Dr Feng Qi 
  
Pietro Cerone 
  
BOUNDS FOR COMPLETELY MONOTONIC DEGREES OF REMAINDERS IN ASYMPTOTIC EXPANSIONS OF THE DIGAMMA FUNCTION

Keywords: Mathematics subject classification (2010): Primary 33B15, Secondary 26A48, 41A60, 44A10 completely monotonic degree, completely monotonic function, remainder, asymptotic expansion, logarithm of the gamma function, digamma function, Qi's conjecture

the authors bound several completely monotonic degrees of the remainders in the asymptotic expansions of the logarithm of the gamma function and in the asymptotic expansions of the logarithm of the digamma function.

Preliminaries

The classical Euler gamma function Γ(z) can be defined by

The logarithmic derivative of Γ(x), denoted by ψ(x) = Γ ′ (x) Γ(x) , is called the digamma function and the derivatives ψ (i) (x) for i ≥ 0 are called the polygamma functions. The digamma function ψ(z) has the series expansion

, z ̸ = -1, -1, -3, . . .

in [1, p. 259, 6.3.16] and has the asymptotic formula

ψ(z) ∼ ln z - 1 2z - ∞ ∑ n=1 B 2n 2n 1 z 2n , z → ∞ in | arg z| < π
in [1, p. 259, 6.3.18], were γ = 0.57721566 . . . stands for Euler-Mascheroni's constant and the Bernoulli numbers B 2n are generated [START_REF] Qi | A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers[END_REF][START_REF] Qi | Two closed forms for the Bernoulli polynomials[END_REF][START_REF] Shuang | Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios[END_REF] by

z e z -1 = ∞ ∑ n=0 B n z n n! = 1 - z 2 + ∞ ∑ k=1 B 2k z 2k (2k)! , |z| < 2π. (1.1)
For more information on Γ(z) and ψ (i) (x), refer to [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF][START_REF]NIST Handbook of Mathematical Functions[END_REF][START_REF] Qi | Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities[END_REF][START_REF] Yang | Monotonicity rules for the ratio of two Laplace transforms with applications[END_REF] and closely related references therein.

Recall from [32, Chapter 1] that, if a function h on an interval I has derivatives of all orders on I and (-1) n h (n) (t) ≥ 0, t ∈ I, n ∈ {0} ∪ N, then we call h a completely monotonic function on I . In other words, a function h is completely monotonic on an interval I if its odd derivatives are negative and its even derivatives are positive on I . Theorem 12b in [35, p. 161] states that a necessary and sufficient condition for h to be completely monotonic on the infinite interval (0, ∞) is that h(t) = ∞ 0 e -ts d σ (s), s ∈ (0, ∞),

where σ (s) is non-decreasing and the above integral converges for s ∈ (0, ∞). In other words, a function is completely monotonic on (0, ∞) if and only if it is a Laplace transform of a non-negative measure.

DEFINITION 1.1. Let h(t) be a completely monotonic function on (0, ∞) and let

h(∞) = lim t→∞ h(t) ≥ 0. If the function t α [h(t) -h(∞)] (1.3)
is completely monotonic on (0, ∞) if and only if 0 ≤ α ≤ r ∈ R, then we say that h(t) is of completely monotonic degree r ; if the function in (1.3) is completely monotonic on (0, ∞) for all α ∈ R , then we say that the completely monotonic degree of h(t) is ∞ .

The function in (1.3) can be essentially regarded as the ratio h(t)-h(∞)

(1/t) α between the completely monotonic function h(t)h(∞) and the α power of the completely monotonic function 1 t on (0, ∞). This is the reason why we designed in [START_REF] Guo | A completely monotonic function involving the tri-gamma function and with degree one[END_REF] a notation deg t cm [h(t)] to denote the completely monotonic degree r of h(t) with respect to t ∈ (0, ∞). According to this idea, we can define the completely monotonic degree r of h(t) with respect to g(t), denoted by deg

g(t)
cm [h(t)], as the largest number α such that the ratio h(t)-h(∞)

[g(t)-g(∞)] α between the completely monotonic function h(t) and the α power of the completely monotonic function g(t) on (0, ∞).

