterized,
respectively, by ν = 0.95, λ = 0.8 and CaB = 5 for the bullet-like shape, and ν = 0.83, λ = 0.67 and CaB = 15
for the parachute-like shape. Insets show the comparison of the computed shapes (red line) with the reported
ones in an experimental study [5]. (b) The shape at the parachute-bullet transition of a vesicle with the same
typical deflation of red blood cells (ν = 0.6) flowing through a narrow capillary tube (λ ' 1.8).
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vesicle in a tube, its steady-state shape lies between these two limiting profiles. Another noticeable
feature is that when CaB ≥ 50, the shape is virtually independent of CaB. This property allows us
to fix CaB = 50 while studying the motion and deformation of a confined vesicle at high flow rates
(i.e., U/(2R) > 50 s−1) [1, 34]. A zero-bending elasticity or equivalently an infinity CaB is, however,
not permitted because of small radii of curvature occurring at the trailing edge, especially for
highly deflated vesicles.

Steady-state vesicle shapes for the reduced volume ranging from 0.98 to 0.6 are shown in Fig. 4
at different degrees of confinement. A near-spherical vesicle (i.e., ν = 0.98) always exhibits a
bullet-like shape, whereas shapes undergo a transition from parachute to bullet as the confinement
increases (i.e., large λ). The shapes with ν = 0.6, which are particularly relevant to red blood cells,
mark a transition starting from a bell shape and ending in a sphero-cylinder. Clearly, increasing λ
increases the length of the vesicle but reduces the size of the gap between the vesicles and the tube.
At high confinement, the vesicles tend to attain a sphero-cylinder consisting of a long cylindrical
main body and two hemispherical endcaps.

A phase diagram of steady-state shapes is presented in Fig. 5, together with experimental re-
sults of Ref. [36] obtained in a square cross-section channel. Increasing λ makes the transition
shifted towards lower values of reduced volume, which means a bullet-like shape is favored at
high confinement. The present numerical results are in good agreement with the experimental ob-
servations, suggesting the geometry of the channel might not affect too much the parachute-bullet
transition. Interestingly, there is a clear separation between the bullet region and parachute region
in the (ν, λ) space, as revealed in Fig. 6(a). Bullet-like and parachute-like shapes are identified ac-
cording to the curvature of the rear part of vesicles; a flat rear marks as a transition point in the (ν,
λ) space. Remarkably, the transition point decreases almost linearly with increasing confinement
when λ ≥ 0.6. A linear fitting to the transition points gives a correlation

νT = 1.126− 0.29λ, for ν ≤ 0.93, (20)

which are obtained at CaB = 50. A careful examination of numerical results suggests this re-
lationship is valid even for a small bending capillary number since steady shapes are virtually
independent of CaB under high confinement. The transition from a parachute shape to a bullet
one for a vesicle having the same reduced volume of red blood cells takes place at very high con-
finement, i.e., λT(ν = 0.6) ' 1.8. The shape at the transition point, as shown in Fig. 6(b), consists
of a long cylindrical body and a front endcap, leaving a narrow vesicle-wall gap of ∼ 7% of the
tube’s radius.

It is noticed that the parachute and bullet shapes can coexist around the phase boundary, the
question then arises as to whether the boundary depends on the initial shape (parachute or bullet).
In a previous study [33], it is confirmed that for large enough capillary numbers (i.e., CaB ≥ 50)
the initial shape (prolate or oblate) does not change the steady vesicle shape though it does affect
its dynamics during the transition. Here, we have also checked that the transition line does not
depend on the initial shape (parachute or bullet).

B. Critical confinement

Both the volume and surface area of a vesicle are conserved at least on the time scale of typical
experiments. These geometric constraints impose a critical confinement λc (≡ 2R0/dc) correspond-
ing to a lower limit dc to the diameter of the tubes through which the vesicle may pass intact.
Following Canham and Burton [44], the critical confinement is calculated by assuming that the
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two hemispherical endcaps are tightly fitting the tube cross-section; its relation with the reduced
volume ν is given by a cubic equation

2λ3
c − 3ν−2/3λ2

c + 1 = 0, (21)

whose solution is

λc =
1

2ν2/3

[
1 +

(
1− 2ν2 + 2ν

√
ν2 − 1

)1/3

+
(

1− 2ν2 + 2ν
√
ν2 − 1

)−1/3
]
. (22)

This critical confinement defines an upper limit `c to the reduced vesicle length ` (≡ L/R)

`c ≡
2Lc
dc

= 2ν−2/3λ2
c . (23)

We note that Eqs. (21) and (22) are identical to those put forward in Ref. [32] (equations 8.3-8.4) if
one replaces the volume-based confinement λ with the surface-based confinement λA = λ/ν1/3.

