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BOUNDS FOR COMPLETELY MONOTONIC DEGREES OF REMAINDERS
IN ASYMPTOTIC EXPANSIONS OF THE DIGAMMA FUNCTION

MANSOUR MAHMOUD AND FENG QI

Dedicated to Dr. Prof. Pietro Cerone retired at La Trobe University and Victoria University in Australia

Submitted to Math. Inequal. Appl.

Abstract. Motivated by several conjectures posed in the paper “F. Qi and A.-Q. Liu, Completely
monotonic degrees for a difference between the logarithmic and psi functions, J. Comput. Appl.
Math. 361 (2019), 366–371; URL: https://doi.org/10.1016/j.cam.2019.05.001”, the authors
bound several completely monotonic degrees of the remainders in the asymptotic expansions of
the logarithm of the gamma function and in the asymptotic expansions of the logarithm of the
digamma function.

1. Preliminaries

The classical Euler gamma function Γ(z) can be defined by

Γ(z) =
∫

∞

0
tz−1 e−t d t, ℜ(z)> 0.

The logarithmic derivative of Γ(x) , denoted by ψ(x) = Γ′(x)
Γ(x) , is called the digamma

function and the derivatives ψ(i)(x) for i ≥ 0 are called the polygamma functions. The
digamma function ψ(z) has the series expansion

ψ(1+ z) =−γ +
∞

∑
n=1

z
n(n+ z)

, z ̸=−1,−1,−3, . . .
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in [1, p. 259, 6.3.16] and has the asymptotic formula

ψ(z)∼ lnz− 1
2z

−
∞

∑
n=1

B2n

2n
1

z2n , z → ∞ in |argz|< π

in [1, p. 259, 6.3.18], were γ = 0.57721566 . . . stands for Euler–Mascheroni’s constant
and the Bernoulli numbers B2n are generated [23, 27, 33] by

z
ez−1

=
∞

∑
n=0

Bn
zn

n!
= 1− z

2
+

∞

∑
k=1

B2k
z2k

(2k)!
, |z|< 2π. (1.1)

For more information on Γ(z) and ψ(i)(x) , refer to [1, 21, 25, 40] and closely related
references therein.

Recall from [32, Chapter 1] that, if a function h on an interval I has derivatives of
all orders on I and

(−1)nh(n)(t)≥ 0, t ∈ I, n ∈ {0}∪N,

then we call h a completely monotonic function on I . In other words, a function h is
completely monotonic on an interval I if its odd derivatives are negative and its even
derivatives are positive on I . Theorem 12b in [35, p. 161] states that a necessary and
sufficient condition for h to be completely monotonic on the infinite interval (0,∞) is
that

h(t) =
∫

∞

0
e−ts dσ(s), s ∈ (0,∞), (1.2)

where σ(s) is non-decreasing and the above integral converges for s ∈ (0,∞) . In other
words, a function is completely monotonic on (0,∞) if and only if it is a Laplace trans-
form of a non-negative measure.

DEFINITION 1.1. Let h(t) be a completely monotonic function on (0,∞) and let

h(∞) = lim
t→∞

h(t)≥ 0.

If the function
tα [h(t)−h(∞)] (1.3)

is completely monotonic on (0,∞) if and only if 0 ≤ α ≤ r ∈ R , then we say that h(t)
is of completely monotonic degree r ; if the function in (1.3) is completely monotonic
on (0,∞) for all α ∈R , then we say that the completely monotonic degree of h(t) is ∞ .

The function in (1.3) can be essentially regarded as the ratio h(t)−h(∞)
(1/t)α between

the completely monotonic function h(t)− h(∞) and the α power of the completely
monotonic function 1

t on (0,∞) . This is the reason why we designed in [8] a notation
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degt
cm[h(t)] to denote the completely monotonic degree r of h(t) with respect to t ∈

(0,∞) . According to this idea, we can define the completely monotonic degree r of h(t)
with respect to g(t) , denoted by degg(t)

cm [h(t)] , as the largest number α such that the
ratio h(t)−h(∞)

[g(t)−g(∞)]α between the completely monotonic function h(t) and the α power of
the completely monotonic function g(t) on (0,∞) .