In [START_REF] Zhu | Completely monotonic integer degrees for a class of special functions[END_REF]Definition 1.2], the integer part of the completely monotonic degree r of h(t) with respect to t ∈ (0, ∞), that is, the quantity deg t cm [h(t)] , was needlessly and unnecessarily called as the completely monotonic integer degree of the function h(t), where the notation ⌊t⌋ denotes the floor function whose value equals the largest integer less than or equal to t . Proposition 1.2 in [START_REF] Qi | Integral representations and properties of some functions involving the logarithmic function[END_REF] can be modified as that deg t cm [h(t)] = r > 0 if and only if

h(t) -h(∞) = ∞ 0 1 Γ(r) s 0 (s -τ) r-1 d µ(τ) e -ts d s for 0 < t < ∞,
where µ(τ) is a bounded and non-decreasing measure on (0, ∞). For more information on completely monotonic degrees and their properties, please refer to the papers [START_REF] Koumandos | Monotonicity of some functions involving the gamma and psi functions[END_REF][START_REF] Koumandos | Some completely monotonic functions of positive order[END_REF][START_REF] Koumandos | Complete monotonicity and related properties of some special functions[END_REF][START_REF] Koumandos | Absolutely monotonic functions related to Euler's gamma function and Barnes' double and triple gamma function[END_REF][START_REF] Koumandos | Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler's gamma function[END_REF][START_REF] Qi | Completely monotonic degree of a function involving trigamma and tetragamma functions[END_REF][START_REF] Qi | On complete monotonicity for several classes of functions related to ratios of gamma functions[END_REF] and closely related references therein.

Motivations and main results

In [2, pp. 374-375, Theorem 1] and [START_REF] Guo | Two new proofs of the complete monotonicity of a function involving the psi function[END_REF]Theorem 1], the function t α [lntψ(t)], α ∈ R was proved to be completely monotonic on (0, ∞) if and only if α ≤ 1 . This means that completely monotonic degree of lntψ(t) on (0, ∞) is

deg t cm [lnt -ψ(t)] = 1. (2.1)
In [START_REF] Qiu | Some properties of the gamma and psi functions, with applications[END_REF]Theorem 1.7], the function

t 2 [ψ(t) -lnt] + t 2
was proved to be decreasing and convex on (0, ∞) and, as t → ∞ , to tend to -1 12 . In [5, Theorem 1], the function

t 2 [ψ(t) -lnt] + t 2 + 1
12 was verified to be completely monotonic on (0, ∞). In [29, Theorem 2], the completely monotonic degree of

φ (t) = ψ(t) -lnt + 1 2t + 1 12t 2
with respect to t ∈ (0, ∞) was proved to be

deg t cm [φ (t)] = 2. (2.2)
In [START_REF] Alzer | On some inequalities for the gamma and psi functions[END_REF]Theorem 8], [START_REF] Koumandos | Remarks on some completely monotonic functions[END_REF]Theorem 2], and [START_REF] Xu | Complete monotonicity properties for the gamma function and Barnes G -function[END_REF], the functions

R n (t) = (-1) n ln Γ(t) -t - 1 2 lnt + t - 1 2 ln(2π) - n ∑ k=1 B 2k (2k)(2k -1) 1 t 2k-1
for n ≥ 0 were proved to be completely monotonic on (0, ∞), where an empty sum is understood to be 0 . This conclusion implies that the functions (-1) m R (m) n (t) for m, n ≥ 0 are completely monotonic on (0, ∞). See also [START_REF] Guo | Sharp inequalities for polygamma functions[END_REF]Section 1.4] and [START_REF] Mortici | Very accurate estimates of the polygamma functions[END_REF]Theorem 3.1]. By the way, we call the function (-1) n R n (t) for n ≥ 0 remainders of the asymptotic formula for ln Γ(t). See [1, p. 257, 6.1.40] and [21, p. 140, 5.11.1].

