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Abstract— – The synthesis of controllers for reactive systems
can be done by computing winning strategies in two-player
games. Timed (game) Automata are an appropriate formalism
to model real-time embedded systems but are not easy to use for
controller synthesis for two reasons: i) timed models require the
knowledge of the precise timings of the system (for example, if an
action must occur in the future, the deadline of this occurence
must be known) ii) in practice, the dense state space makes
the computation of the controller often impossible for complex
systems. This paper introduces an extension of untimed game
automata with logical time. The new semantics introduces two
new types of uncontrollable actions: delayed actions which are
possibly avoidable, and ineluctable actions which will eventually
happen if nothing is done to abort it. The controller synthesis
problem is adapted to this new semantics. This paper focuses
specifically on the reachability and safety objectives and gives
algorithms to generate a controller. The usefulness of this new
model is illustrated by a device driver synthesis example.

Index Terms—Finite automata, Game theory, Controller syn-
thesis, Timed systems

I. INTRODUCTION

The theory of supervisory control has been well developed
since about 30 years ago with the seminal works of [1]–[3]. It
has become a basic paradigm for the control of discrete event
systems (DES) modeled as finite state machines.

Since [2], different formalisms have been considered to
model (un)controllable actions and control problems. Formu-
lating control problems as two-player games has provided
efficient solutions [4]. In this setting, the controller is modeled
by a player and the environment by its opponent. Determining
whether a controller exists amounts to determining if it can win
and computing a winning strategy is equivalent to synthesizing
a controller. However these turn-based games [4] where one
player chooses their action before the other chooses theirs, are
sequential and do not allow to model concurrency. Therefore,
concurrent games [5]–[7] have been proposed, for which, at
each round of the game, player 1 (the controller) and player
2 (the environment) independently and simultaneously choose
moves, and both choices are used to determine the next state
of the game.

Beside the controllable and uncontrollable actions used
in untimed frameworks, controlled systems often rely on
additional behavioral capabilities, based in particular on two
important notions: delays and urgency. Without delays, we
cannot express the fact that some actions (such as analog

conversions, or emissions of messages on a communication
bus) take time, and that the controller can perform actions
during that time, even aborting the current environment oper-
ation. In that case the controller must make use of some kind
of urgency. In addition, without urgency, we cannot model
ineluctable behaviors (such as the eventual arrival of a product
at the end of the conveyor belt on which it is placed) of
the environment since, in untimed games, the environment
is expected to play every move at its disposal to make the
controller fail, including choosing not to play.

The model of timed automata [8] and timed games [9] is
an appropriate formalism to express and model these timed
properties. In a timed game, the time at which the two
players (controller and environment), play their moves is taken
explicitly into account. Their level of expressiveness and well-
known controller synthesis techniques and tools [10], [11]
allow the modeling of systems with complex interactions,
while providing a formal proof on the behavior of the system.
Yet, the computational complexity of the involved algorithms
limits the size of the systems that can be addressed in practice.

Moreover, these timed formalisms require a good under-
standing of all the components of the system, including the
knowledge of the timings of the actions of both players. These
timings are rarely known precisely. Moreover, when these
timings are known, or at least bounds on those timings, the
complexity of the timed controller synthesis algorithms is still
a problem.

Hence, it would be very interesting to derive a controller
without explicit timed models (i.e. without precise timing
quantification) while keeping the notion of urgency and delay.
The behavior we would like to capture can be reduced into
two types of uncontrollable actions:
• Delayed (avoidable) actions, which take time to complete

or cannot happen immediately, such as writing to an
external memory, sending a message on a bus, performing
a specific computation on a hardware dedicated unit, etc.
These actions usually come with some kind of abortion
mechanism, so they are avoidable from a certain point of
view. They are modeled in an explicit timed context by
guard constraints with non-zero lower bounds on clocks.

• Ineluctable actions, which are known to happen in a nom-
inal context: the end of a transmission or a conversion, or
more generally an acknowledgement of the reception of a



command. An ineluctable action is guaranteed to happen
eventually if nothing is done to abort it, which differs to
the notion of fairness. In the untimed context, it is not
sufficient to consider these actions as controllable. First,
except if it is explicitly avoidable, an ineluctable action
cannot be prevented by the controller, even if it leads to
losing the game. Second, when there is a choice between
two controllable actions, the controller chooses but when
it is between two ineluctable actions, the environment
chooses.
Our contribution.: We propose to extend the framework

of untimed games with avoidability and ineluctability for un-
controllable actions and with urgency for controllable actions:
• an avoidable (delayed) action cannot happen immediately

so that the controller can perform an urgent action to
avoid it if needed.

• an ineluctable action is guaranteed to happen eventually
if nothing else is done to abort it, and the controller may
want to rely on it.

We revisit the controller synthesis problem for reachability
and safety games in this context leading to what we call logical
timed games.

This paper is organized as follows:
We first give in Section II, the basic definitions and notations

for logical timed games. By using these notations, we justify
our new model in Section III. Then, in Section IV, we solve
the controller synthesis problem for logical timed games. In
Section V and Section VI we respectively focus on reachability
games and safety games. We discuss the complexity of the
winning state computation algorithm implemented in our tool
ROMÉO in section VII. Finally, in Section VIII we illustrate
our method on a case study based on the Microchip CAN
controller.