In [41, Definition 1.2], the integer part of the completely monotonic degree r of
h(t) with respect to t ∈ (0,∞) , that is, the quantity

⌊
degt

cm[h(t)]
⌋

, was needlessly and
unnecessarily called as the completely monotonic integer degree of the function h(t) ,
where the notation ⌊t⌋ denotes the floor function whose value equals the largest integer
less than or equal to t . Proposition 1.2 in [28] can be modified as that degt

cm[h(t)] = r >
0 if and only if

h(t)−h(∞) =
∫

∞

0

[
1

Γ(r)

∫ s

0
(s− τ)r−1 d µ(τ)

]
e−ts ds

for 0 < t < ∞ , where µ(τ) is a bounded and non-decreasing measure on (0,∞) . For
more information on completely monotonic degrees and their properties, please refer to
the papers [13, 15, 16, 17, 18, 24, 26] and closely related references therein.

2. Motivations and main results

In [2, pp. 374–375, Theorem 1] and [11, Theorem 1], the function

tα [ln t −ψ(t)], α ∈ R

was proved to be completely monotonic on (0,∞) if and only if α ≤ 1. This means that
completely monotonic degree of ln t −ψ(t) on (0,∞) is

degt
cm[ln t −ψ(t)] = 1. (2.1)

In [31, Theorem 1.7], the function

t2[ψ(t)− ln t]+
t
2

was proved to be decreasing and convex on (0,∞) and, as t → ∞ , to tend to − 1
12 . In [5,

Theorem 1], the function

t2[ψ(t)− ln t]+
t
2
+

1
12

was verified to be completely monotonic on (0,∞) . In [29, Theorem 2], the completely
monotonic degree of

φ(t) = ψ(t)− ln t +
1
2t

+
1

12t2
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with respect to t ∈ (0,∞) was proved to be

degt
cm[φ(t)] = 2. (2.2)

In [2, Theorem 8], [14, Theorem 2], and [39], the functions

Rn(t) = (−1)n

[
lnΓ(t)−

(
t − 1

2

)
ln t + t − 1

2
ln(2π)−

n

∑
k=1

B2k

(2k)(2k−1)
1

t2k−1

]
for n ≥ 0 were proved to be completely monotonic on (0,∞) , where an empty sum is
understood to be 0. This conclusion implies that the functions (−1)mR(m)

n (t) for m,n ≥
0 are completely monotonic on (0,∞) . See also [12, Section 1.4] and [20, Theorem 3.1].
By the way, we call the function (−1)nRn(t) for n ≥ 0 remainders of the asymptotic
formula for lnΓ(t) . See [1, p. 257, 6.1.40] and [21, p. 140, 5.11.1].

In [2, Theorem 1], [11, Theorem 1], and [37, Theorem 3], completely monotonic
degree degt

cm[−R′
0(t)] = 1 was verified once again.

In [18, Theorem 2.1], it was proved that

degt
cm
[
Rn(t)

]
≥ n, n ≥ 0. (2.3)

In [5, Theorem 1], [29, Theorem 2], and [37, Theorem 4], completely monotonic
degree degt

cm[−R′
1(t)] = 2 was proved once again.

In [37, Theorems 1 and 2], it was shown that

degt
cm
[
(−1)2R′′

0(t)
]
= 2

and
degt

cm
[
(−1)2R′′

1(t)
]
= 3.

In [22], Qi proved that

4 ≤ degt
cm
[
(−1)2R′′

2(t)
]
≤ 5.

Due to the above results, we modify Qi’s conjectures posed in [29] as follows:

1. the completely monotonic degrees of Rn(t) for n ≥ 0 with respect to t ∈ (0,∞)
satisfy

degt
cm[R0(t)] = 0, degt

cm[R1(t)] = 1, (2.4)

and
degt

cm[Rn(t)] = 2(n−1), n ≥ 2; (2.5)

2. the completely monotonic degrees of −R′
n(t) for n ≥ 0 with respect to t ∈ (0,∞)

satisfy
degt

cm[−R′
0(t)] = 1, degt

cm[−R′
1(t)] = 2, (2.6)

and
degt

cm[−R′
n(t)] = 2n−1, n ≥ 2; (2.7)
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3. the completely monotonic degrees of (−1)mR(m)
n (t) for m ≥ 2 and n ≥ 0 with

respect to t ∈ (0,∞) satisfy

degt
cm
[
(−1)mR(m)

0 (t)
]
= m, degt

cm
[
(−1)mR(m)

1 (t)
]
= m+1, (2.8)

and
degt

cm
[
(−1)mR(m)

n (t)
]
= m+2(n−1), n ≥ 2. (2.9)

In this paper, we will confirm that Qi’s conjectures expressed in (2.4) and (2.6) are
true and, via a double inequality, partially confirm that the conjecture expressed in (2.7)
is almost true. Our main results can be stated as the following theorem.