In 

deg t cm (-1) 2 R ′′ 0 (t) = 2 and deg t cm (-1) 2 R ′′ 1 (t) = 3. In [22], Qi proved that 4 ≤ deg t cm (-1) 2 R ′′ 2 (t) ≤ 5.
Due to the above results, we modify Qi's conjectures posed in [START_REF] Qi | Completely monotonic degrees for a difference between the logarithmic and psi functions[END_REF] as follows:

1. the completely monotonic degrees of R n (t) for n ≥ 0 with respect to t ∈ (0, ∞)

satisfy deg t cm [R 0 (t)] = 0, deg t cm [R 1 (t)] = 1, (2.4 
)

and deg t cm [R n (t)] = 2(n -1), n ≥ 2; (2.5) 2. the completely monotonic degrees of -R ′ n (t) for n ≥ 0 with respect to t ∈ (0, ∞) satisfy deg t cm [-R ′ 0 (t)] = 1, deg t cm [-R ′ 1 (t)] = 2, (2.6) and deg t cm [-R ′ n (t)] = 2n -1, n ≥ 2;
(2.7)

3. the completely monotonic degrees of (-1) m R (m) n (t) for m ≥ 2 and n ≥ 0 with respect to t ∈ (0, ∞) satisfy

deg t cm (-1) m R (m) 0 (t) = m, deg t cm (-1) m R (m) 1 (t) = m + 1, (2.8 
)

and deg t cm (-1) m R (m) n (t) = m + 2(n -1), n ≥ 2.
(2.9)

In this paper, we will confirm that Qi's conjectures expressed in (2.4) and (2.6) are true and, via a double inequality, partially confirm that the conjecture expressed in (2.7) is almost true. Our main results can be stated as the following theorem. THEOREM 2.1 For n ≥ 0, the completely monotonic degrees of the remainder R n (t) with respect to t ∈ (0, ∞) satisfy the two equalities in (2.4).

For n ≥ 0 , the completely monotonic degrees of the functions

-R ′ n (t) = (-1) n+1 ψ(t) -lnt + 1 2t + n ∑ k=1 B 2k 2k 1 t 2k
with respect to t ∈ (0, ∞) satisfy the two equalities in (2.6) and a double inequality

2n -1 ≤ deg t cm [-R ′ n (t)] < 2n, n ≥ 2.
(2.10)

Proof of Theorem 2.1

Now we start out to prove our main results stated in Theorem 2.1.

Proofs of equalities in (2.4)

From Binet's first formula ln

Γ(t) = t - 1 2 lnt -t + ln √ 2π + ∞ 0 1 e u -1 - 1 u + 1 2 e -tu u d u
for t > 0 in [3, p. 28, Theorem 1.6.3] and [19, p. 11], it is easy to see that

R 0 (t) = ln Γ(t) -t - 1 2 lnt + t - 1 2 ln(2π)
and

R 1 (t) = -ln Γ(t) -t - 1 2 lnt + t - 1 2 ln(2π) - 1 12t satisfy lim t→∞ R 0 (t) = lim t→∞ R 1 (t) = 0.
The inequality (2.3) means that the completely monotonic degree of the remainder R n (t) for n ≥ 0 with respect to t ∈ (0, ∞) is at least n . In particular, we have

deg t [R 0 (t)] ≥ 0 and deg t [R 1 (t)] ≥ 1. (3.1)
If t θ R 0 (t) and t λ R 1 (t) were completely monotonic on (0, ∞), then their first derivatives should be non-positive. As a result, using