II. LOGICAL TIMED GAMES

In this section we propose a variant of the traditional
untimed game automata with new logical-timed semantics
capturing avoidability and ineluctability.

Let C and U be the two players respectively called con-
troller and environment.

Definition 1 (Game structure). A game structure is a tuple
G = (Q, q0, AC , AU , δ) where
• Q is a set of states
• q0 ∈ Q is the initial state
• AC and AU are two disjoint sets of actions for the

controller and the environment, respectively.
• δ : Q × (AC ∪ AU ) × Q a set of edges between states.

We denote q a−→ q′ for (q, a, q′) ∈ δ.

For the sake of simplicity, we assume the underlying finite
automaton is deterministic.

In addition to this definition, we define A?
U ⊆ AU and

A�U ⊆ AU the subsets of avoidable and ineluctable actions,
respectively. Note that these subsets are independent, and their
intersection is not necessarily empty.

We also denote A?�
U , A?�

U , A?�
U , A?�

U , A?
U and A�U , the other

subsets of AU based on these two notions. As an example,
A?�

U is the subset of actions of AU which are not avoidable
and not ineluctable and A�U is the subset of actions of AU

which are not ineluctable but can be either avoidable or not.

A. Graphical notations

For the following figures, we will use the following nota-
tions illustrated in Figure 1:
• States are represented by circles, and the initial state is

denoted q0.
• Controllable transitions are represented by solid arrows.
• Uncontrollable transitions are represented by dashed ar-

rows.
• Avoidable transitions start with a circle.
• Ineluctable transitions end with a double arrowhead.

q0 q1

q2

q3

q4

q5

c

u

ua

ui uai

Figure 1. Graphical notation example: Here q0 is the initial state, and c ∈
AC , u ∈ A?�

U , ua ∈ A?�
U , ui ∈ A?�

U and uai ∈ A?�
U .

B. Behaviors in game structures

The behaviors in game structures are timed behaviors, but
only at a logical level, in which we distinguish immediate
actions from others: we thus denote by ∆ the set {0, •}, which
represents the logical time at which an action is played. It
can be instantaneous (0), or unknown (•). Semantically, 〈a,0〉
means that the action a is performed immediately, whereas in
〈a, •〉, the action is performed at an unknown time, possibly
zero.

Avoidable actions: From a given state q an avoidable action
u (as in Figure 4) can be prevented by any other action c from
the same state q by the timed action 〈c,0〉.

Ineluctable actions: From a given state, an ineluctable
action 〈u, •〉 will eventually happens if we do not do anything
else from this state, that is to say if we wait long enough.

Avoidability and Ineluctability vs fairness: An ineluctable
action can also be avoidable from a given state and the
reachability game shown in Figure 2 is winning by doing
〈c,0〉.

Moreover, like any non-avoidable uncontrollable action, an
ineluctable (non-avoidable) action can not be prevented by a
controllable action. On the other hand it can be prevented
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Figure 2. Avoidable action (even ineluctable) can be prevented by the
controller

by an uncontrollable action that would perform a loop in null
time. Hence the reachability games of Figure 3 are not winning
showing the difference from the notion of fairness.

q0 G

u

ui
q0 G

q1

u1u2
ui

Figure 3. Ineluctability is not fairness.

C. Predecessor, successor and run

For Σ ⊆ AC∪AU , we define the predecessor and successor
functions preΣ : 2Q → 2Q, sucΣ : 2Q → 2Q: Let X ⊆ Q,
∀q ∈ Q, q ∈ preΣ(X) iff ∃a ∈ Σ and q′ ∈ X, s.t. q a−→ q′,
and ∀q′ ∈ Q, q′ ∈ sucΣ(X) iff ∃a ∈ Σ and q ∈ X, s.t. q a−→
q′. If Σ = AC ∪AU , we note pre(X) and suc(X)

A run of a game structure is a sequence q0 〈a1, t1〉 q1

〈a2, t2〉 q2 . . . with ai ∈ AC ∪ AU , ti ∈ ∆, qi ∈ Q, and
such that qi

ai−→ qi+1 for all i >= 0. We denote by R the set
of runs, and by R the set of finite runs. Note that a finite run
always ends with a state.

For a run r ∈ R, we define First(r) the first state of r,
States(r) the set of states which appear in r, and Act(r) the
set of actions which appear in r. If r ∈ R, we define Last(r)
the last state of r. We define the length |r| of a run r as the
size of the subsequence 〈a1, t1〉〈a2, t2〉 . . ..

For R ⊆ R and X ⊆ Q, we denote by R|X the subset of
R such that ∀r ∈ R|X ,States(r) ⊆ X .

III. JUSTIFICATION FOR THIS NEW MODEL

For the examples used in this section, we consider a
reachability game (formally defined in Section V) starting in
q0 where the goal is to reach a state denoted G.