THEOREM 2.1 For n ≥ 0 , the completely monotonic degrees of the remainder Rn(t)
with respect to t ∈ (0,∞) satisfy the two equalities in (2.4).

For n ≥ 0 , the completely monotonic degrees of the functions

−R′
n(t) = (−1)n+1

[
ψ(t)− ln t +

1
2t

+
n

∑
k=1

B2k

2k
1

t2k

]
with respect to t ∈ (0,∞) satisfy the two equalities in (2.6) and a double inequality

2n−1 ≤ degt
cm[−R′

n(t)]< 2n, n ≥ 2. (2.10)

3. Proof of Theorem 2.1

Now we start out to prove our main results stated in Theorem 2.1.

3.1. Proofs of equalities in (2.4)

From Binet’s first formula

lnΓ(t) =
(

t − 1
2

)
ln t − t + ln

√
2π +

∫
∞

0

(
1

eu−1
− 1

u
+

1
2

)
e−tu

u
du

for t > 0 in [3, p. 28, Theorem 1.6.3] and [19, p. 11], it is easy to see that

R0(t) = lnΓ(t)−
(

t − 1
2

)
ln t + t − 1

2
ln(2π)

and

R1(t) =−
[

lnΓ(t)−
(

t − 1
2

)
ln t + t − 1

2
ln(2π)− 1

12t

]
satisfy

lim
t→∞

R0(t) = lim
t→∞

R1(t) = 0.
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The inequality (2.3) means that the completely monotonic degree of the remainder Rn(t)
for n ≥ 0 with respect to t ∈ (0,∞) is at least n . In particular, we have

degt [R0(t)]≥ 0 and degt [R1(t)]≥ 1. (3.1)

If tθ R0(t) and tλ R1(t) were completely monotonic on (0,∞) , then their first derivatives
should be non-positive. As a result, using

R′
0(t) = ψ(t)− ln t +

1
2t

and
−R′

1(t) = ψ(t)− ln t +
1
2t

+
1

12t2 ,

we acquire

θ ≤−
tR′

0(t)
R0(t)

=
t
[
ln t −ψ(t)]− 1

2

lnΓ(t)−
(
t − 1

2

)
ln t + t − 1

2 ln(2π)
→ 0, t → 0+

and

λ ≤− tR′
1(t)

R1(t)
=−

t2
[
ψ(t)− ln t + 1

2t +
1

12t2

]
t
[
lnΓ(t)−

(
t − 1

2

)
ln t + t − 1

2 ln(2π)− 1
12t

] → 1, t → 0+,

where we used the limits

lim
t→0+

(t[ln t −ψ(t)]) = 1, (see [2, p. 374])

lim
t→0+

(
t2
[

ψ(t)− ln t +
1
2t

+
1

12t2

])
=

1
12

, (see [29, Theorem 1])

R0(t) = ln
Γ(t +3)

(t +2)(t +1)t
−
(

t − 1
2

)
ln t + t − 1

2
ln(2π)

= lnΓ(t +3)− ln(t +2)− ln(t +1)− t ln t − 1
2

ln t + t − 1
2

ln(2π)

→ ∞, t → 0+,

and

tR1(t) =−t
[

R0(t)−
1

12t

]
=

1
12

− t lnΓ(t +3)+ t ln
t +2
t +1

+

(
t +

1
2

)
t ln t − t2 +

ln(2π)

2
t

→ 1
12

, t → 0+.
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Consequently, it follows that

degt [R0(t)]≤ 0 and degt [R1(t)]≤ 1. (3.2)

Combining those inequalities in (3.1) and (3.2) concludes those equalities in (2.4).

3.2. Proofs of equalities in (2.6)

Since −R′
1(t) = φ(t) , and

lim
t→∞

t[ln t −ψ(t)] =
1
2
, (see [2, p. 374])

lim
t→0+

t
[ 1

2t2 +
1
t −ψ ′(t)

]
1
2t − ln t +ψ(t)

= lim
t→0+

1
2 + t − t2

[
ψ ′(t +1)+ 1

t2

]
1
2 − t[ln t −ψ(t)]

= 1,

by the equation (2.1), we conclude the first conclusion in (2.6).
The equation (2.2) established in [29, Theorem 2] is equivalent to the second con-

clusion in (2.6).