R ′ 0 (t) = ψ(t) -lnt + 1 2t and -R ′ 1 (t) = ψ(t) -lnt + 1 2t + 1 12t 2 , we acquire θ ≤ - tR ′ 0 (t) R 0 (t) = t lnt -ψ(t)] -1 2 ln Γ(t) -t -1 2 lnt + t -1 2 ln(2π) → 0, t → 0 + and λ ≤ - tR ′ 1 (t) R 1 (t) = - t 2 ψ(t) -lnt + 1 2t + 1 12t 2 t ln Γ(t) -t -1 2 lnt + t -1 2 ln(2π) -1 12t → 1, t → 0 + ,
where we used the limits

lim t→0 + (t[lnt -ψ(t)]) = 1, (see [2, p. 374]) lim t→0 + t 2 ψ(t) -lnt + 1 2t + 1 12t 2 = 1 12 , (see [29, Theorem 1]) R 0 (t) = ln Γ(t + 3) (t + 2)(t + 1)t -t - 1 2 lnt + t - 1 2 ln(2π) = ln Γ(t + 3) -ln(t + 2) -ln(t + 1) -t lnt - 1 2 lnt + t - 1 2 ln(2π) → ∞, t → 0 + , and 
tR 1 (t) = -t R 0 (t) - 1 12t = 1 12 -t ln Γ(t + 3) + t ln t + 2 t + 1 + t + 1 2 t lnt -t 2 + ln(2π) 2 t → 1 12 , t → 0 + .
Consequently, it follows that

deg t [R 0 (t)] ≤ 0 and deg t [R 1 (t)] ≤ 1. (3.2)
Combining those inequalities in (3.1) and (3.2) concludes those equalities in (2.4).

Proofs of equalities in (2.6)

Since -R ′ 1 (t) = φ (t), and

lim t→∞ t[lnt -ψ(t)] = 1 2 , (see [2, p. 374]) lim t→0 + t 1 2t 2 + 1 t -ψ ′ (t) 1 2t -lnt + ψ(t) = lim t→0 + 1 2 + t -t 2 ψ ′ (t + 1) + 1 t 2 1 2 -t[lnt -ψ(t)] = 1,
by the equation (2.1), we conclude the first conclusion in (2.6).

The equation (2.2) established in [START_REF] Qi | Completely monotonic degrees for a difference between the logarithmic and psi functions[END_REF]Theorem 2] is equivalent to the second conclusion in (2.6).

Proof of the double inequality

(2.10) Let f n (v) = (-1) n 1 v - 1 2 coth v 2 + n ∑ k=1 B 2k (2k)! v 2k-1
for n ≥ 0 , where the empty sum is understood to be 0 . Then, by virtue of the formulas [21, p. 140, 5.9.13], and

coth v = 1 + e -2v 1 -e -2v = 2 1 -e -2v -1, ψ(z) = ln z + ∞ 0 1 v - 1 1 -e -v e -zv d v, ℜ(z) > 0 in
1 z w = 1 Γ(w) ∞ 0 v w-1 e -zv d v, ℜ(z), ℜ(w) > 0 in [1, p. 255, 6.1.1], we derive that (-1) n ∞ 0 f n (v) e -tv d v = ∞ 0 1 v - 1 2 coth v 2 + n ∑ k=1 B 2k (2k)! v 2k-1 e -tv d v = ∞ 0 1 v - 1 1 -e -v + 1 2 + n ∑ k=1 B 2k (2k)! v 2k-1 e -tv d v = ψ(t) -lnt + 1 2t + n ∑ k=1 B 2k 2k 1 t 2k
for n ≥ 0 . This means that

R ′ n (t) = ∞ 0 f n (v) e -tv d v, n ≥ 0. (3.3)
The inequality (2.3) tells us that the remainder R n (t) for n ≥ 0 is completely monotonic in t ∈ (0, ∞). Then, by definition of completely monotonic functions, it is ready that the remainder -R ′ n (t) for n ≥ 0 is completely monotonic on (0, ∞). Since the function v e v -1 -1 + v 2 is even in v ∈ R , by virtue of the equation (1.1), it follows that

f n (v) = (-1) n v 1 - v 1 -e -v + v 2 + n ∑ k=1 B 2k (2k)! v 2k = (-1) n v - v e v -1 -1 + v 2 + n ∑ k=1 B 2k (2k)! v 2k = (-1) n+1 ∞ ∑ k=n+1 B 2k (2k)! v 2k-1
for |v| < 2π and n ≥ 0 . Accordingly, we have

lim v→0 f (ℓ) n (v) = (-1) n+1 lim v→0 ∞ ∑ k=n+1 B 2k (2k)! ⟨2k -1⟩ ℓ v 2k-ℓ-1 = 0 (3.4)
for 0 ≤ ℓ ≤ 2n or ℓ = 2m with m, n ≥ 0 , where