The variation of λc with ν ranging from 0.6 to 1 is plotted in Fig. 7 (this figure is similar to
figure 9 in Ref. [32]), together with the parachute-bullet transition line given by λT = 3.88− 3.45ν
(c.f., Eq. (20)). When λ > λc, the vesicle cannot pass through the tube without rupturing the
membrane. Assuming red blood cells have a typical volume Ω = 90 µm3, which gives a volumetric
radius R0 ' 2.8 µm, one then obtains a critical cylindrical diameter of normal human erythrocyte
dc = 2R0/λc ' 2.8 µm (λc ' 1.98 for ν = 0.6) and the maximum length of cells Lc ' 15.4 µm
(`c ' 11). This means that a normal human erythrocyte can squeeze through capillaries that are
smaller than half the diameter of a red blood cell (' 8 µm).
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FIG. 7. Critical confinement λc as a function of the reduced volume ν. Membrane lysis occurs when λ > λc.
The red line denotes the shape transition from parachute to bullet.

C. Lubrication film thickness

As shown in Fig. 4, under high confinement, a liquid film of nearly uniform thickness is formed
between the front and rear endcaps. Let h denote a typical film thickness of the gap separating
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the vesicle membrane and tube wall, the narrow-gap theory in the appendix yields an asymptotic
behavior of the clearance parameter δ(≡ h/R) in terms of a small perturbation parameter (1 −
λ/λc) << 1,

δ = 1− λ/λc +O
[
(1− λ/λc)2

]
. (24)

Numerical results of δ for ν ranging from 0.98 to 0.6 are plotted in Fig. 8 and compared with its
asymptotic behavior given by (24). Despite a wide range of the reduced volumes being considered,
Fig. 8 makes it clear that when 1 − λ/λc < 0.1 – namely in the small-gap regime, the numerical
results approach the prediction (24); minimal thickness are about 2–5% of the tube’s radius when
λ/λc ' 0.98.
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FIG. 8. The dimensionless thickness of the lubrication layer δ plotted as a function of the reduced radius ratio
λ/λc for a wide range of reduced volumes ν (CaB = 50), together with the asymptotic prediction (24).

As derived in the appendix, the film thickness is controlled by the membrane tension γ in the
lubrication layer. The clearance size is found to be proportional to the 2/3 power of the capillary
number Cav

δ ' c0Cav
2/3, (25)

where the vesicle tension-mobility-based capillary number Cav = ηV/γF , γF is the membrane’s
frontal tension, also the highest tension in the membrane. We note that the numerical prefactor
c0 differs slightly in the literature; c0 ' 2.123 in Ref. [34] while c0 ' 2.05 in Ref. [40]. A fitting to
the present numerical results yields c0 ' 2 for Cav < 10−2, as shown in Fig. 9. In addition, Fig. 9
reveals a characteristic change in power scaling from the 2/3 power regime for small Cav to the 1/2
power regime for large Cav. The separation of the two regimes occurs at Cav ' 6×10−3. Therefore,
our numerical results support one of the findings of Ref. [40] that the thickness of the lubrication
layer, at high flow rates, is independent of the bending energy and is determined solely by the
membrane tension. It should be emphasized that the 2/3 power law regime found in the case of a
long bubble in tubes [45] stems from the different underlying mechanisms compared to vesicles; a
stress-free surface for the former while a ”no-slip” hydrodynamic boundary condition for vesicles.
It is also important to point out that the vesicle tension-mobility-based capillary number Cav,
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which is based on an immeasurable tension, is not a controllable parameter unlike in the case for
droplets and bubbles, where the surface tension is a material property.

The mechanical tension of a membrane is identical with the Lagrange multiplier tension γ that
enforces a certain, fixed membrane area [46]. For the lipid bilayers, the rupture tension, which
represents the largest mechanical tension that can be applied to the membrane, is of the order of
a few mN/m. It is, therefore, interesting to examine whether our BEM simulations are indeed
able to predict a mechanical tension approaching that limit. For ν = 0.6 typical of red blood cells
and under the maximum possible confinement that we have reached, i.e., λ = 1.94 (λc ' 1.98), the
maximum dimensionless tension is found to be γmax ' 1.2×103, which gives rise to a dimensional
mechanical tension about 1.5 mN/m. Here the tension is scaled by γref = ηU = κCaB/R

2
0 =

1.28µN/m, with CaB = 50, κ = 2× 10−19 J and R0 = 2.8µm. The predicted mechanical tension at
the proximity of the maximum confinement is actually of the order of the rapture tension.