3.3. Proof of the double inequality (2.10)

Let

fn(v) = (−1)n

[
1
v
− 1

2
coth

v
2
+

n

∑
k=1

B2k

(2k)!
v2k−1

]
for n ≥ 0, where the empty sum is understood to be 0. Then, by virtue of the formulas

cothv =
1+ e−2v

1− e−2v =
2

1− e−2v −1,

ψ(z) = lnz+
∫

∞

0

(
1
v
− 1

1− e−v

)
e−zv dv, ℜ(z)> 0

in [21, p. 140, 5.9.13], and

1
zw =

1
Γ(w)

∫
∞

0
vw−1 e−zv dv, ℜ(z),ℜ(w)> 0

in [1, p. 255, 6.1.1], we derive that

(−1)n
∫

∞

0
fn(v)e−tv dv =

∫
∞

0

[
1
v
− 1

2
coth

v
2
+

n

∑
k=1

B2k

(2k)!
v2k−1

]
e−tv dv

=
∫

∞

0

[
1
v
− 1

1− e−v +
1
2
+

n

∑
k=1

B2k

(2k)!
v2k−1

]
e−tv dv
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= ψ(t)− ln t +
1
2t

+
n

∑
k=1

B2k

2k
1

t2k

for n ≥ 0. This means that

R′
n(t) =

∫
∞

0
fn(v)e−tv dv, n ≥ 0. (3.3)

The inequality (2.3) tells us that the remainder Rn(t) for n≥ 0 is completely mono-
tonic in t ∈ (0,∞) . Then, by definition of completely monotonic functions, it is ready
that the remainder −R′

n(t) for n ≥ 0 is completely monotonic on (0,∞) .
Since the function v

ev −1 −1+ v
2 is even in v ∈R , by virtue of the equation (1.1), it

follows that

fn(v) =
(−1)n

v

[
1− v

1− e−v +
v
2
+

n

∑
k=1

B2k

(2k)!
v2k

]

=
(−1)n

v

[
−
(

v
ev−1

−1+
v
2

)
+

n

∑
k=1

B2k

(2k)!
v2k

]

= (−1)n+1
∞

∑
k=n+1

B2k

(2k)!
v2k−1

for |v|< 2π and n ≥ 0. Accordingly, we have

lim
v→0

f (ℓ)n (v) = (−1)n+1 lim
v→0

∞

∑
k=n+1

B2k

(2k)!
⟨2k−1⟩ℓv2k−ℓ−1 = 0 (3.4)

for 0 ≤ ℓ≤ 2n or ℓ= 2m with m,n ≥ 0, where

⟨α⟩n =
n−1

∏
k=0

(α − k) =

{
α(α −1) · · ·(α −n+1), n ≥ 1
1, n = 0

is called the falling factorial of α . For more information on the falling and rising facto-
rials, refer to the papers [30].

Recall from [9, Theorem 2.1], [10, Theorem 2.1], and [38, Theorem 3.1] that, when
ϑ > 0 and t ̸=− lnϑ

θ
or when ϑ < 0 and t ∈ R , we have

dk

d tk

(
1

ϑ eθ t −1

)
= (−1)k

θ
k

k+1

∑
p=1

(p−1)!S(k+1, p)
(

1
ϑ eθ t −1

)p

(3.5)

for k ≥ 0, where

S(k, p) =
1
p!

p

∑
q=1

(−1)p−q
(

p
q

)
qk, 1 ≤ p ≤ k
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are the Stirling numbers of the second kind. Taking ϑ = θ = 1 in (3.5) leads to

dk

d tk

(
1

et −1

)
= (−1)k

k+1

∑
p=1

(p−1)!S(k+1, p)
(

1
et −1

)p

(3.6)

for k ≥ 0. Utilizing (3.6) results in

lim
v→∞

dℓ

dvℓ

(
1
v
− 1

2
coth

v
2

)
= lim

v→∞

dℓ

dvℓ

[
1
v
−
(

1
ev−1

+
1
2

)]
=

0, ℓ≥ 1;

−1
2
, ℓ= 0.