⟨α⟩ n = n-1 ∏ k=0 (α -k) = α(α -1) • • • (α -n + 1), n ≥ 1 1, n = 0
is called the falling factorial of α . For more information on the falling and rising factorials, refer to the papers [START_REF] Qi | Closed formulas and identities for the Bell polynomials and falling factorials[END_REF].

Recall from [9, Theorem 2.1], [10, Theorem 2.1], and [38, Theorem 3.1] that, when ϑ > 0 and t ̸ = -ln ϑ θ or when ϑ < 0 and t ∈ R, we have

d k dt k 1 ϑ e θt -1 = (-1) k θ k k+1 ∑ p=1 (p -1)!S(k + 1, p) 1 ϑ e θt -1 p (3.5)
for k ≥ 0 , where

S(k, p) = 1 p! p ∑ q=1 (-1) p-q p q q k , 1 ≤ p ≤ k
are the Stirling numbers of the second kind. Taking ϑ = θ = 1 in (3.5) leads to

d k dt k 1 e t -1 = (-1) k k+1 ∑ p=1 (p -1)!S(k + 1, p) 1 e t -1 p (3.6) for k ≥ 0 . Utilizing (3.6) results in lim v→∞ d ℓ d v ℓ 1 v - 1 2 coth v 2 = lim v→∞ d ℓ d v ℓ 1 v - 1 e v -1 + 1 2 =    0, ℓ ≥ 1; - 1 2 , ℓ = 0. (3.7)
Making use of (3.7) and

lim v→∞ v m e -tv = 0, t > 0, m ≥ 0 yields lim v→∞ f (ℓ) n (v) e -tv = (-1) n lim v→∞ 1 v - 1 2 coth v 2 (ℓ) e -tv + n ∑ k=1 B 2k (2k)! ⟨2k -1⟩ ℓ v 2k-ℓ-1 e -tv = 0 (3.8)
for ℓ, n ≥ 0 and t > 0 . Consequently, by the limits (3.4) and (3.8), integrating by parts inductively 2n -1 times in the equation (3.3) gives

R ′ n (t) = - 1 t ∞ 0 f n (v) d e -tv = - 1 t f n (v) e -tv ∞ v=0 - ∞ 0 f ′ n (v) e -tv d v = 1 t ∞ 0 f ′ n (v) e -tv d v = 1 t 2n-1 ∞ 0 f (2n-1) n (v) e -tv d v = (-1) n t 2n-1 ∞ 0 1 v - 1 2 coth v 2 + n ∑ k=1 B 2k (2k)! v 2k-1 (2n-1) e -tv d v = (-1) n t 2n-1 ∞ 0 K 2n-1 (v) e -tv d v
for n ≥ 1 , where

K 2n-1 (v) = d 2n-1 d v 2n-1 1 v - 1 2 coth v 2 + B 2n 2n , v > 0, n ≥ 1. (3.9)
Using the relation

∞ 0 x 2n+1 cos(ax) e x -1 d x = (-1) n d 2n+1 d a 2n+1 π 2 coth(aπ) - 1 2a
, a > 0, n ≥ 0 in [6, p. 48, (D20)], [7, p. 506, 3.951.13], and [36, p. 2], we arrive at

d 2n-1 d v 2n-1 1 v - 1 2 coth v 2 = (-1) n 2 ∞ 0 w 2n-1 cos(wv) e 2πw -1 d w (3.10)
for v > 0 and n ≥ 1 . Using the relation 