A. Avoidable action

The problem of avoidable (delayable) actions can be solved
by using timed models such as timed automata. The avoidable
actions can be translated directly into guards with a non-zero
lower bound on clocks as depicted in Figures 4.a and 4.b.
Hence, timed games [9], [12] allow to solve the controller
synthesis problem for reachability or safety goal. In [13],
the authors consider an abstraction of timed automata [8]
where a transition τ represents the fact that some time elapse.
The authors argue that the abstract timed transitions (τ ) can
be considered as controllable for the purposes of controller
synthesis. This abstraction does not require explicit delays and
if τ represents non-null elapsing of time, from a state q0, an
action τ followed by an uncontrollable action u is equivalent
to an avoidable action u from q0 as depicted in Figure 4.c. In

[13], this abstraction is generated by a quotient of the timed
game automata by a time-abstracting bisimulation and can
be viewed as a game graph on which the complexity of the
controller synthesis algorithm is quadratic in the size of the
graph.

4.a) 4.b) TA 4.c)
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Figure 4. Avoidable uncontrollable action can be prevented by the controller

B. Ineluctable action

Ineluctable actions are known to happen in a nominal
context: the end of a transmission or a conversion, or more
generally an acknowledgement of the reception of a command.

Ineluctable action vs controllable action: In the untimed
context, it is not sufficient to consider these actions as con-
trollable. First, an ineluctable action cannot be prevented by
the controller, even if it leads to losing the game (see Figure
5). Second, when there is a choice between two controllable
actions, the controller chooses but when it is between two
ineluctable actions, the environment chooses. For example, in
Figure. 6, assume the emission of a message on a communica-
tion bus (action c). It can lead to an immediate success (action
u2) or it can first fail (action u1) and can become a success
later. It is ineluctable that either u1 or u2 occurs, but the choice
between u1 and u2 does not depend from the controller which
have to ensure that both states q1 and q2 are winning.

q0 G

Bad

c

u

Figure 5. Ineluctable action cannot be prevented by the controller

q0 q1 G

q2 G

c u2

u1

w

Figure 6. Ineluctable action is not selected by the controller



Ineluctable action vs timed action: In the timed context,
ineluctability cannot be translated as-is into and from timed
automata. We can use invariants on locations to force the
environment to play, but this requires the knowledge of an
upper bound on the delay, which is often not possible.

Moreover invariants apply to all players, including the con-
troller, whereas ineluctable actions only restrict the behaviour
of the environment. In [14], Timed Games are based on Timed
Automata with invariants which are restricted to constraints
of the form x ≤ k (where x is a clock and k is a constant).
However, the environment can decide not to take action if an
invariant requires to leave a state and the controller can do so.

Although the current work has not done so, it is possible to
extend Timed Game Automata in order to take into account
ineluctability for example by extending the notion of deadline
or urgency [15]. However, reachability and safety timed games
are decidable but are EXPTIME-complete and the symbolic
states manipulated by the algorithms are regions or zones that
are too powerful for untimed models and limit the size of the
systems that can be addressed in practice.

Our model eliminates the need to put explicit values on time
invariants and only restricts the behaviour of the environment
and not that of the controller.

IV. CONTROLLER SYNTHESIS

In this section, we will solve the controller synthesis prob-
lem using our modified semantics. The goal is to derive
a strategy for the controller to restrict the behavior of the
game. Those strategies prescribe either a set of controllable
moves that should be done either immediately, or with no
timing restriction, or to wait and do nothing until some action
happens, which is represented by an empty set.

Definition 2 (Strategy). A strategy si for player i ∈ {C,U}
is a function si : R → 2(Ai×∆). It is said to be memoryless if
it only depends on the current state of the run, i.e. si : Q →
2(Ai×∆).

We impose that if 〈a, d〉 ∈ s(r), then a is indeed possible
from Last(r).

Definition 3 (Strategies with ineluctable and avoidable ac-
tions). Let sU : R → 2(AU×∆) be a strategy of the environ-
ment and let r be a run in the game, with Last(r) = q.

If there exists a ∈ A�U , d ∈ ∆, and a state q′ such that

q
〈a, d〉
−→ q′ then sU (r) 6= ∅.
If there exists a ∈ A?

U , d ∈ ∆, and a state q′ such that

q
〈a, d〉
−→ q′, and if 〈a, d〉 ∈ sU (r), then d 6= 0.

Starting from a run consisting of some state (usually the
initial state), both players inductively build a set of runs
(because of non-determinism) by playing their strategy. Since
we are interested in the strategies for the controller to win
whatever the (legal) strategy of the environment, we directly
define outcomes of a strategy of the controller, as the union
over all strategies of the environment of all such sets of runs.

Definition 4 (Outcome). Let G = (Q, q0, AC , AU , δ) be a
game structure, r one of its runs, and sC a strategy for the
controller. The outcome Outcome(q, sC) of sC from state q
is the subset of R defined inductively by:

• q ∈ Outcome(q, sC)

• If r ∈ Outcome(q, sC) is finite, r′ = r
〈a, d〉
−→ q′ ∈

Outcome(q, sC) if r′ ∈ R and one of the following holds
true:

– a ∈ A?
U and d = • if @(r

a′−→ q′′ s.t. 〈a′,0〉 ∈ sC(r)),
or d = 0 otherwise;

– a ∈ A?
U , d = •, and @(r

a′−→ q′′ s.t. 〈a′,0〉 ∈ sC(r)).
– 〈a, d〉 ∈ sC(r).