The reduced vesicle length ` is an important geometric parameter that characterizes the vesicle
deformation when flowing in a tube. It is also an easily accessible parameter in tube-flow exper-
iments. In addition, it was found that there is an upper limit to the reduced vesicle length, given
by Eq. (23). Figure 10 shows the normalized vesicle length `/`c as a function of the reduced radius
ratio λ/λc for a wide range of reduced volumes ν. It is quite clear that the simulated vesicle lengths
tend towards its limiting behavior as λ→ λc. The correlation

` = `c
λ

λc
= 2ν−2/3λ2

c

λ

λc
, (26)

suggests an estimated vesicle length for given ν and λ. It is also noticed that this relation gives a
more precise estimate of the length for less deflated vesicles. This is because the shape transition
point decreases with increasing confinement, as shown in Fig. 6(a). For comparison, the asymp-
totic theory of Ref. [32] showed that ` = `c+O(1−λ/λc) as λ→ λc, which is effectively equivalent
to Eq. (26) when λ = λc.
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D. Vesicle mobility and extra pressure drop

Vesicle mobility, measured in the relative velocity V/U , and dimensionless extra pressure drop
∆p+R0/(ηU) are the most important hydrodynamical quantities of interest. Especially, the di-
mensionless extra pressure drop is involved in the determination of the relative apparent viscosity
of a vesicle suspension in tube flow (see Sec. IV E). Unlike in an unperturbed Poiseuille flow in
which the mean flow velocity U is a linear function of the pressure drop ∆p0, V and ∆p+ are
strongly nonlinear coupled due to the vesicle’s deformation. Prediction of V/U and ∆p+R0/(ηU)
has been recently reported in Ref. [25] but limited to the reduced volume up to 0.7, presumably
due to the difficulty of dealing with the reduced volume of 0.6 in a 3D computation. The present
BEM simulations provide a whole range of these quantities in terms of the reduced volume ν and
the confinement λ, thus extending previous studies of vesicle hydrodynamics in tube flows. The
results are shown in Fig. 11 for the relative velocity and in Fig. 12 for the dimensionless extra pres-
sure drop, together with a comparison with those in Ref. [25]. It is clear that vesicles with ν = 0.6
(mimicking red blood cells) exhibit distinct features.

The relative velocity lies between 2 and 1. The former represents an infinitely small vesicle trav-
eling along the tube axis with the centerline maximum flow velocity, and the latter, for a tightly
fitting vesicle moving at the mean flow velocity as a ”piston” through the tube. The dimensionless
extra pressure drop, however, exhibits astonishing variations – six orders of magnitude. Under
weak confinement (i.e., small λ), the simulation results are in excellent agreement with the theo-
retical predictions for a small spherical droplet flowing along the centreline of a tube [47, 48], given
by

V

U
= 2− 4

3
λ2 +O(λ3), (27a)

∆p+R0

ηU
= 16λ6 +O(λ11). (27b)
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shows the analytical prediction for a small spherical droplet (27b). The dashed curves are the asymptotic
predictions for highly confined vesicles (28b). Also shown are the prediction of a lubrication model for red
blood cells [34] and the 3D BEM simulations of Ref. [25] (figure 11, ν = 0.9,CaB = β−1 = 50).

For instance, when λ < 0.5, the relative errors as compared to the theoretical predictions are less
than 1%, particularly for nearly spherical vesicles. The case of ν = 0.6 is an exception; a decreased
mobility and an enhanced pressure drop are clearly visible. These are attributed to the large defor-
mations inherent to the bell-shaped morphology (c.f., Fig. 4(d)). The experimental measurements
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of V/U reported in Ref. [5] are not shown herein for the comparison because the measured V/U
for vesicles in circular tubes with ν = 0.924–0.999 are scattered around the curve (27a).

As the confinement increases, the dimensionless groups V/U and ∆p+R0/(ηU) undergo a con-
siderable variation with the reduced volume. Such a high sensitivity to the vesicle’s deflation
stems from significant changes in vesicle deformations at increasing confinement. Indeed, for a
given vesicle, namely a given ν, increasing λ results in two combined effects: the vesicle tends to
become more elongated, forming a nearly uniform viscous film between the vesicle and the tube
wall, as shown in Fig. 4 and in Fig. 10, and the gap size becomes smaller, as illustrated in Fig. 8.
These two effects enhance the confinement-induced viscous friction on the vesicle surface, thus
increasing extra pressure drop across the vesicle, and hindering vesicle mobility. Note that, as
derived in the appendix, the shear stress exerted on the membrane is balanced by the tension gra-
dient in the membrane. This is in contrast with a clean drop (i.e., stress-free surface) transported
in a pressure-driven flow wherein there appears a plateau value of V/U and ∆p+R0/(ηU) as the
confinement increases. Comparisons of the present results with a lubrication model of Ref. [34]
for red blood cells are also shown in these two figures; very good agreements are found when
λ > 1.4. For smaller cells (i.e., small λ), the parallel-flow approximation of the lubrication model
produces relatively smaller values of V/U and higher values of ∆p+R0/(ηU), which is clearly vis-
ible in Fig. 11 but indistinguishable in Fig. 12 due to logarithmic scales used. When λ → λc, the
asymptotic theory of Ref. [32] produced, in our notation, the following predictions

V

U
= 1 +

4

3

(
3λ2

cν
−2/3 − 2

4λ2
cν
−2/3 − 3

)(
1− λ

λc

)
+O

[(
1− λ

λc

)2
]
, (28a)