∞ 0 t 2k-1 e 2πt -1 dt = (-1) k-1 B 2k 4k , k ≥ 1 in [3, p.
(-1) n 2 ∞ 0 w 2n-1 e 2πw -1 d w = - B 2n 2n , n ≥ 1. (3.11) Substituting (3.10) and (3.11) into (3.9) reveals 
K 2n-1 (v) = (-1) n-1 2 ∞ 0 w 2n-1 [1 -cos(wv)] e 2πw -1 d w, v > 0, n ≥ 1.
Consequently, we have

t 2n-1 [-R ′ n (t)] = 2 ∞ 0 ∞ 0 w 2n-1 [1 -cos(wv)] e 2πw -1 d w e -tv d v, n ≥ 1. (3.12)
Hence, the function t 2n-1 [-R ′ n (t)] is completely monotonic on (0, ∞). This means that

deg t cm [-R ′ n (t)] ≥ 2n -1, n ≥ 1. (3.13) 
If the function t α [-R ′ n (t)] were completely monotonic on (0, ∞), then its first derivative is negative, hence

α < - t[-R ′ n (t)] ′ -R ′ n (t) = - tR ′′ n (t) R ′ n (t) . From lim t→0 + t 2 ψ ′ (t) - 1 t - 1 2t 2 = lim t→0 + t 2 ψ ′ (t + 1) - 1 t + 1 2t 2 = 1 2 and lim t→0 + t ψ(t) -lnt + 1 2t = lim t→0 + t ψ(t + 1) -lnt - 1 2t = - 1 2 , it follows that lim t→0 + - tR ′′ n (t) R ′ n (t) = -lim t→0 + t ψ ′ (t) -1 t -1 2t 2 -∑ n k=1 B 2k t 2k+1 ψ(t) -lnt + 1 2t + ∑ n k=1 B 2k 2k 1 t 2k = -lim t→0 + t 2 ψ ′ (t) -1 t -1 2t 2 -∑ n k=1 B 2k t 2k-1 t ψ(t) -lnt + 1 2t + ∑ n k=1 1 2k B 2k t 2k-1 = 2n. This means that deg t cm [-R ′ n (t)] ≤ 2n, n ≥ 1. (3.14) 
We now prove that the inequality (3.14) is strict for n ≥ 2 , or say, when n ≥ 2 the equality in (3.14) can be removed off. This proof is provided by an anonymous referee. In the formula (3.12), the integrand is non-negative and it is therefore permitted to interchange the order of integration. Doing so we obtain

t 2n-1 [-R ′ n (t)] = 2 ∞ 0 ∞ 0 [1 -cos(wv)] e -tv d v w 2n-1 e 2πw -1 d w (3.15)
for n ∈ N. Computing the inner integral in (3.15), which is a Laplace transform, we acquire

t 2n [-R ′ n (t)] = 2 ∞ 0 w e 2πw -1 w 2n t 2 + w 2 d w (3.16) 
for n ∈ N . The right hand side of the relation (3.16) is a smooth function of t > 0 .

Straightforwardly differentiating under the integral in (3.16) with respect to t > 0 gives us

t 2n [-R ′ n (t)] ′′ = 4 ∞ 0 w e 2πw -1 3t 2 -w 2 (t 2 + w 2 ) 3 w 2n d w (3.17)
for n ∈ N . We want to let t → 0 + in (3.17) using dominated convergence, and thus need an integral majorant 3t 2w 2 (t 2 + w 2 ) 3 w 2n ≤ 3

t 2 + w 2 (t 2 + w 2 ) 3 w 2n ≤ 3 w 2n (t 2 + w 2 ) 2 ≤ 3w 2n-4 .
For n ≥ 2 , we thus have a suitable bound of the integrand and the Lebesgues theorem can be applied and gives lim

