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COMPLETELY MONOTONIC DEGREES OF REMAINDERS OF

ASYMPTOTIC EXPANSIONS OF THE DIGAMMA FUNCTION

FENG QI AND MANSOUR MAHMOUD

Abstract. Motivated by several conjectures posed in the paper “F. Qi and A.-
Q. Liu, Completely monotonic degrees for a difference between the logarithmic

and psi functions, J. Comput. Appl. Math. 361 (2019), 366–371; available
online at https://doi.org/10.1016/j.cam.2019.05.001”, the authors calcu-
late some completely monotonic degrees of remainders of the asymptotic ex-
pansion of the logarithm of the gamma function, compute some completely

monotonic degrees of remainders of asymptotic expansions of the digamma
function, and confirm some conjectures on completely monotonic degrees of re-
mainders of the asymptotic expansion of the logarithm of the gamma function
and on completely monotonic degrees of remainders of asymptotic expansions
of polygamma functions.

1. Preliminaries

The classical Euler gamma function Γ(z) can be defined by

Γ(z) =

∫

∞

0

tz−1e−t d t, ℜ(z) > 0

or by

Γ(z) = lim
n→∞

n!nz

∏n

k=0(z + k)
, z ∈ C \ {0,−1,−2, . . .}.

The logarithmic derivative of Γ(x), denoted by ψ(x) = Γ′(x)
Γ(x) , is called the digamma

function. As a whole, the derivatives ψ(i)(x) for i ≥ 0 are called the polygamma
functions. For more information on Γ(z) and ψ(i)(x), please refer to [1, 2, 6, 9, 19,
22, 29, 37, 43, 44, 45] and closely related references therein.

Recall from [17, Chapter XIII], [38, Chapter 1], and [40, Chapter IV] that, if a
function h on an interval I has derivatives of all orders on I and

(−1)nh(n)(t) ≥ 0, t ∈ I, n ∈ {0} ∪ N,

then we call h a completely monotonic function on I. Theorem 12b in [40, p. 161]
states that a necessary and sufficient condition for h to be completely monotonic
on the infinite interval (0,∞) is that

h(t) =

∫

∞

0

e−ts dσ(s), s ∈ (0,∞), (1.1)

where σ(s) is non-decreasing and the above integral converges for s ∈ (0,∞). In
other words, a function is completely monotonic on (0,∞) if and only if it is a
Laplace transform of a non-negative measure.
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2 F. QI AND M. MAHMOUD

Definition 1.1. Let h(t) be a completely monotonic function on (0,∞) and let
h(∞) = limt→∞ h(t) ≥ 0. If the function tα[h(t) − h(∞)] is completely monotonic
on (0,∞) when and only when 0 ≤ α ≤ r ∈ R, then we say that h(t) is of completely
monotonic degree r; if tα[h(t) − h(∞)] is completely monotonic on (0,∞) for all
α ∈ R, then we say that the completely monotonic degree of h(t) is ∞.

For convenience, we designed in [7] a notation degtcm[h(t)] to denote the com-
pletely monotonic degree r of h(t) with respect to t ∈ (0,∞). Proposition 1.2 in [29]
can be modified as that degxcm[h(t)] = r > 0 if and only if

h(t)− h(∞) =

∫

∞

0

[

1

Γ(r)

∫ s

0

(s− τ)r−1 dµ(τ)

]

e−ts d s

for 0 < t <∞, where µ(τ) is a family of bounded and non-decreasing measures on
(0,∞). For more information on completely monotonic degree and its properties,
please refer to the papers [8, 11, 13, 14, 15, 16, 21, 24, 25, 27, 28, 29, 30, 34, 35, 36]
and closely related references therein.

2. Motivations and main results

In [2, pp. 374–375, Theorem 1] and [9, Theorem 1], the function

tα[ln t− ψ(t)], α ∈ R

was proved to be completely monotonic on (0,∞) if and only if α ≤ 1. This means
that completely monotonic degree of ln t− ψ(t) on (0,∞) is

degtcm[ln t− ψ(t)] = 1. (2.1)

In [37, Theorem 1.7], the function

t2[ψ(t)− ln t] +
t

2

was proved to be decreasing and convex on (0,∞) and, as t→ ∞, to tend to − 1
12 .

