

Behaviour of Two Products Containing Film Forming Amines (FFA) in the Secondary Circuit Physico-Chemical Conditions of the Pressurized Water Reactor (PWR)

Marion Roy, D. You, V. Mertens Department of Physico-Chemistry

R. Lecocq, L. Verelst, ENGIE Laborelec, Belgium

S. Delaunay, J. Tireau, EDF Lab, Les Renardières J.L. Bretelle, Power Generation Division

Prague, 20-22 March 2018

International Conference on Film Forming Substances

cea	Industrial Context	Objectives O	Experimental Part 000	Results & Discussion 000000	Conclusions O
SACLAY					2/15

INDUSTRIAL CONTEXT

- Lay-up of the secondary circuit of nuclear power plants (PWR)
- Secondary circuit chemistry: CHALLENGES
 - Health-environment: decrease the use of hydrazine
 - Safety: blockage and fouling limited
 - Cost: lay up implementation and follow up simplified
 - ...

Propertie of CEA, EDF & ENGIE, do not disclose without the prior written consent of the parties

cea	Industrial Context	Objectives O	Experimental Part 000	Results & Discussion	
					3/15

EXPECTED EFFECTS OF FFA

Protection against corrosion of all the secondary circuit (steam and liquid parts) during lay-up

Ramminger et al. 2012 Wagner et al. 2014 Anghel et al. 2014

 \Rightarrow Formation of a **protective and hydrophobic** film \Rightarrow Heat transfer performance seems to be improved

FFA INJECTION

- short duration / intermediate duration / continuous
- during normal operations, before lay up
- in the feedwater before the steam generator

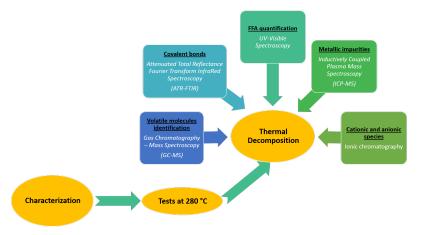
cea	Industrial Context	Objectives	Experimental Part 000	RESULTS & DISCUSSION	Conclusions O
SACLAY					4/15

OBJECTIVES OF THIS STUDY

Study of the behaviour of 2 products containing FFA

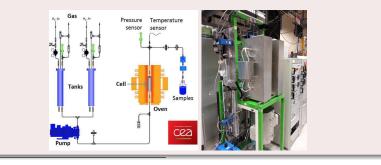
1- Odacon[®] (Reicon) Main FFA: C₁₈H₃₇NH₂ (ODA)

2- Cetamine[®] (Kurita)


Main FFA: C₁₈H₃₅NHC₃H₆NH₂ (OLDA)

 $\Rightarrow \text{ Evaluate the stability of the FFAs} \\ \Rightarrow \text{ Identify the decomposition products}$

Propertie of CEA, EDF & ENGIE, do not disclose without the prior written consent of the parties


SAME METHODOLOGY FOR ODACON[®] AND CETAMINE[®]

cea	Industrial Context	Objectives O	Experimental Part	Results & Discussion 000000	Conclusions O
	Methodology Device	Conditions			6/15

EXPERIMENTAL TEST DEVICE

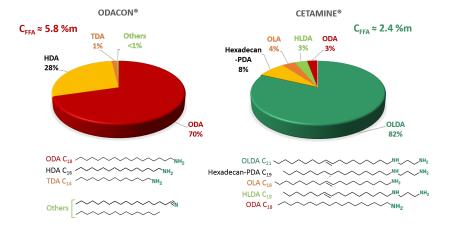
- Specific device (GROZIE):
 - One-pass circulation system <=> the solution is constantly renewed
 - $(t_{residence} = \rho(T) V_{cell} / Q_L)$
 - Or no circulation
- Designed to work in a one phase flow 25 < T(°C) < 360 and 0.1 < P(MPa) < 20

cea	Industrial Context	Objectives O	Experimental Part	Results & Discussion 000000	
SACLAY	Methodology Device	Conditions			7/15

Experimental Conditions \sim physico-chemical conditions of the secondary circuit

Product	Duration		Т	Р	pН	C _{ETA}
-	-	mg.kg ⁻¹	°C	10 ⁶ Pa	at 25 °C	mg.kg ⁻¹
Odacon®	20 min	32	280 ± 1	10 ± 0.2	9.8 ± 0.1	3.5
Ouacon	1 week	38		10 ± 0.2		3.5
Cetamine®	20 min	109	280 ± 1	10 ± 0.2	9.8 ± 0.1	-
Getamine	1 week	104	200 ± 1	10 ± 0.2		-