t→0 + t 2n [-R ′ n (t)] ′′ = -4 ∞ 0 w e 2πw -1 w 2n-4 d w < 0.
Since the second derivative is negative at t = 0 + , it must also be negative for all t > 0 sufficiently close to 0 . Consequently, for n ≥ 2 , the inequality (3.14) is refined as

deg t cm [-R ′ n (t)] < 2n, n ≥ 2. ( 3.18) 
> 0 for v ∈ (0, ∞). Therefore, the function K 2 (v) is positive on (0, ∞). By Theorem 12b in [35, p. 161] stated in (1.2), we conclude that the function

t 2 [-R ′ 1 (t)] is completely monotonic on (0, ∞), that is, deg t cm [-R ′ 1 (t)] ≥ 2.
This supplies an alternative and partial proof for the second equality in (2.6). REMARK 4.2. Making use of (3.12) and integrating by parts lead to

t 2n [-R ′ n (t)] = 2 ∞ 0 ∞ 0 w 2n sin(wv) e 2πw -1 d w e -tv d v, n ≥ 1. (4.1) 
When n = 1 , the second equality in (2.6) means that the function t 2 [-R ′ n (t)] is completely monotonic on (0, ∞). By Theorem 12b in [35, p. 161] stated in (1.2), from the equality in (4.1), we conclude

∞ 0 u 2 sin(su) e u -1 d u ≥ 0, s ∈ (0, ∞).
Since the right hand side of the double inequality (2.10) in Theorem 2.1 is strict, when n ≥ 2 , the function t 2n [-R ′ n (t)] is not completely monotonic on (0, ∞). Again by Theorem 12b in [35, p. 161] stated in (1.2), again from the equality in (4.1), we conclude that the function

s ∈ (0, ∞) → ∞ 0 u 2n sin(su) e u -1 d u, n ≥ 2 (4.2)
attains negative values somewhere on (0, ∞). Consequently, the function

s ∈ (0, ∞) → ∞ 0 u[1 -cos(su)] e u -1 d u is increasing on (0, ∞) and the function s ∈ (0, ∞) → ∞ 0 u 2n-1 [1 -cos(su)] e u -1 d u, n ≥ 2,
is decreasing on some subinterval I ⊂ (0, ∞).

From the negativity somewhere on (0, ∞) of the function in (4. 

∈ (0, ∞) → (-1) n coth s - 1 s (2n) and s ∈ (0, ∞) → (-1) n 1 e s -1 - 1 s (2n)
for n ≥ 2 attain negative values on some subinterval I ⊂ (0, ∞). for n ∈ N.

REMARK 4.5. The conjectures in (2.5), (2.8), and (2.9) posed by Qi in [START_REF] Qi | Completely monotonic degrees for a difference between the logarithmic and psi functions[END_REF] are still kept open. Theorem 2.1 does not give a full answer to the conjecture in (2.7), but it still demonstrates that these open conjectures posed by Qi should be true. REMARK 4.6. This paper is a revised version of electronic preprints at the web sites https://hal.archives-ouvertes.fr/hal-02415224 and https://arxiv.org/abs/1912.07989.

REMARK 4 . 3 . 0 w 2n- 1 [ 1 -(

 43011 From (3.10), we conclude that ∞ 1)!S(2n, p) 1 e v -1 p , where ζ (z) denotes the Riemann zeta function [21, Chapter 25]. Consequently, we obtain three inequalities )ζ (2n) (2π) 2nfor n ≥ 1 and v ∈ (0, ∞).

REMARK 4 . 4 .t

 44 From the proof of Theorem 2.1, we can deduce thatlim 2n+1 R ′ n (t) = (-1) n B 2n 2n
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Combining (3.18) with (3.13) gives the double inequality (2.10). The proof of Theorem 2.1 is complete.

Remarks

Finally we list several remarks on main results and Qi's conjectures in this paper. REMARK 4.1. As in the derivation of (3.9), integrating by parts R ′ n (t) inductively 2n ≥ 2 times in (3.3) yields

for n ≥ 1 , where, by (3.6),