In [6, Theorem 1], the function

t2[ψ(t)− ln t] +
t

2
+

1

12
, t2φ(t)

was verified to be completely monotonic on (0,∞). In [31], the completely mono-
tonic degree of φ(t) with respect to t ∈ (0,∞) was proved to be

degtcm[φ(t)] = 2. (2.2)

In [2, Theorem 8], [12, Theorem 2], and [42], the functions

Rn(t) = (−1)n

[

ln Γ(t)−

(

t−
1

2

)

ln t+ t−
1

2
ln(2π)−

n
∑

k=1

B2k

(2k − 1)2k

1

t2k−1

]

for n ≥ 0 were proved to be completely monotonic on (0,∞), where an empty sum
is understood to be 0 and the Bernoulli numbers Bn are generated [20, 23, 26] by

z

ez − 1
=

∞
∑

n=0

Bn

zn

n!
= 1−

z

2
+

∞
∑

k=1

B2k
z2k

(2k)!
, |z| < 2π. (2.3)

This conclusion implies that the functions (−1)mR
(m)
n (t) for m,n ≥ 0 are com-

pletely monotonic on (0,∞). See also [10, Section 1.4] and [18, Theorem 3.1]. By
the way, we call the function (−1)nRn(t) for n ≥ 0 the remainders of asymptotic
formula of ln Γ(t). See [1, p. 257, 6.1.40] and [19, p. 140, 5.11.1]. The completely
monotonic degree of the function Rn(t) for n ≥ 0 with respect to t ∈ (0,∞) was
proved in [16, Theorem 2.1] to be at least n.
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Stimulated by the above results and related ones, the first author of this paper
conjectured in [31] that

(1) the completely monotonic degrees of Rn(t) for n ≥ 0 with respect to t ∈
(0,∞) satisfy

degtcm[R0(t)] = 0, degtcm[R1(t)] = 1, (2.4)

and
degtcm[Rn(t)] = 2(n− 1), n ≥ 2; (2.5)

(2) the completely monotonic degrees of −R′

n(t) for n ≥ 0 with respect to
t ∈ (0,∞) satisfy

degtcm[−R
′

0(t)] = 1, degtcm[−R
′

1(t)] = 2, (2.6)

and
degtcm[−R

′

n(t)] = 2n− 1, n ≥ 2; (2.7)

(3) the completely monotonic degrees of (−1)mR
(m)
n (t) for m ≥ 2 and n ≥ 0

with respect to t ∈ (0,∞) satisfy

degtcm
[

(−1)mR
(m)
0 (t)

]

= m− 1, degtcm
[

(−1)mR
(m)
1 (t)

]

= m, (2.8)

and
degtcm

[

(−1)mR(m)
n (t)

]

= m+ 2(n− 1), n ≥ 2. (2.9)

Motivated by

degtcm
[

(−1)2R′′

0 (t)
]

= 2 and degtcm
[

(−1)2R′′

1 (t)
]

= 3,

which can be verified as did in [20], we can correct and modify two conjectures

stated in (2.8) as follows: the completely monotonic degrees of (−1)mR
(m)
n (t) for

m ≥ 2 and n ≥ 0 with respect to t ∈ (0,∞) satisfy

degtcm
[

(−1)mR
(m)
0 (t)

]

= m and degtcm
[

(−1)mR
(m)
1 (t)

]

= m+ 1. (2.10)

In this paper, we will confirm that Qi’s conjectures expressed in (2.4), (2.6),
and (2.7) are true.

Theorem 2.1. For n ≥ 0, completely monotonic degrees of the remainder Rn(t)
with respect to t ∈ (0,∞) satisfy two equalities in (2.4).

For n ≥ 0, completely monotonic degrees of the functions

−R′

n(t) = (−1)n+1

[

ψ(t)− ln t+
1

2t
+

n
∑

k=1

B2k

2k

1

t2k

]

with respect to t ∈ (0,∞) satisfy three equalities in (2.6) and (2.7).

3. Proof of Theorem 2.1

Now we are in a position to prove our main results stated in Theorem 2.1.

3.1. Proofs of equalities in (2.4). It is easy to see that

R0(t) = ln Γ(t)−

(

t−
1

2

)

ln t+ t−
1

2
ln(2π),

R1(t) = −

[

ln Γ(t)−

(

t−
1

2

)

ln t+ t−
1

2
ln(2π)−

1

12t

]

,

lim
t→∞

R0(t) = lim
t→∞

R1(t) = 0.