(3.7)

Making use of (3.7) and

lim
v→∞

(
vm e−tv)= 0, t > 0, m ≥ 0

yields

lim
v→∞

[
f (ℓ)n (v)e−tv]= (−1)n lim

v→∞

[(
1
v
− 1

2
coth

v
2

)(ℓ)

e−tv

+
n

∑
k=1

B2k

(2k)!
⟨2k−1⟩ℓv2k−ℓ−1 e−tv

]
= 0

(3.8)

for ℓ,n ≥ 0 and t > 0. Consequently, by the limits (3.4) and (3.8), integrating by parts
inductively 2n−1 times in the equation (3.3) gives

R′
n(t) =−1

t

∫
∞

0
fn(v)de−tv

=−1
t

[
fn(v)e−tv∣∣∞

v=0−
∫

∞

0
f ′n(v)e−tv dv

]
=

1
t

∫
∞

0
f ′n(v)e−tv dv

=
1

t2n−1

∫
∞

0
f (2n−1)
n (v)e−tv dv

=
(−1)n

t2n−1

∫
∞

0

[
1
v
− 1

2
coth

v
2
+

n

∑
k=1

B2k

(2k)!
v2k−1

](2n−1)

e−tv dv

=
(−1)n

t2n−1

∫
∞

0
K2n−1(v)e−tv dv

for n ≥ 1, where

K2n−1(v) =
d2n−1

dv2n−1

(
1
v
− 1

2
coth

v
2

)
+

B2n

2n
, v > 0, n ≥ 1. (3.9)
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Using the relation∫
∞

0

x2n+1 cos(ax)
ex−1

dx = (−1)n d2n+1

da2n+1

[
π

2
coth(aπ)− 1

2a

]
, a > 0, n ≥ 0

in [6, p. 48, (D20)], [7, p. 506, 3.951.13], and [36, p. 2], we arrive at

d2n−1

dv2n−1

(
1
v
− 1

2
coth

v
2

)
= (−1)n2

∫
∞

0

w2n−1 cos(wv)
e2πw−1

dw (3.10)

for v > 0 and n ≥ 1. Using the relation∫
∞

0

t2k−1

e2πt −1
d t = (−1)k−1 B2k

4k
, k ≥ 1

in [3, p. 29, (1.6.4)], [4, p. 220], and [34, p. 19], we obtain

(−1)n2
∫

∞

0

w2n−1

e2πw−1
dw =−B2n

2n
, n ≥ 1. (3.11)

Substituting (3.10) and (3.11) into (3.9) reveals

K2n−1(v) = (−1)n−12
∫

∞

0

w2n−1[1− cos(wv)]
e2πw−1

dw, v > 0, n ≥ 1.

Consequently, we have

t2n−1[−R′
n(t)] = 2

∫
∞

0

(∫
∞

0

w2n−1[1− cos(wv)]
e2πw−1

dw
)

e−tv dv, n ≥ 1. (3.12)

Hence, the function t2n−1[−R′
n(t)] is completely monotonic on (0,∞) . This means that

degt
cm[−R′

n(t)]≥ 2n−1, n ≥ 1. (3.13)

If the function tα [−R′
n(t)] were completely monotonic on (0,∞) , then its first

derivative is negative, hence

α <− t[−R′
n(t)]

′

−R′
n(t)

=− tR′′
n(t)

R′
n(t)

.

From

lim
t→0+

[
t2
(

ψ
′(t)− 1

t
− 1

2t2

)]
= lim

t→0+

[
t2
(

ψ
′(t +1)− 1

t
+

1
2t2

)]
=

1
2

and

lim
t→0+

[
t
(

ψ(t)− ln t +
1
2t

)]
= lim

t→0+

[
t
(

ψ(t +1)− ln t − 1
2t

)]
=−1

2
,
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it follows that

lim
t→0+

[
− tR′′

n(t)
R′

n(t)

]
=− lim

t→0+

t
[
ψ ′(t)− 1

t −
1

2t2 −∑
n
k=1

B2k
t2k+1

][
ψ(t)− ln t + 1

2t +∑
n
k=1

B2k
2k

1
t2k

]
=− lim

t→0+

t2
[
ψ ′(t)− 1

t −
1

2t2

]
−∑

n
k=1

B2k
t2k−1

t
[
ψ(t)− ln t + 1

2t

]
+∑

n
k=1

1
2k

B2k
t2k−1

= 2n.