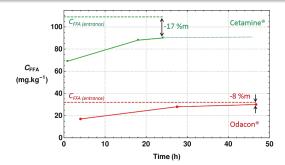
PH is adjusted at 25 °C with diluted ammonia


MEASURED PARAMETERS

• T, P

• C_{FFA} by UV-visible spectroscopy

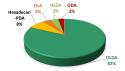
Characterization of the 2 FFA mixtures


 \rightarrow No detection of metallic and ionic impurities in the 2 products except traces of Na in the Odacon $^{\textcircled{B}}$

Propertie of CEA, EDF & ENGIE, do not disclose without the prior written consent of the parties

THERMAL STABILITY OF THE STUDIED FFAs (1/2)

• After 20 min of residence time at 280 °C


 $\Delta C_{FFA} = -8 \% m \Leftrightarrow 2 \text{ mg.kg}^{-1}$ adsorbed on the cell surface \Rightarrow no thermal decomposition of FFA in Odacon[®] $\Delta C_{FFA} = -17 \% m + 3 \text{mg.kg}^{-1}$ adsorbed on the cell surface

 \Rightarrow 14 %*m* of FFA seems to be decomposed

- For the Cetamine[®]

With the UV-visible spectroscopy analysis method: Measured absorbance \approx OLDA absorbance

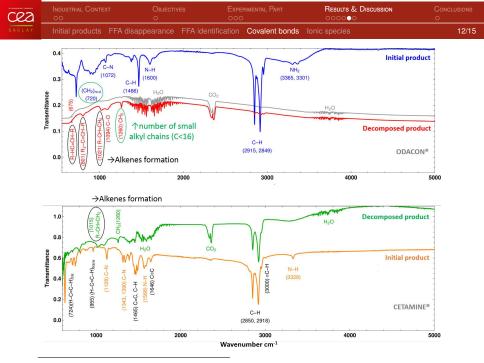
 \Rightarrow 7 %*m* of FFA were thermally degraded (not detected by the analyses) OR

 $\Rightarrow \Delta C_{FFA} \approx 0 \text{ (14 \% m of FFA not detected by the analyses)}$ but OLDA was decomposed in other FFAs

Thermal stability of the studied FFAs (2/2)

• After **1 week** of residence time at 280 °C $\Rightarrow \Delta C_{FFA} = -76 \% m$ for the test with Odacon[®] $\Rightarrow \Delta C_{OLDA} = -84 \% m$ for the test with Cetamine[®]

cea	Industrial Contex	ст Овјестіл О	VES EXPERIMENTAL PART 000	RESULTS & DISCUSSION	
	Initial products	FFA disappearance	FFA identification Covalent bonds	lonic species	11/15


FFA IDENTIFICATION IN THE THERMALLY DEGRADED SOLUTION

Analytical method: Gas Chromatography Mass Spectroscopy (GC-MS)

- Odacon[®]
 - → Detection of ODA and HDA (∈ initial product)
 - → Disappearance of TDA
- Cetamine[®]
 - \rightarrow Disappearance of the main FFA: OLDA
 - \rightarrow \uparrow of OLA and ODA proportions
 - \rightarrow Formation of HDA

 \Rightarrow Consistent with the decomposition of OLDA in FFAs with shorter alkyl chains.

Propertie of CEA, EDF & ENGIE, do not disclose without the prior written consent of the parties

cea	Industrial Conte	xt Objectiv O	ies Expe ooc		Results & Discussion	
SACLAY	Initial products	FFA disappearance	FFA identification	Covalent bonds	Ionic species	13/15

IONIC SPECIES

Analytical method: lonic chromatography

After 1 week of residence time at 280 °C

 Formation of ammonia NH⁺₄ for both products
⇒ Consistent with the detection of alkenes R-CH=CH₂ with ATR-FTIR spectroscopy analysis

NH₂ NH₂ NH₂

 Formation of carboxylates, mainly acetate CH₃COO⁻ only for Cetamine[®]

Propertie of CEA, EDF & ENGIE, do not disclose without the prior written consent of the parties

cea	Industrial Context	Objectives O	Experimental Part 000	Results & Discussion	Conclusions
					14/15
	Conclusions				

- For <u>20 min residence time</u> in the physico-chemical conditions of the secondary circuit
 - \Rightarrow **No decomposition** of the Odacon[®]
 - \Rightarrow Very little decomposition of the Cetamine[®]
- Significative decomposition for <u>1 week residence time</u>

⇒ the products mainly formed are FFAs which does not respond with the quantification protocol of FFAs ⇒ formation of NH_4^+ and alkenes R-CH=CH₂

PERSPECTIVES

 Determination of the *distribution coefficient* of the 2 products at steam generator temperature *i.e.* 275 °C

	Objectives O		
			15/15

Thank you for your attention