• An infinite run belongs to Outcome(q, sC) if all its finite
prefixes also belong to Outcome(q, sC)

Intuitively, we are interested in runs that are long enough to
have a chance to fulfill the objective. Maximality distinguishes
those runs that are the longest that the controller can produce,
through its actions (possibly with diverting moves from the
environment) or by relying on the ineluctable actions of the
environment.

A run r is maximal in a set of runs R if either it is finite
and there is no a ∈ AC ∪ A�U , and no q′ ∈ Q such that
r
a−→ q′ ∈ R, or it is infinite and none of its finite prefixes are

maximal. We denote by MaxOutcome(q, sC) the set of runs
that are maximal in Outcome(q, sC).

The control synthesis problem can be stated using objec-
tives, or winning conditions. For a given game structure G, a
winning condition CW is a set of allowed runs. We call the
pair (G, CW) a game.

In such a game, a strategy s for the controller is winning
from state q if MaxOutcome(q, s) ⊆ CW . A state q is winning
if there exists a winning strategy from q. The game itself is
winning if q0 is winning.

V. REACHABILITY GAMES

A reachability objective of the controller is to force the
game to reach a certain set of states. Formally:

Definition 5 (Reachability objective).
Let G = (Q, q0, AC , AU , δ) be a game structure, and Goal ⊆
Q a set of goal states. The reachability objective Reach(Goal)
for Goal is the set of runs r that are maximal in R and such
that States(r) ∩Goal 6= ∅.

For example, for the game of Figure 7, the objective
is to reach the state G and we have Goal = {G} and
Reach(Goal) = {q0 〈c, •〉 q1 〈u, •〉 G}.

q0 q1 G
c u

Figure 7. The objective is to reach the state G.



A. Computing the strategy

The computation of the strategy is obtained from the set
of winning states. A state is winning for the controller if it
is possible to reach a goal state from the strategy i.e. if the
controller has a strategy to reach a goal state against all strate-
gies of the environment. The main algorithm for computing
winning strategies for reachability games is a backwards fixed-
point algorithm over the controllable predecessor function.

Intuitively, a state s is a controllable predecessor of X if
the following conditions are met:
• there is an action which is guaranteed to happen (either

controllable or uncontrollable ineluctable) and leads to
X;

• all other actions of the environment cannot prevent the
game to reach a state in X .

Definition 6 (Controllable predecessors).
Let G = (Q, q0, AC , AU , δ) be a game structure, and X ⊆ Q
a set of states. The controllable predecessors π(X) of X is
the subset of Q defined by:

π(X) = preAC (X) \ preA?U (X)

∪ preA�U (X) \ preAU (X)
(1)

The two parts of the formula represent two different ways
to win:
• if there is a controllable action from s to a state in X , all

uncontrollable actions must either be avoidable, or also
lead to states in X

• if there is an ineluctable uncontrollable action, all other
uncontrollable actions must also lead to a state in X .

Given this new definition of π, the set of winning states is
computed using the following classic backwards fixed-point
algorithm: W0 = Goal and Wn+1 = Wn ∪ π(Wn). When it
exists, the final fixed-point set is noted W .

Algorithm 1 Winning states computation algorithm for reach-
ability game
Input: G = (Q, q0, AC , AU ,→) ,Goal ⊆ Q
Output: W
W ← Goal
while π(W) 6⊆ W do
W ←W ∪ π(W)

end while
return W

Lemma 1. Let (G, CW) be a reachability game. Let q1 and
q2 be two states of G. Let s1 be a memoryless strategy that
is winning from q1 and s2 be a memoryless strategy that is
winning from q2. Let Q1 be the set of states of runs r in
Outcome(q1, s1) such that States(r) ∩ Goal = ∅ (i.e. the
states that are traversed before reaching Goal).

Let s be the memoryless strategy defined by: for all q ∈ Q,
if q ∈ Q1 then s(q) = s1(q), otherwise s(q) = s2(q). Then s
is winning from both q1 and q2.

Proof. The fact that s is winning from q1 is obvious.
Now, from q2 this is also quite straightforward. Let r be
a run in MaxOutcome(q2, s). If States(r) ∩ Q1 = ∅
then r ∈ MaxOutcome(q2, s2) and therefore it eventually
goes through Goal. Otherwise, we can write r as r2r1,
with r2 ∈ Outcome(q2, s2), Last(r2) ∈ Q1 and r1 ∈
Outcome(Last(r2), s1). Since Last(r2) ∈ Q1, and since from
there we follow the s1, then for sure r1 eventually goes through
Goal.

Lemma 2. If q ∈ Wn (i.e. the value of W at the end of the
n-th iteration of the while loop) then there exists a winning
memoryless strategy from q that permits to win in n action
steps or less.

Proof. By induction on n.
Base case: before the first iteration of the while loop,W0 =

Goal, and q ∈ Goal implies that we have a strategy to win
without doing anything. It is indeed equivalent to having a run
with no action step from q to Goal.