∆p+R0

ηU
= 4λ

(
λ2
cν
−2/3 − 1

)(
1− λ

λc

)−1

+ λ

(
4
√

2π

4λ2
cν
−2/3 − 3

)(
1− λ

λc

)−1/2

+O(1), (28b)

The limiting behaviors are well captured in the simulations. We note that the numerical results
of V/U are slightly less than those predicted by the theory as λ→ λc, and the discrepancy becomes
visible at low reduced volumes, particularly at ν = 0.6. Two potential reasons might explain the
discrepancy shown in Fig. 11 between the asymptotics and numerics. Firstly, it may be due to the
assumed fore-aft symmetry of a sphero-cylindrical shape when calculating the critical confinement
λc. The frontal endcap is relatively smaller than the rear endcap due to an outward bulge there,
as shown in Fig. 16, resulting in a slightly larger theoretical λc. The outwardly bulging endcap
becomes noticeable with increasing vesicle’s deflation, leading to a more marked discrepancy at
low reduced volumes. The second reason may be a simple numerical issue (despite we have
checked all simulations with higher resolution, the numerical results remain unchanged) since the
comparison between numerics and asymptotics presented in Ref. [25] shows no such discrepancy.
Further work is still needed to clarify this issue.

Another noticeable feature is a sudden change of slope in V/U ; it becomes visible for ν = 0.8 and
0.7, and that feature is quite noticeable for ν = 0.6. This change in slope was also pointed out for
ν = 0.7 in the 3D BEM simulations [25]. It is found that the points where the curves of V/U vs. λ
display a remarkable change in slope correspond exactly to the parachute-bullet transition points
in the (ν, λ) space, as discussed above. This result is not surprising given that vesicle mobility is
dictated by the vesicle shape and its interplay with the surrounding fluid. Indeed, the competition
between geometric constraints and confinement-induced viscous friction determines the speed at
which a vesicle is transported in a pressure-driven flow.

When λ → λc, the asymptotic theory of Ref. [32] shows a scaling of the dimensionless extra
pressure drop ∆p+R0/(ηU) ∼ O(λ`/δ); the dimensionless extra pressure drop is proportional to
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the reduced vesicle length but inversely proportional the clearance size. The compilation of the
present simulation results allows a precise correlation ∆p+R0/(ηU) ' 3/2(λ`/δ), as illustrated in
Fig. 13. This is a significant improvement, given that a wide range of reduced volumes is involved.
More importantly, this correlation holds implications that may help devise and interpret tube-flow
experiments. Specifically, based on the vesicle length and its translational velocity which are the
most easily accessible quantities in experiments, the simulated results presented in Figs. 10 and
11, together with scaling laws obtained from this study allow an estimate of the reduced volume ν
(hence λc) and the film thickness, from which the dimensionless extra pressure drop ∆p+R0/(ηU)
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can be inferred. Directly measuring these parameters is no simple task. It often requires advanced
imaging methods and instrumentation, with an added difficulty arising from the fact that the
extra pressure drop is highly sensitive to the reduced volume. The estimated extra pressure drop
should be contrasted with Fig. 12 for consistency. An iterative process may be required to obtain
a consistent result. Finally, an estimate of the maximum tension in the membrane can also be
obtained using the scaling laws shown in Fig. 9.

Before closing this subsection, we highlight the strong coupling behavior in the dimensionless
groups ∆p+R0/(ηU) and V/U . Even for a vanishing small spherical droplet, Eqs. (27a) and (27b)
give a highly nonlinear relationship

∆p+R0

ηU
=

27

4

(
2− V

U
(λ)

)3

+O(λ3). (29)

The theoretical prediction is shown in Fig. 14, where the dimensionless pressure drop ∆p+R0/(ηU)
is plotted against the reciprocal of the relative velocity V/U . The reason for using (V/U)−1, in-
stead of V/U , is quite simple and it is to illustrate how the coupling behaves as the vesicle size
– equivalently the confinement for a given tube diameter – increases. While both the relative
velocity and dimensionless extra pressure drop are notably sensitive to the reduced volume as
the confinement increases, Fig. 14 makes it clear that the sensitivity becomes relatively weaker
as compared to Fig. 12. Nevertheless, finding a correlation between the dimensionless groups
∆p+R0/(ηU) and V/U , under high confinement, is by no means trivial because ∆p+R0/(ηU) di-
verges like (1− λ/λc)−1. So here we put forward only a fitting to ν = 0.6, given by

∆p+R0

ηU
' 3× 10−6 exp

[
20

(
V

U

)−1
]
. (30)

We conclude that the dimensionless groups ∆p+R0/(ηU) and V/U are strongly nonlinear coupled
in tube flows. However, it is worth emphasizing that both the pressure drop and velocity ratio are
measured quantities; neither are controlled parameters.