Theorem 2.1 in [16] means that the completely monotonic degree of the remainder
Rn(t) for n ≥ 0 with respect to t ∈ (0,∞) is at least n. In particular, we have

degt[R0(t)] ≥ 0 and degt[R1(t)] ≥ 1. (3.1)
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If tθR0(t) and t
λR1(t) were completely monotonic on (0,∞), then their first deriva-

tives should be non-positive. As a result, we have

θ ≤ −
tR′

0(t)

R0(t)
→ 0, t→ 0+

and

λ ≤ −
tR′

1(t)

R1(t)
→ 1, t→ 0+.

Consequently, it follows that

degt[R0(t)] ≤ 0 and degt[R1(t)] ≤ 1. (3.2)

Combining those inequalities in (3.1) and (3.2) concludes those equalities in (2.4).

3.2. Proofs of equalities in (2.6). It is clear that

−R′

0(t) = ln t− ψ(t)−
1

2t

and

−R′

1(t) = ψ(t)− ln t+
1

2t
+

1

12t2
= φ(t).

The equation (2.1) together with the limits

lim
t→∞

t[ln t− ψ(t)] =
1

2
and lim

t→0

t
[

1
2t2 + 1

t
− ψ′(t)

]

1
2t − ln t+ ψ(t)

= 1

implies the first conclusion in (2.6).
The equation (2.2) is equivalent to the second conclusion in (2.6).

3.3. Proof of the equality (2.7). Let

fn(t) = (−1)n

[

1

t
−

1

2
coth

t

2
+

n+1
∑

k=1

B2k

(2k)!
t2k−1

]

, n ≥ 0.

Then, by virtue of the formulas

coth t =
1 + e−2t

1− e−2t
=

2

1− e−2t
− 1,

ψ(z) = ln z +

∫

∞

0

(

1

t
−

1

1− e−t

)

e−tz d t, ℜ(z) > 0

in [19, p. 140, 5.9.13], and

1

zw
=

1

Γ(w)

∫

∞

0

tw−1e−zt d t, ℜ(z),ℜ(w) > 0

in [1, p. 255, 6.1.1], we derive that

(−1)n
∫

∞

0

fn(t)e
−xt d t =

∫

∞

0

[

1

t
−

1

2
coth

t

2
+

n+1
∑

k=1

B2k

(2k)!
t2k−1

]

e−xt d t

=

∫

∞

0

[

1

t
−

1

1− e−t
+

1

2
+

n+1
∑

k=1

B2k

(2k)!
t2k−1

]

e−xt d t

= ψ(x)− lnx+
1

2x
+

n+1
∑

k=1

B2k

2k

1

x2k
, n ≥ 0.

This means that

−R′

n+1(x) =

∫

∞

0

fn(t)e
−xt d t, n ≥ 0. (3.3)
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Using the relation

coth z =

m
∑

j=0

22jB2j

(2j)!
z2j−1 + σm(z), m ≥ 0

in [5, Theorem 2.3], where

σm(z) = (−1)m
2z2m+1

π2m

∞
∑

k=1

1

k2m(z2 + π2k2)
, m ≥ 0,

we see that

fn(t) =
(−1)n+1

2
σn+1

(

t

2

)

> 0, n ≥ 0.

Combining this with (1.1) and (3.3) reveals that the remainder −R′

n+1(x) for n ≥ 0
is completely monotonic on (0,∞).

Since the function t
et−1 − 1+ t

2 is even in t ∈ R, by virtue of the equation (2.3),
it follows that

fn(t) =
(−1)n

t

[

1−
t

1− e−t
+
t

2
+

n+1
∑

k=1

B2k

(2k)!
t2k

]

=
(−1)n

t

[

−

(

t

et − 1
− 1 +

t

2

)

+
n+1
∑

k=1

B2k

(2k)!
t2k

]

= (−1)n+1
∞
∑

k=n+2

B2k

(2k)!
t2k−1, t ∈ R.