Induction step: suppose the property holds for some n ≥ 0.
Let q ∈ Wn+1. Then either q ∈ Wn or q ∈ π(Wn).

If q ∈ Wn, then the induction hypothesis directly gives the
result.

If q 6∈ Wn and therefore q ∈ π(Wn). Two more cases arise:
• either q ∈ preAC (Wn) \ preA?U (Wn): then there exists

some a ∈ AC and qa ∈ Wn such that q a−→ qa. Let
{b1, . . . , bp} be the set of uncontrollable, non-ineluctable
actions possible in q and let qi be the state such that

q
bi−→ qi for all i. Then qi ∈ Wn, because q 6∈ preA?U (Wn).

By the induction hypothesis, we know that there are
memoryless winning strategies sa from qa, and si for
each of the qi’s. By Lemma 1, we can merge all those
strategies in one memoryless strategy s′. Now, we exhibit
a winning strategy: let s be the memoryless strategy such
that s(q) = {〈a,0〉} and s(q′) = s′(q′) for all q′ 6= q.
Let us prove that s is indeed winning from q.
Let r be a run in MaxOutcome(q, s). Note that the run
consisting of only q cannot be maximal since a ∈ AC .
Therefore we have at least one action in r. Consider the
first of those and call it x:

– First suppose that x ∈ AC . Then we must have x =
a because s says to play a in q. Now, remark that
since q 6∈ Wn, it is clear that it never appears in
the outcomes of s′ from qa or any of the qb’s, so
the outcomes of s and s′ from those states are the
same. Consequently, all maximal runs from q that
start with a will eventually go through Goal because
s′ is winning.

– Suppose now that x ∈ AU . Then we must have
x ∈ A?

U because s says to play immediately in q.
Furthermore, the state reached by taking x is one
of the qi’s defined above, from which s′ is winning,
and with the same argument as in the previous point,
the maximal runs that start with x also eventually go
through Goal.



• or q ∈ preA�U (Wn) \ preAU (Wn). This case is fairly
similar to the previous one: we know there exists some
a ∈ A�U and qa ∈ Wn such that q a−→ qa. Let {b1, . . . , bp}
be the set of uncontrollable actions possible in q and let

qi be the state such that q bi−→ qi for all i. Then qi ∈ Wn,
because q 6∈ preAU (Wn). By the induction hypothesis,
we know that there are memoryless winning strategies
sa from qa, and si for each of the qi’s. By Lemma 1, we
can merge all those strategies in one memoryless strategy
s′.
Let s be the memoryless strategy such that s(q) = ∅ and
s(q′) = s′(q′) for all q′ 6= q. We prove that s is winning
from q.
Let r be a run in MaxOutcome(q, s). Note that the run
consisting of only q cannot be maximal since a ∈ A�U .
Therefore we have at least one action in r. Consider the
first of those and call it x. Since the strategy says to
wait, we cannot have x ∈ AC . So x ∈ AU , and the state
reached by taking x is one of the qi’s above and we get
the result with the same reasoning as before.

Lemma 3. If there exists a winning strategy from state q that
permits to win in n action steps or less, then q ∈ Wn.

Proof. By induction on n.
Base case: If we can win without changing states, it must

be the case that q ∈ Goal =W0.
Induction step: suppose the property holds for some n ≥ 0.

Suppose that we have a winning strategy s from state q such
that all runs in MaxOutcome(q, s) reach Goal in at most n+1
steps.

Consider the possible actions from q. If they all are un-
controllable and not ineluctable, or there is also controllable
transitions but s(q) = ∅, then q is itself a maximal run and
therefore q ∈ Goal = W0, which implies that q ∈ Wn+1.
Otherwise:

• either there is at least a controllable action a in s(q). Then
it will be present in the outcome of s from q, leading to
a state qa, and then, since s is winning from q it is also
from qa, but in at most n steps. So we can apply the
induction hypothesis and conclude that q ∈ preAC (Wn).
By definition of the outcome, uncontrollable, non-
ineluctable actions always appear in the outcome of s
from q and, with the same reasoning, they all lead to
states inWn. So q 6∈ preA?U (Wn). And finally q ∈ Wn+1.

• or there is no controllable action in s(q) but there is at
least an ineluctable uncontrollable action x possible from
q. So x appears in the outcome of s from q and, as before,
q ∈ preA�U (Wn). Similarly all possible uncontrollable
actions appear in the outcome (since the strategy must
be to wait) and, again as before, they therefore all lead
to Wn. Consequently, q ∈ Wn+1.

From Lemmas 2 and 3, we can deduce the following two
results:

Theorem 1 (Completeness and Soundness). q ∈ W if and
only if q is winning.

Proof. If q is winning then there is a strategy from q that
permits to win in a finite number of steps. So, by Lemma 3,
q ∈ Wn for some n. Reciprocally, if q ∈ W , it is in Wn for
some n and, by Lemma 2, it is winning.

Theorem 2 (Memoryless strategies). If the game is winning
then it is winning with a memoryless strategy.