E. Implications for the rheology of dilute red blood cell suspensions

The hematocrit measures the volume of red blood cells (RBCs) compared to the total blood
volume (red blood cells and plasma). Its normal value in humans is approximately 45% but can
be largely less in small vessels. Consider now the hematocrit, denoted by HT , in a capillary of
length L, and assuming RBCs flow in single file through the capillary with a characteristic length
lv between two neighbors (i.e., the distance between their centers of mass), then the ratio L/lv is
the number of RBCs inside the capillary, the total volume of the RBCs is (L/lv)Ω (Ω the volume
of a single RBC) and the hematocrit HT equals to (ΩL/lv)/(πR

2L), which gives a mean distance
between RBCs

lv =
Ω

πR2HT
. (31)

Poiseuille’s law defines an apparent viscosity in terms of the overall pressure drop across the
capillary tube

ηapp =
(
∆p0 + ∆p+

) πR4

8LQ
= η +

R2

8UL
∆p+. (32)
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We then obtain, by setting L = lv ,

ηapp = η

[
1 +

3

32

(
R

R0

)4(
R0

ηU
∆p+

)
HT

]
= η(1 +KTHT ), (33)

where the dimensionless parameter KT is called apparent intrinsic viscosity. This single-file flow
model allows recovering an apparent viscosity which depends linearly on the local hematocritHT ,
as in a lubrication model for red blood cells [34]. In capillaries with diameters up to about 8 µm,
the single-file flow model is appropriate as RBCs frequently flow in single file and interactions
between cells may be negligible.

Finally, the apparent intrinsic viscosity is given by

KT = 9.53× 10−5d4

(
R0

ηU
∆p+

)
, for d > dc, (34)

where d denotes the diameter of tubes, dc the critical diameter (' 2.8 µm) (c.f., § IV B). The di-
mensionless extra pressure drop ∆p+R0/(ηU) for ν = 0.6 is plotted in Fig. 12 as a function of the
confinement λ = R0/(d/2) with R0 ' 2.8 µm. Relative apparent viscosity which is the ratio of
apparent viscosity to suspending medium viscosity can be written in terms of tube diameter d in
µm, dimensionless extra pressure drop, and hematocrit HT as

ηrel =
ηapp

η
' 1 + 9.53× 10−5d4

(
R0

ηU
∆p+

)
HT , d in µm. (35)

 1

 2

 3

 4

 5

 6

 7

 2  4  6  8  10  12  14

Present simulations
RBC theory
Asymptotic

Empirical equation
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FIG. 15. Variation of relative apparent blood viscosity ηrel with tube diameter d in µm for a hematocrit HT

of 0.45. Curve –H– represents simulation results based on single-file fluid model, and curve –N– represents
lubrication model of RBCs [34]. Dashed line in blue shows asymptotic theory for dimensionless extra pressure
drop [32] (Eq. (28b)). Solid curve in cyan represents a fitting empirical equation to in-vitro experimental
data [1]. Also shown is the spectral 3D BEM simulations of Ref.[28] (for HT = 0.30). The vertical line (black)
indicates a lower limit (dc ' 2.8 µm) to the diameter of tubes beyond which normal red blood cells cannot
pass through without rapture.



23

As an example, simulated relative apparent viscosity with a hematocrit of 0.45 as a function of
tube diameter is shown in Fig. 15. There is a small decrease in ηrel as the tube diameter increases
when d ≥ 5 µm (i.e., λ ≤ 1.11). The value of ηrel for d = 5.6 µm (λ = 1) is slightly less than 2% of the
value for d = 5 µm. At smaller diameters, say d < 4 µm, relative apparent viscosity rises rapidly
and becomes substantially higher as the tube diameter approaches the critical diameter dc. The
dramatical rise is attributed to a significantly large resistance to flow as reflected from the behavior
of extra pressure drop at nearly maximum confinement. This feature is remarkably captured in
the asymptotic theory of Ref. [32] for the tube diameters less than 3.5 µm. The numerical results
are compared with those obtained from a lubrication model of red blood cells at high shear rates
(U/d > 50 s−1) [34]. It is shown that apparent viscosity is almost independent of flow rate in
this regime but increases with decreasing flow rate at lower shear rates [1, 34]. At a bending
capillary number CaB = 50, our BEM simulations always lie in a high-flow-rate regime as an
estimate of U/d = κCaBλ/(2ηR

3
0) > 50 s−1 even at a very weak confinement λ = 0.3. While

the model of Ref. [34] includes a shear elasticity of the RBC membrane but neglects the bending
elasticity, our numerical predictions of ηrel are in excellent agreement with the lubrication theory
when d ≤ 4 µm. Indeed, under high confinement, bending resistance has a negligible contribution
to the hydrodynamic force balance; the isotropic tension in the membrane (see Appendix) resists
the flow in the lubrication layer. When d > 5 µm, the parallel-flow approximation of Ref. [34]
yields relatively higher values of ηrel as compared to our BEM simulation results. As shown, the
present simulation results are also in very good agreement with the spectral 3D BEM simulations
reported in Ref. [28] except at a very small tube diameter.