This means that
degt

cm[−R′
n(t)]≤ 2n, n ≥ 1. (3.14)

We now prove that the inequality (3.14) is strict for n ≥ 2, or say, when n ≥ 2
the equality in (3.14) can be removed off. This proof is provided by an anonymous
referee. In the formula (3.12), the integrand is non-negative and it is therefore permitted
to interchange the order of integration. Doing so we obtain

t2n−1[−R′
n(t)] = 2

∫
∞

0

(∫
∞

0
[1− cos(wv)]e−tv dv

)
w2n−1

e2πw−1
dw (3.15)

for n ∈ N . Computing the inner integral in (3.15), which is a Laplace transform, we
acquire

t2n[−R′
n(t)] = 2

∫
∞

0

w
e2πw−1

w2n

t2 +w2 dw (3.16)

for n ∈ N . The right hand side of the relation (3.16) is a smooth function of t > 0.
Straightforwardly differentiating under the integral in (3.16) with respect to t > 0 gives
us (

t2n[−R′
n(t)]

)′′
= 4

∫
∞

0

w
e2πw−1

3t2 −w2

(t2 +w2)3 w2n dw (3.17)

for n ∈N . We want to let t → 0+ in (3.17) using dominated convergence, and thus need
an integral majorant∣∣∣∣ 3t2 −w2

(t2 +w2)3 w2n
∣∣∣∣≤ 3

t2 +w2

(t2 +w2)3 w2n ≤ 3
w2n

(t2 +w2)2 ≤ 3w2n−4.

For n ≥ 2, we thus have a suitable bound of the integrand and the Lebesgues theorem
can be applied and gives

lim
t→0+

[(
t2n[−R′

n(t)]
)′′]

=−4
∫

∞

0

w
e2πw−1

w2n−4 dw < 0.

Since the second derivative is negative at t = 0+ , it must also be negative for all t > 0
sufficiently close to 0. Consequently, for n ≥ 2, the inequality (3.14) is refined as

degt
cm[−R′

n(t)]< 2n, n ≥ 2. (3.18)
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Combining (3.18) with (3.13) gives the double inequality (2.10). The proof of
Theorem 2.1 is complete.

4. Remarks

Finally we list several remarks on main results and Qi’s conjectures in this paper.

REMARK 4.1. As in the derivation of (3.9), integrating by parts R′
n(t) inductively

2n ≥ 2 times in (3.3) yields

t2n[−R′
n(t)] =

∫
∞

0
K2n(v)e−tv dv

for n ≥ 1, where, by (3.6),

K2n(v) =
d2n

dv2n

(
1
v
− 1

2
coth

v
2

)
=

d2n

dv2n

(
1
v
− 1

2
− 1

ev−1

)
=

(2n)!
v2n+1 −

2n+1

∑
p=1

(p−1)!S(2n+1, p)
(

1
ev−1

)p

for v > 0 and n ≥ 1. It is easy to see that

K2(v) =
2
v3 − 2

(ev−1)3 − 3
(ev−1)2 − 1

ev−1

=
2e3v−e2v(v3 +6)− ev(v3 −6)−2

(ev−1)3v3 ,[
(ev−1)3v3K2(v)

]′
= ev[6e2v−v3 −3v2 +6− ev(2v3 +3v2 +12)

]
→ 0, v → 0+,([

(ev−1)3v3K2(v)
]′ e−v)′ = 12e2v−ev(2v3 +9v2 +6v+12)−3v(v+2)

→ 0, v → 0+,([
(ev−1)3v3K2(v)

]′ e−v)′′ = 24e2v−ev(2v3 +15v2 +24v+18)−6(v+1)

→ 0, v → 0+([
(ev−1)3v3K2(v)

]′ e−v)(3) = 48e2v−ev(2v3 +21v2 +54v+42)−6

→ 0, v → 0+([
(ev−1)3v3K2(v)

]′ e−v)(4) = 96ev
(

ev−1− v− 9
16

v2

2!
− 1

8
v3

3!

)
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> 0

for v ∈ (0,∞) . Therefore, the function K2(v) is positive on (0,∞) . By Theorem 12b
in [35, p. 161] stated in (1.2), we conclude that the function t2[−R′

1(t)] is completely
monotonic on (0,∞) , that is,

degt
cm[−R′

1(t)]≥ 2.

This supplies an alternative and partial proof for the second equality in (2.6).