Proof. If the game is winning then its initial state q0 is winning
with a strategy that permits to win in a finite number of steps
then, by Lemma 3, q0 is in Wn for some n and, by Lemma 2,
there is therefore a winning memoryless strategy from q0.

The proof of Lemma 2 shows how one can effectively build
a memoryless winning strategy when the game is winning: at
each iteration, each new state added to W has either at least
a controllable or an uncontrollable ineluctable transition to a
state ofW that was added in a previous iteration. The strategy
can be the set (or any of its subsets) of those controllable
actions. Those controllable actions are played at time 0 in the
proof to keep it simple, but it is clear that if no delayable
action to W is possible, they can also be played at time •.

It is clear that this strategy also ensures that the goal states
are reached in the minimal number of steps possible.

Also note that, as always for reachability games, the canon-
ical strategy that would always allow to move to any state in
W is not winning in general since it might allow loops within
W , and thus infinite runs never reaching to goal states.

B. Reachability game example

Let us consider the reachability game G =
(Q, q0, AC , AU , δ) of Figure 8 where the objective is to reach
the state G: Goal = {G}. By applying the backward fixed-
point algorithm 1: W0 = Goal and Wn+1 = Wn ∪ π(Wn),
we obtain successively:
W0 = {G}, π(W0) = {q4}, W1 = {G, q4},

π(W1) = {q3, q4}, W2 = {G, q3, q4}, π(W2) = {q2, q3, q4},
W3 = {G, q2, q3, q4}, π(W3) = {q0, q2, q3, q4}, W4 =
{G, q0, q2, q3, q4}, π(W4) = {q0, q2, q3, q4}

A winning memoryless strategy is s(q0) = {〈c1,0〉},
s(q3) = {〈c2,0〉}, s(q4) = {〈c3, •〉} and s(q1) = s(q2) =
s(G) = ∅.

q0 q1

q2 q4q3

Ga1

a2

u1

c1

c2

u3

u2

c3

i

Figure 8. A reachability game. The objective is to reach the state G.



VI. SAFETY GAME

A safety objective for the controller is to force the game to
stay in a specified set of states, or equivalently, to avoid a set
of states.

Definition 7 (Safety objective).
Let G = (Q, q0, AC , AU ,→) be a game structure and Safe ⊆
Q a set of safe states. The safety objective for Safe is the set
of all infinite maximal runs r of G such that States(r) ⊆ Safe.

Note that we exclude finite maximal runs from the objective
because we do not want the controller to win by deadlocking
or by reaching an uncontrollable livelock i.e. a set of states
with no outgoing controllable transition. It means that when
the environment decides to not play, the controller must be
able to move. Hence, the safety games of Figure 9 where all
the states are in the set of safe states, are loosing. Indeed, for
the game of Figure 9.a, we have q0 6∈ π({q0}) and for the
games of Figures 9.b and 9.c, we have q1 6∈ π({q0, q1, q2})
meaning that the environment can block in q1 (by not playing
u1 since it is not ineluctable) and to avoid q1, the controller
must block in q0. A contrario, the games of Figure 10 are
winning.

9.a) 9.b) 9.c)

q0

u

q0 q1

q2

c1

u1 u2

q0 q1

q2

c1

u1 u2

c2

Figure 9. All the states are safe but the games are not winning.

10.a) 10.b)

q0

u

c q0 q1

q2

c1

c2
u1 u2

Figure 10. All the states are safe and the games are winning.

A. Computation of the strategy

The strategy is computed from the set of winning states. A
state is winning for the controller if it is possible to force the
game to stay in Safe.

Given our new definition of π, the set of winning states
for the controller is computed using the following classic
backwards fixed-point algorithm: W0 = Safe and Wn+1 =
Wn ∩ π(Wn).

When it exists, the final fixed-point set is noted W .
Like in Section V, we can prove the soundness and

completeness of Algorithm 2, by proving the following two

Algorithm 2 Winning states computation algorithm for safety
games
Input: G = (Q, q0, AC , AU ,→) ,Safe ⊆ Q
Output: W
W ← Safe
while W 6⊆ π(W) do
W ←W ∩ π(W)

end while
return W

lemmas. The proof are very similar to those of Section V and
are therefore omitted.

Lemma 4. If q ∈ Wn then there exists a memoryless
strategy s such that for any prefix r of length n of a run
in MaxOutcome(q, s), we have States(r) ⊆ Safe.

Lemma 5. If there exists a strategy s and a run r such that
for any prefix r′ of length n of a run in MaxOutcome(q, s),
we have States(r′) ⊆ Safe, then Last(r) ∈ Wn.

From those two lemmas, the main results follow:

Theorem 3 (Completeness and Soundness). q ∈ W if and
only if q is winning.

Proof. If q is winning then there is a strategy s from q such
that prefixes r of any length of runs in MaxOutcome(q, s)
are such that States(r) ⊆ Safe. So, by Lemma 3, q ∈ Wn

for all n and, in particular, q ∈ W . Reciprocally, if q ∈ W ,
let n be such that W = Wn, then for all m ≥ n, q ∈ Wn.
So for all m ≥ n, there is a memoryless strategy from q that
stays in Safe for at least m steps. Since there is only a finite
number of states and of actions, there is only a finite number
of memoryless strategies on the game structure. So there is
one that is winning for an infinity of m ≥ n, which implies
that no prefix of the maximal runs in its outcome ever goes
out of Safe, and therefore that strategy is winning.