Based on a compilation of in-vitro experimental data, an empirical equation describing the de-
pendence of relative apparent viscosity on tube diameter has been put forward in Ref. [1] and is
also plotted in Fig. 15. Given the paucity of experimental measurements in the range of smaller
tube diameters, we may say that the predicted relative apparent viscosities are in reasonable agree-
ment with experimental data for tube diameters ranging between 2.9 and 14 µm. Nevertheless, it
should be mentioned that while the present single-file vesicle model provides some insight into
how apparent blood viscosity behaves for tube diameters in the range of ∼ 2.8–14 µm, the model
due to its axial symmetry nature is not able to make reliable predictions for tube diameters beyond
that range as the confinement (λ < 0.4) becomes too weak for vesicles to preserve axisymmetry.
Also, the limitation of a single-file flow model (i.e., d < 8 µm) makes the model unreliable for the
prediction of relative apparent viscosity for larger tube diameters; the simulated results presented
in Fig. 15 for tube diameters larger than 8 µm are for illustrative purposes only.

V. SUMMARY AND CONCLUDING REMARKS

We have presented a numerical investigation of the motion and deformation of a vesicle freely
suspended inside a circular tube in a pressure-driven flow. The numerical simulations of this fluid-
structure interaction problem have been carried out by using a previously reported axisymmetric
boundary element method. The results were presented for the reduced volumes ν ranging from 0.6
(i.e., red blood cell-mimicking vesicles) to 0.98 (i.e., nearly spherical vesicles) at different degrees
of confinement, up to near its critical value λc. The critical confinement of a vesicle in cylindrical
tube flow, as well as its critical length `c, was calculated on the basis of its physical constraints
of fixed volume and surface area while assuming the fore-aft symmetry of a sphero-cylindrical
shape.

The numerical results allowed us to build a phase diagram of vesicle shapes in good agree-
ment with the most comprehensive experimental data reported in the literature [36] . Carefully
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controlled simulations let us establish a linear shape transition line separating the two commonly
observed shapes, namely parachute-like and bullet-like shape regions in the (λ, ν) space. We found
that the shape transition is accompanied by a change in the behavior of the mobility of vesicles,
especially for low-reduced-volume vesicles (i.e., ν ≤ 0.7). The present work focused on highly con-
fined vesicles, which required high-resolution simulations to accurately compute vesicle shapes,
membrane traction, and wall resistance. These simulations enabled us to examine the limiting
behavior of several quantities of interest when λ → λc, particularly the vesicle mobility V/U and
the dimensionless extra pressure drop ∆p+R0/(ηU) due to the presence of the vesicle in the tube.
Our numerical results lend support to a recently reported asymptotic theory [32].

Aiming to help interpret the numerical results when the confinement approaches its critical
value, we have also presented a lubrication theory combining two approaches described in the
literature. While the balance between viscous, bending and tension forces controls the vesicle
motion and deformation, we showed that bending elasticity plays a minor role in the force balance
in the lubrication layer. It is the tension gradient along the membrane that resists the confinement-
induced viscous friction, thus controlling the size of the gap between the tube wall and the vesicle
surface. We found that the maximum membrane tension in RBC-like vesicles at the proximity of
the critical confinement is on order of ∼ 1 mN/m – which approaches the rupture tension. We
should point out that several previous studies (e.g., Refs. [25, 32, 34, 40]) have concluded that
bending resistance has a secondary effect on the film thickness at high flow rates.

Based on a single-file flow model, an attempt has been made to predict the rheology of dilute
red blood cell suspensions. Simulated relative apparent viscosity of a vesicle suspension in small
capillary tubes yielded a consistent and complementary result as compared with experimental
data and highlighted the role of confinement in the rapid rise in the relative viscosity of red blood
cells when passing through small vessels. There is, however, a severe limitation to such a model
since it is relevant only for capillary diameters up to about 8 µm.

Being able to deal with a wider range of reduced volumes, the present BEM simulations extend
previously published studies on the hydrodynamics of a vesicle in tube flows and elucidate the
intricate interplay between the deformation of the vesicle and its mobility. The numerical results,
together with various correlations gained, may help to predict some parameters that are difficult
to measure in tube-flow experiments. For instance, the extra pressure drop, which is the most
relevant parameter for the rheology of a dilute suspension of vesicles, can be inferred from the
easily accessible parameters, such as the vesicle velocity and its length. It is our hope that the
results presented in this paper could serve as a benchmark for future studies and help devise and
interpret tube-flow experiments.