REMARK 4.2. Making use of (3.12) and integrating by parts lead to

t2n[−R′
n(t)] = 2

∫
∞

0

[∫
∞

0

w2n sin(wv)
e2πw−1

dw
]

e−tv dv, n ≥ 1. (4.1)

When n = 1, the second equality in (2.6) means that the function t2[−R′
n(t)] is com-

pletely monotonic on (0,∞) . By Theorem 12b in [35, p. 161] stated in (1.2), from the
equality in (4.1), we conclude∫

∞

0

u2 sin(su)
eu−1

du ≥ 0, s ∈ (0,∞).

Since the right hand side of the double inequality (2.10) in Theorem 2.1 is strict,
when n ≥ 2, the function t2n[−R′

n(t)] is not completely monotonic on (0,∞) . Again by
Theorem 12b in [35, p. 161] stated in (1.2), again from the equality in (4.1), we conclude
that the function

s ∈ (0,∞) 7→
∫

∞

0

u2n sin(su)
eu−1

du, n ≥ 2 (4.2)

attains negative values somewhere on (0,∞) . Consequently, the function

s ∈ (0,∞) 7→
∫

∞

0

u[1− cos(su)]
eu−1

du

is increasing on (0,∞) and the function

s ∈ (0,∞) 7→
∫

∞

0

u2n−1[1− cos(su)]
eu−1

du, n ≥ 2,

is decreasing on some subinterval I ⊂ (0,∞) .
From the negativity somewhere on (0,∞) of the function in (4.2) for n ≥ 2 and

from the formula∫
∞

0

x2n sin(ax)
ex−1

dx = (−1)n d2n

da2n

[
π

2
coth(aπ)− 1

2a

]
, a > 0, n ≥ 0

303



listed in [6, p. 48, (D19)], [7, p. 506, 3.951.12], and [36, p. 1], we see that the functions

s ∈ (0,∞) 7→ (−1)n
(

coths− 1
s

)(2n)

and s ∈ (0,∞) 7→ (−1)n
(

1
es−1

− 1
s

)(2n)

for n ≥ 2 attain negative values on some subinterval I ⊂ (0,∞) .

REMARK 4.3. From (3.10), we conclude that∫
∞

0

w2n−1[1− cos(wv)]
e2πw−1

dw =
∫

∞

0

w2n−1

e2πw−1
dw−

∫
∞

0

w2n−1 cos(wv)
e2πw−1

dw

=
1

(2π)2n

∫
∞

0

w2n−1

ew−1
dw− (−1)n

2
d2n−1

dv2n−1

(
1
v
− 1

2
coth

v
2

)
=

Γ(2n)ζ (2n)
(2π)2n − (−1)n

2
d2n−1

dv2n−1

(
1
v
− 1

2
− 1

ev−1

)
=

Γ(2n)ζ (2n)
(2π)2n − (−1)n

2

[
(2n−1)!

v2n −
2n

∑
p=1

(p−1)!S(2n, p)
(

1
ev−1

)p
]
,

where ζ (z) denotes the Riemann zeta function [21, Chapter 25]. Consequently, we
obtain three inequalities

(−1)n

2

(
1
v
− 1

2
coth

v
2

)(2n−1)

<
Γ(2n)ζ (2n)

(2π)2n ,

(−1)n

2

(
1
v
− 1

ev−1

)(2n−1)

<
Γ(2n)ζ (2n)

(2π)2n ,

and
(−1)n

2

[
(2n−1)!

v2n −
2n

∑
p=1

(p−1)!S(2n, p)
(

1
ev−1

)p
]
<

Γ(2n)ζ (2n)
(2π)2n

for n ≥ 1 and v ∈ (0,∞) .

REMARK 4.4. From the proof of Theorem 2.1, we can deduce that

lim
t→∞

R′
n(t) = 0, lim

t→∞

[
t2n−1R′

n(t)
]
= 0,

lim
t→∞

[
t2n+3R′

n(t)
]
= (−1)n+1 B2n+2

2n+2
, lim

t→0+

[
t2n+1R′

n(t)
]
= (−1)n B2n

2n

for n ∈ N .
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REMARK 4.5. The conjectures in (2.5), (2.8), and (2.9) posed by Qi in [29] are
still kept open. Theorem 2.1 does not give a full answer to the conjecture in (2.7), but it
still demonstrates that these open conjectures posed by Qi should be true.

REMARK 4.6. This paper is a revised version of electronic preprints at the web
sites https://hal.archives-ouvertes.fr/hal-02415224 and https://arxiv.org/abs/1912.07989.
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