Theorem 4 (Memoryless strategies). If the game is winning
then it is winning with a memoryless strategy.

For safety games, and following the previous results, it is
clear that moving to any winning state is always a winning
strategy for the controller. We define a canonical memoryless
strategy ss :W → 2(AC×∆) that does exactly that:

Let ss(q) = {〈a, d〉|a ∈ AC , q
a−→ q′ ⇒ q′ ∈ W}, with

d = 0 if ∃a′ ∈ A?
U , q

′′ 6∈ W and d = • otherwise.
Permissive strategies are a key notion in supervisory control

[2]. In reactive synthesis, permissiveness is measured in terms
of the set of behaviours allowed by the strategy [16]. Hence
most permissive strategies need not exist, depending on the
type of winning objectives.

Theorem 5. Strategy ss is the most permissive winning
strategy for the safety objective Safe, i.e, for all winning
strategies s′, Outcome(q0, s

′) ⊆ Outcome(q0, s
s).



Proof. Ab absurdo. Assume that ss is not the most permissive
winning strategy. Then there exists a winning strategy s′ and a
run in Outcome(q0, s

′)\Outcome(q0, s
s). Let r be the longest

prefix of that run that is in Outcome(q0, s
s). Let q = Last(r).

Then we have, for some action a, q
〈a, d〉
−→ q′ ∈ Outcome(s′, q)

and q
〈a, d〉
−→ q′ 6∈ Outcome(ss, q).

We must have q′ ∈ W or s′ cannot be winning because
of Theorem 3. Then, by definition of ss, it is not possible
that a ∈ AC , so it must be the case that a ∈ AU . And, by
definition of Outcome, the only possibility is that a ∈ AU ,
d = •, there is an action b ∈ AC , such that 〈b,0〉 ∈ ss(r),
and there is no such action in s′(r). This in turn implies that

there is a third action c ∈ A?
U and a state q′′ such that q

〈c, •〉
−→ q′′

and q′′ 6∈ W . Since there is no immediate controllable action

in s′(r) then clearly r
〈c, •〉
−→ q′′ ∈ Outcome(q0, s

′), which, by
Theorem 3, contradicts the fact that s′ is winning.

B. Safety game example

Let us consider the safety game G = (Q, q0, AC , AU ,→)
of Figure 11 where the objective is to avoid the state B. Hence
Safe = {q0, q1, q2} is the set of safe states.

By applying the backward fixed-point algorithm 2: W0 =
Safe and Wn+1 =Wn ∩ π(Wn), we obtain successively:
W0 = {q0, q1, q2}, π(W0) = {q0, q1}, W1 = {q0, q1},

π(W1) = {q0, q1}.
The most permissive memoryless strategy is s(q0) = ∅ and

s(q1) = {〈c,0〉}.

q0 q1

q2

B

i
a

r u

c

v

Figure 11. A winning safety game. The objective is to avoid the state B.

VII. COMPLEXITY AND IMPLEMENTATION

While the algorithms we give are well-suited for pedagogi-
cal exposition and proofs, and possibly for an implementation
using symbolic decision diagrams based representations of sets
of states, they are not optimal for an explicit enumeration of
states. Nonetheless, plugging our definition of the controllable
predecessors operator π into the untimed algorithm of [17],
we can compute the winning states for reachability, or their
complement for safety, in time linear with respect to the
number of edges in the automaton.

Based on this latter algorithm, we have implemented the
computation of the winning states and the synthesis of the
strategy in our tool ROMÉO [18]. With its textual input
language, ROMÉO handles a model called Clock Transition
Systems (CTS) [19] which encompasses both finite automata

and Petri Nets. We have extended CTS with controllable,
uncontrollable, avoidable and ineluctable actions in order to
model logical timed games. The CTS can be generated from
the ROMÉO GUI.

VIII. CASE STUDY

Device drivers synthesis is a good example of logical time
game controllers synthesis. Here the environment is i) the
hardware device along with its connections to external sys-
tems: communication networks, analog signals, etc and ii) the
application using the driver. In the former case uncontrollable
actions are interrupts that are triggered to signal, for instance,
the availability of a data in a hardware buffer. In the latter
case they are requests made by the application. In both cases
exact timings are unknown since they depend on the actual
hardware and on the execution time of the actual binary
program which is not available yet. However some time related
rules are known like the inter-arrival time of messages on a
communication network or the time between two interrupts of
a timer for instance. So, when reacting to an uncontrollable
action the controller has time to perform its task before the
arrival of the next same uncontrollable action. In such case
the second action is avoidable.