We acknowledge that despite the conclusions from the present study, there is one major sim-
plifying assumption that will need to be revisited in future work. We limited our model to ax-
isymmetric shapes, while it may be true in highly confined capillary flow, vesicles exhibit non-
axisymmetric shapes as well [4, 35, 36, 49]. In their 3D BEM simulations, Barakat and Shaqfeh [25]
highlight the emergence of asymmetric and time-dependent vesicle shapes in tube flow, especially
at low confinement and low reduced volumes. The 3D simulations of Zhao et al. [28] of RBCs in
tube flow also show that RBCs break axisymmetry. Future studies will involve performing fully
three-dimensional computer simulations of confined vesicles. These simulations will provide a
more complete picture of vesicle shape diagrams and unveil its complex dynamics in confined
channel flow.
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Appendix: Lubrication theory

We combine previously reported results in the literature [25, 32, 34, 40, 50] to present an ax-
isymmetric form of lubrication theory for a vesicle in tube flow. Our aim is not to numerically
resolve the complete system of governing equations of the lubrication theory, as it was generally
conducted by those authors. Instead, we make use of some asymptotic scaling laws established
via lubrication theory analysis to help interpret the present simulation results when confinement
is close to its maximum value (i.e., λ → λc). The following paragraphs are an attempt to com-
bine two approaches, one is based on parallel-flow approximation [25, 34, 40], the other is the
small-gap theory in the singular limit λ → λc [32]. Starting from the well-established theories de-
veloped in [50, 51], we show that the two approaches lead to the same asymptotic behavior of the
film thickness and vesicle velocity in the limit λ→ λc, and the film thickness is further controlled
dynamically by the membrane tension.

R

ū = 0, p̄ = 0

u(r), p(x)
u = �V

er

ex
h̄

L0

FIG. 16. Schematic of lubrication theory analysis for a steady, sphero-cylindrical vesicle moving along the
axis of a circular tube of radius R. In a coordinate frame moving with the vesicle, there can be no flow and
pressure gradient inside the vesicle. The vesicle has a cylindrical main body with a length L0, assumed large
compared to R. Plotted vesicle profile corresponds to a vesicle shape for ν = 0.6, λ = 1.92 and CaB = 50
(shown in Fig. 4(d)); the tube wall is placed at more than 20% away from its actual place in order to amplify
the width of the gap between the vesicle and the tube wall.

A schematic description of lubrication theory analysis is shown in Fig. 16. The shape of the
membrane is described by r = h̄(x), and the gap separating the vesicle membrane and tube wall
has a typical film thickness h, which is defined at the vesicle’s midplane, namely h ≡ R − h̄(0).
At this stage, we assume that the thickness is small compared to the vesicle length L (but not
necessarily small relative to the tube radius), as it is usually the case with high confinements (e.g.,
as illustrated in Fig. 4). In the reference frame moving with a steady vesicle centered along the axis
of the tube, the axial symmetry of the problem and the incompressibility of the vesicle membrane
lead to

• the fluid inside the vesicle is stationary with no pressure gradient (for simplicity we set p̄ = 0)
and behaves like a rigid-body (ū = 0);
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• the viscous normal stress on the membrane vanishes so that the net normal traction on the
membrane is the hydrostatic pressure difference between the internal and external flows
p̄− p, which is equivalent to be −p;

• the net shear traction is the viscous shear stress τ due to the external fluid.

Then, in the lubrication approximation, the pressure p in the lubrication layer depends only on the
axial position x, and the axial velocity field u is governed by the axial momentum equation and an
equation of continuity

η

r

∂

∂r

(
r
∂u

∂r

)
=

dp

dx
, (A.1a)∫ R

h̄(x)

2πurdr = πR2(U − V ) ≡ −2πRq, (A.1b)

subject to boundary conditions

u = −V at r = R, (A.2a)

u = 0 at r = h̄(x), (A.2b)

where q (= 1
2R(V −U)) represents a rate per unit circumference of leakback of fluid past the vesicle.

Equations (A.1) with boundary conditions (A.2) yield the Reynolds lubrication equation [51] for
the pressure gradient in terms of the azimuthal radius of curvature r(x) = h̄(x):

dp

dx
= − 8ηU

R2 (1− (r/R)2)

[(
1− (r/R)2

2 log(r/R)

)
V

U
− 2q

RU

] [
1 + (r/R)2 +

1− (r/R)2

log(r/R)

]−1

. (A.3)

The shear stress exerted on the membrane due to the ambient flow is then given by

τ(r) ≡ η ∂u
∂r

= −1

4

dp

dx

[
2r +

R2 − r2

r log(r/R)

]
+

ηV

r log(r/R)
. (A.4)

The normal and shear stress boundary conditions (4), together with (12), respectively, can now
be approximated by

− p = −2κ

[
1

gs

d

dx

(
r2

gs

dH

dx

)
+ 2H(H2 −K)

]
+ 2γH, (A.5)

τ = − r

gs

dγ

dx
, (A.6)

where gs = r
√

1 + (dr/dx)2 is the surface metric. The mean and Gaussian curvatures can be
written in terms of r(x) and its derivatives:

H =
1

2
(c1 + c2), K = c1c2, (A.7a)

with c1 =
1

gs
, c2 = − r

3

g3
s

d2r

dx2
. (A.7b)
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Equations (A.3)–(A.6), together with the usual symmetry conditions at the front nose of the
vesicle x = L/2 and at the rear tail of the vesicle x = −L/2, are solved numerically in [25, 34]. It is
shown that the above axisymmetric lubrication equations yield effectively good approximations
to the Stokes flow of a vesicle inside a circular tube if the membrane slope |dr/dx| is sufficiently
small.