Therefore, we have

lim
t→0

f (ℓ)
n (t) = (−1)n+1 lim

t→0

∞
∑

k=n+2

B2k

(2k)!
〈2k − 1〉ℓt

2k−ℓ−1 = 0

for 0 ≤ ℓ ≤ 2n+ 2 or ℓ = 2m with m,n ≥ 0, where

〈α〉n =

n−1
∏

k=0

(α− k) =

{

α(α − 1) · · · (α− n+ 1), n ≥ 1

1, n = 0

is called the falling factorial of α. For more information on the falling and rising
factorials, please refer to the papers [32, 33]. Since

lim
t→∞

dℓ

d tℓ

(

1

t
−

1

2
coth

t

2

)

= lim
t→∞

dℓ

d tℓ

[

1

t
−

(

1

et − 1
+

1

2

)]

=







0, ℓ ≥ 1

−
1

2
, ℓ = 0

and

lim
t→∞

(

tme−xt
)

= 0, x > 0, m ≥ 0,

then

lim
t→∞

[

f (ℓ)
n (t)e−xt

]

= (−1)n lim
t→∞

[

(

1

t
−

1

2
coth

t

2

)(ℓ)

e−xt

+
n+1
∑

k=1

B2k

(2k)!
〈2k − 1〉ℓt

2k−ℓ−1e−xt

]

= 0

for ℓ, n ≥ 0 and x > 0. Consequently, integrating by part inductively 2n+ 1 times
in the equation (3.3) gives

−R′

n+1(x) = −
1

x

∫

∞

0

fn(t) d e
−xt = −

1

x

[

fn(t)e
−xt

∣

∣

∞

t=0
−

∫

∞

0

f ′

n(t)e
−xt d t

]



6 F. QI AND M. MAHMOUD

=
1

x

∫

∞

0

f ′

n(t)e
−xt d t = · · · =

1

x2n+1

∫

∞

0

f (2n+1)
n (t)e−xt d t

=
1

x2n+1

∫

∞

0

(−1)n

[

1

t
−

1

2
coth

t

2
+

n+1
∑

k=1

B2k

(2k)!
t2k−1

](2n+1)

e−xt d t

=
(−1)n

x2n+1

∫

∞

0

Kn(t)e
−xt d t,

where

Kn(t) =
d2n+1

d t2n+1

(

1

t
−

1

2
coth

t

2

)

+
B2n+2

2n+ 2
, t > 0, n ≥ 0. (3.4)

Using the relation
∫

∞

0

x2n+1 cos(ax)

ex − 1
dx = (−1)n

d2n+1

d a2n+1

[

π

2
coth(aπ)−

1

2a

]

, a > 0, n ≥ 0

in [41, p. 2], we arrive at

d2n+1

d t2n+1

(

1

t
−

1

2
coth

t

2

)

= (−1)n+12

∫

∞

0

w2n+1 cos(wt)

e2πw − 1
dw (3.5)

for t > 0 and n ≥ 0. Using the relation

B2m

4m
= (−1)m−1

∫

∞

0

w2m−1

e2πw − 1
dw, m ≥ 1

in [3, p. 29], [4, p. 220], and [39, p. 19], we obtain

B2n+2

2n+ 2
= (−1)n2

∫

∞

0

w2n+1

e2πw − 1
dw, n ≥ 0. (3.6)

Substituting (3.5) and (3.6) into (3.4) reveals

Kn(t) = (−1)n2

∫

∞

0

w2n+1[1− cos(wt)]

e2πw − 1
dw, t > 0, n ≥ 0.

Consequently, we have

x2n+1[−R′

n+1(x)] = 2

∫

∞

0

(
∫

∞

0

w2n+1[1− cos(wt)]

e2πw − 1
dw

)

e−xt d t, n ≥ 0.

Hence, the function x2n+1[−R′

n+1(x)] is completely monotonic on (0,∞). This
means that

degxcm[−R
′

n+1(x)] ≥ 2n+ 1, n ≥ 0. (3.7)

If the function xα[−R′

n+1(x)] were completely monotonic on (0,∞), then its first
derivative would be negative, hence

α ≤ −
x[−R′

n+1(x)]
′

−R′

n+1(x)
= −

xR′′

n+1(x)

R′

n+1(x)
.