A. CAN controller driver modelling

The device chosen for the case study is the Microchip CAN
controller available in PIC18Cxx8 microcontroller family [20].
This CAN controller features two receive buffers, RXB0 and
RXB1 and three transmit buffers, TXB0, TXB1 and TXB2.
Each of these buffers can hold a complete CAN message.
For the sake of simplicity, we consider only one transmit
buffer, which is called TXB, in this case study. The device
is configured so that i) when a message is received from the
bus it is put in one of the receive buffers and an interrupt is
asserted. ii) when a message is written to the transmit buffer
the device sends it as soon as possible and asserts an interrupts
to notify TXB has just been emptied.

The model of the driver is presented at Figure 12. We
added boolean variables: PW (Pending Write), RXB0IF (RXB0
Interrupt flag), RXB1IF (RXB1 Interrupt Flag), TXBIF (TXB In-
terrupt Flag) to simplify the drawing of the model. The driver
is cut into two parts: the part that is executed in user mode,
represented by white states and the part that is executed in the
interrupt handler represented by gray states. In addition a black
bad state that has to be avoided by the controller is added.
Starting from the no init state the device can be configured
as described above and the driver waits requests in the wait
state. From there three uncontrollable actions, corresponding
to a write request from the application (write TXB) or the
arrival of a message in one of the receive buffer (can it 0 or
can it 1), may occur and the corresponding boolean variable
is set accordingly. From the write state we find again the
two uncontrollable actions corresponding to the arrival of a
message and also an ineluctable action which is done by the
device when TXB is emptied. The state event represents the
entry point of the device interrupt handler. From there the
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Figure 12. PIC18Cxx8 CAN con-
troller driver model. Guards are noted
with a ‘?’, negations are noted with a
q and updates are noted inside paren-
thesis with a ←.

controller can play the actions corresponding to the processing
of the event: read the receive buffer which has been filled
(read0 or read1) or acknowledge the emptying of the transmit
buffer (ack write).

During the execution of the interrupt handler uncontrollable
actions are avoidable because i) device interrupts are masked
ii) the controller has enough time to play its actions before
the occurence of a new interrupt.

B. Winning strategy

We used our tool ROMÉO [18] for the modelling of this case
study and to compute the winning states and the synthesis of
the strategy. We first verify that the safety property, where
BAD is never reached, holds. But for safety ROMÉO actually
computes the complement of the fixed-point given in section
VI and therefore computes a strategy for the environment to
falsify the property. Of course it finds none. So in order to
get the strategy for the controller we also verify a reachability
objective.

To express this objective, we need to add two boolean vari-
ables called PLAYED wait, which is set when the environment
plays an action to leave state wait, and PLAYED write which is
set when the environment plays an action to leave state write.
That way staying in state x (PLAYED x is false) and returning
to this state after the environment has played (PLAYED x is
true) can be distinguished. An additional state is also added,
shutd. The shutd state models the fact that the system may be

off. The start transition is the switching on of the system and
the stop transition is the switching off of the system. If the
environment decides to not play any action, shutdown will be
reachable eventually. The goal of the controller is to reach one
of the following states:
• shutdown,
• wait with PLAYED wait = true,
• write with PLAYED write = true

Table I
MEMORYLESS STRATEGY

state variables play next
no init – 〈init, •〉 wait

wait – – wait
write – – write
write – – event
event qRXB0IF, qRXB1IF, TXBIF 〈ackTX,0〉 ack wr
event RXB0IF, qRXB1IF, qTXBIF 〈read B0,0〉 read0
event qRXB0IF, RXB1IF, qTXBIF 〈read B1,0〉 read1

ack wr – 〈retw,0〉 wait
read0 PW 〈ret0 pw,0〉 write
read0 qPW 〈ret0,0〉 wait
read1 PW 〈ret1 pw,0〉 write
read1 qPW 〈ret1,0〉 wait
shutd – – shutd

The strategy is summarized in Table I. Starting from no init
the controller must play init to reach a winning state. In
wait, if the environment plays can it 0 or can it 1, PLAYED



is set and the controller has to play immediately read B0 –
ret0 or read B1 – ret1, respectively, to go back to wait. If the
environment plays write TXB, both PW and PLAYED are set.
From write the environment may choose to play can it 0 pw
or can it 1 pw. Then the controller has to play immediately
read B0 – ret0 pw or read B1 – ret1 pw, respectively, to go
back to write. If the environment decides to not play uncontrol-
lable actions, inevitably can it w happens and the controller
returns immediately to state wait by playing ackTX – retw.

IX. CONCLUSION

We have presented an extension of finite automata with
logical time. This extension introduces two new properties of
uncontrollable actions that extend the model of the environ-
ment:
• the delayed action cannot happen instantaneously so that

the controller may preemptively perform another action
if needed.

• the ineluctable action is guaranteed to happen eventually,
and the controller can hence rely on it.

This model combines some of the expressiveness of timed
games, with the simplicity of finite automata. It allows an
easier implementation of these models, more suitable to em-
bedded real-time systems. We have adapted the notion of
control, reachability and safety games for this extension and
defined and proved algorithms to solve these problems in the
general case. Finally we have implemented the computation
of the winning states and the synthesis of the strategy in our
tool ROMÉO.

Further work includes extending the approach to more
complex control objectives, such as Büchi conditions, and
deal with concurrent behaviors modelled by networks of finite
automata.
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