To gain insight into the situation of narrow gaps, we now make an additional assumption that
the thickness of the lubricating film between the membrane and inner tube wall is small relative to
the tube radius. In this case, the leakback is also small compared with the total flow. Introducing
a small parameter

ε ≡ 2q

UR
=
V

U
− 1� 1, (A.8)

and a rescaled film thickness h∗ such that

r = R(1− εh∗), (A.9)

we obtain approximate solutions for the pressure gradient and shear stress [50, 51] and their sim-
plified forms in a lubrication layer of uniform thickness (h) with a pure shear flow:

dp

dx
= − 6ηU

(Rεh∗)2

[
V

U
− 1

h∗
+O(εh∗)

]
= −6η

h2

[
V − 2q

h
+O(ε)

]
, (A.10a)

τ =
ηU

Rεh∗

[
2
V

U
− 3

h∗
+O(εh∗)

]
=

2η

h

[
V − 3q

h
+O(ε)

]
. (A.10b)

Hence, in this approximation, equations (A.10a) and (A.10b) show that

h∗ = 1 +O(ε), h/R = ε+O(ε)2. (A.11)

The range of validity of such a narrow approximation can be estimated from the balance of the
axial forces on the vesicle, requiring in some average sense, dp/dx < 0 and τ < 0. This means that
the film thickness must lie in the following range:

2q/V < h < 3q/V, (A.12a)

or equivalently 1− U

V
< δ ≡ h/R <

3

2

(
1− U

V

)
, (A.12b)

for the clearance parameter δ. We will see that such conditions are always satisfied when λ→ λc.
Since we are mostly interested in the asymptotic behavior of quantities of interest established via

a narrow-gap analysis, we consider the configuration close to maximal confinement (i.e., λ → λc)
in which a cylindrical vesicle with hemispherical ends is formed, nearly fitting the tube cross-
section, as shown in Fig. 16. In this limit, a pure geometric consideration – constraints of vesicle
surface area and enclosed volume – which are fixed, leads to an expansion for the clearance pa-
rameter δ [32]:

δ = 1− λ/λc +O
[
(1− λ/λc)2

]
. (A.13)

Using Eq. (A.8) in Eq. (A.11) gives an asymptotic behavior of the vesicle mobility, measured in the
relative velocity

V/U = 1 + (1− λ/λc) +O
[
(1− λ/λc)2

]
. (A.14)
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This prediction is the same as in the small-gap theory [32] when λ→ λc.
While these two asymptotic expansions are helpful to interpret the present numerical results

regarding the film thickness and vesicle mobility, it remains unclear how the clearance parameter is
precisely controlled dynamically by a quantity, such as hydrodynamic pressure p in the lubrication
layer or the membrane tension γ. To this end, by using (A.10), we further simplify the normal and
shear stress boundary conditions, equations (A.5) and (A.6), which can be approximated by

p =
κ

2R3
− γ

R
, (A.15a)

dγ

dx
= −τ = −2ηV

h
+

6ηq

h2
, (A.15b)

with q =

(
6ηV

h2
+

dp

dx

)
h3

12η
. (A.15c)

We then obtain a simple expression for the membrane tension gradient in the lubrication layer
region

dγ

dx
=
ηV

h
+O(1), (A.16)

thereby indicating that the thickness of the lubrication layer is inversely propositional to the ten-
sion gradient in the membrane. That equation gives

γ(x) = γR +
ηV

h
x (A.17)

with γR denoting the membrane tension of the rear endcap. Therefore, the tension of the vesicle
increases linearly with distance and has a higher tension γF at the frontal endcap. The pressure in
the lubrication layer, however, decreases with distance according to Eq. (A.15a). The pressure and
membrane tension both are of the order of ε−1 and, therefore bending resistance has a negligible
contribution to the hydrodynamic force balance in the lubrication layer. The rear tension γR of the
vesicle is negligibly small compared to its frontal counterpart γF [34, 40] – the rear portion of the
vesicle is nearly tensionless, we may estimate the frontal tension for the cylindrical portion having
a length of L0 (' L− 2R, when λ→ λc)

γF '
ηV

δ
(L0/R). (A.18)

A further overall asymptotic solution of Eqs. (A.15) near the front end of the vesicle has shown [34,
40] as

γF ' ηV (δ/c0)
−3/2

, (A.19)

where c0 is a constant. Finally, the clearance parameter is found to be controlled through a dynam-
ical parameter – the vesicle tension-mobility-based capillary number Cav = ηV/γF

δ ' c0Cav
2/3. (A.20)

The numerical prefactor c0 differs slightly in the literature; c0 ' 2.123 in Ref. [34] while c0 ' 2.05
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in Ref. [40].
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