From

lim
x→0+

[

x2
(

ψ′(x)−
1

x
−

1

2x2

)]

= lim
x→0+

[

x2
(

ψ′(x+ 1)−
1

x
+

1

2x2

)]

=
1

2

and

lim
x→0+

[

x

(

ψ(x) − lnx+
1

2x

)]

= lim
x→0+

[

x

(

ψ(x + 1)− lnx−
1

2x

)]

= −
1

2
,

it follows that

lim
x→0+

[

−
xR′′

n+1(x)

R′

n+1(x)

]

= − lim
x→0+

x
[

ψ′(x)− 1
x
− 1

2x2 −
∑n+1

k=1
B2k

x2k+1

]

[

ψ(x) − lnx+ 1
2x +

∑n+1
k=1

B2k

2k
1

x2k

]
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= − lim
x→0+

x2
[

ψ′(x) − 1
x
− 1

2x2

]

−
∑n+1

k=1
B2k

x2k−1

x
[

ψ(x)− lnx+ 1
2x

]

+
∑n+1

k=1
1
2k

B2k

x2k−1

= 2n+ 2.

This means that
degxcm[−R

′

n+1(x)] ≤ 2n+ 2, n ≥ 0. (3.8)

Combining (3.7) and (3.8) results in

2n+ 1 ≤ degxcm[−R
′

n+1(x)] ≤ 2n+ 2, n ≥ 0. (3.9)

As did in the derivation of (3.4), integrating by part −R′

n+1(x) inductively 2n+2
times in (3.3) and utilizing the formula

∫

∞

0

x2n sin(ax)

ex − 1
dx = (−1)n

d2n

d a2n

[

π

2
coth(aπ)−

1

2a

]

, a > 0, n ≥ 0

in [41, p. 1] produce

x2n+2[−R′

n+1(x)] = 2

∫

∞

0

[
∫

∞

0

w2n+2 sin(wt)

e2πw − 1
dw

]

e−xt d t, n ≥ 0.

By (1.1), we see that the function x2n+2[−R′

n+1(x)] is not completely monotonic
on (0,∞), that is,

degxcm[−R
′

n+1(x)] < 2n+ 2, n ≥ 0. (3.10)

Combining (3.10) with (3.9) gives

2n+ 1 ≤ degxcm[−R
′

n+1(x)] < 2n+ 2, n ≥ 0. (3.11)

By definition, we can see that, if x2n+1+ǫ[−R′

n+1(x)] for ǫ > 0 and n ≥ 0 were
completely monotonic on (0,∞), then it should be valid that

d2
(

x2n+1+ǫ[−R′

n+1(x)]
)

dx2
= x2n−1+ǫ[−R′

n+1(x)]

{

ǫ2 +

[

4n+ 1 + 2x
[−R′

n+1(x)]
′

[−R′

n+1(x)]

]

ǫ

+

[

x2
[−R′

n+1(x)]
′′

[−R′

n+1(x)]
+ 2(2n+ 1)x

[−R′

n+1(x)]
′

[−R′

n+1(x)]
+ 2n(2n+ 1)

]}

≥ 0

for ǫ > 0 and n ≥ 0 on (0,∞). This means that it is necessary that

Hn(x) =

[

4n+ 1 + 2x
[−R′

n+1(x)]
′

[−R′

n+1(x)]

]2

− 4

[

x2
[−R′

n+1(x)]
′′

[−R′

n+1(x)]

+2(2n+ 1)x
[−R′

n+1(x)]
′

[−R′

n+1(x)]
+ 2n(2n+ 1)

]

≤ 0

for ǫ > 0 and n ≥ 0 on (0,∞). However, straightforward computation shows

lim
x→0+

Hn(x) = lim
x→∞

Hn(x) = 1.

This contradiction demonstrates that

degt[−R′

n+1(x)] ≤ 2n+ 1.

Combining this inequality with (3.11) yields (2.7).

4. Remarks

Finally we list several remarks on Qi’s conjectures and main results in this paper.

Remark 4.1. From the proof of Theorem 2.1, we can deduce that

lim
x→∞

R′

n(x) = 0, lim
x→∞

[

x2n−1R′

n(t)
]

= 0,

lim
x→∞

[

x2n+3R′

n(t)
]

= (−1)n+1 B2n+2

2n+ 2
, lim

x→0

[

x2n+1R′

n(t)
]

= (−1)n
B2n

2n

for n ∈ N.
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Remark 4.2. The conjectures in (2.5), (2.9) and (2.10) by the first author are still
kept open. Theorem 2.1 implies that these open conjectures posed by the first
author should be true.
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