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Abstract 

In ISO Geometrical Product Specifications and Verification Standards (GPS), Feature 

operations are used to obtain ideal and non-ideal features. The formalization of such 

operations enables to reduce ambiguity and uncertainty within the activities of design, 

manufacture and metrology of mechanical products, and their scientific investigation 

contributes to develop a sound mathematical framework and formalisms for the 

comprehension of engineering practices and the development of new standards. 

Partitioning is a fundamental operation defined in ISO GPS standard which aims at 

decomposing a part into independent features or surface portions for further processing and 

analysis. In this paper, a state-of-the-art survey of partitioning and segmentation methods 

and techniques reported in the literature is conducted and a comprehensive classification is 

proposed. Thereafter, a new partitioning process is developed for partitioning into regions 

and recognizing each region as one of the seven invariance classes of surfaces. It proceeds 

in three main steps: initial partitioning based on shape index and curvedness, refined 

partitioning by slippage analysis and invariance class recognition by statistical evaluation. 

An intuitive shape color wheel is defined to visualize the partitioned features according to 

their corresponding invariance classes. Experiments and results on both nominal models 

and measured point clouds are presented to demonstrate the effectiveness of the proposed 

method. 

Keywords: Partitioning; Geometrical Product Specifications and Verification; Invariance 

classes; Curvature 

1. Introduction

In ISO Geometrical Product Specifications and Verification Standards (GPS), Feature

operations are used to obtain ideal and non-ideal features. The formalization of such 

operations enables to reduce ambiguity and uncertainty within the activities of design, 

manufacture and metrology of mechanical products, and their scientific investigation 
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contributes to develop a sound mathematical framework and formalisms for the 

comprehension of engineering practices and the development of new standards. Among 

these operations Partitioning, Extraction, Filtration and Association have been particularly 

investigated. Partitioning is used to identify ideal or non-ideal features, Extraction enables 

to identify specific points from a non-ideal feature, Filtration is used to create the feature 

representing the considered characteristics from a non-ideal feature, and Association is 

used to fit ideal feature(s) to non-ideal feature(s) according to a criterion. Feature 

operations have been particularly researched in recent years by the research community 

from mathematical and computational point of view and some important results have been 

highlighted by new standardization efforts and the recent developments of geometry 

processing methods and tools in computational metrology.  

Partitioning is one of the fundamental operations used to specify the geometry of a 

product. Partitioning operation is described as the process to divide an extracted skin model 

of a part into subsets, and each subset can be corresponded to a surface feature on the 

boundary of a nominal model of the ideal shape. Partitioning operations can also be 

processed on the boundary of a nominal model of ideal shape for ideal features definition 

concerning specification application [1]. Partitioning called also segmentation plays an 

important role in geometry processing and is addressed by different topics and fields such 

as medical imaging, computer graphics, civil engineering and mechanical engineering in 

the context of reverse engineering.  

In ISO GPS, all ideal features are categorized into seven invariance classes according 

to their invariance degrees [2]. The invariance degree is described as the displacement(s) 

of the ideal features through which the ideal features are kept identical in the space. In 

order to obtain ideal or non-ideal features from skin model, nominal model or real part, 

specific operations are necessary. Four main feature operations, namely Extraction, 

Partitioning, Filtration and Association, are defined in ISO GPS standards.  

Partitioning methods have been extensively investigated in amounts of literature. 

However, none of them can recognize the exact invariance class of each partitioned region, 

which makes the proceeding of further GPS operations difficult. On the other hand, each 

partitioning method has its own advantages and drawbacks, and combining the essence of 

these methods is the key to an improved performance. In this paper, we propose a hybrid 

partitioning process combing edge detection, attribute clustering, region growing and 

statistical evaluation for GPS. Three mathematical notions that are automorphism [3,4], 

slippable motion [5] and curvature are used to capture the invariance properties of a 

geometric set, which provide solid mathematical foundation for GPS-oriented partitioning.  

The proposed process proceeds in three main steps: initial partitioning based on shape 

index and curvedness, refined partitioning by slippage analysis and invariance class 

recognition by statistical evaluation. The partitioned features are visualized using the 

defined shape color wheel according to the invariance classes that they belong to. 

Experimental results show that the proposed method can achieve not only appropriate 

partitioning but also accurate invariance class recognition for geometrical product 



specifications and verification. It performs well for both nominal models and real parts. In 

addition, it also shows good robustness for partitioning low-density data and noisy data. 

Therefore, it is believed that this research can help the exploration and standardization of 

partitioning operations spearheaded by the ISO/TC 213/AG 12 (Mathematical Support 

Group). 

The remainder of this paper is organized as follows: Section 2 summarizes the existing 

point cloud and mesh partitioning methods.  Section 3 introduces the invariance classes 

defined in ISO GPS and the related partitioning methods. Section 4 introduces the 

curvature-based method. A hybrid partitioning process is proposed in Section 5. In Section 

6, experiments are used to verify the method and the results are discussed. Section 7 draws 

the conclusions. 

2. Point cloud and mesh partitioning methods

Various methods have been developed to partition 3D point cloud and mesh into

homogeneous regions based on geometrical and topological criteria. Surveys have been 

conducted to review and categorize partitioning methods from different perspectives [6-

11]. Anwer et al. [1] gave a general classification on current partition approaches, which 

includes edge detection, region growing, attribute clustering and hybrid approach, to 

provide scientific foundation for the development of ISO GPS partitioning standards. They 

pointed out that an appropriate classification was considered to be one of the prerequisites 

for the detailed standards development. In this paper, a more comprehensive and detailed 

classification is proposed. The existing partitioning methods are classified into seven main 

categories and subsequently some of them are further divided into sub-categories according 

to their core methodologies, as shown in Fig.1. Then all the categories are described and 

compared below. 

{Please insert Fig.1 here} 

Edge detection methods realize partitioning by detecting the edges to outline the borders 

of different regions and then group points inside the boundaries [12]. Bhanu et al. [13] 

presented an edge detection approach by calculating the gradient, fitting 3D lines to points 

and detecting changes in unit normal vector direction. Wani and Arabnia [14] defined and 

extracted three types of edges from the equidepth contours obtained from sliced 3D images. 

It is noticed that edge detection methods often detected disconnected edges in 3D space, 

which made the identification of closed segments difficult [15]. 

Partitioning by region growing is achieved by combining points in neighborhood that 

have similar attributes until a set of termination or growing criteria is satisfied, and then 

different regions distinguished by dissimilarity are obtained. Depending on the existence 

of seed points, it is classified into seeded-region (or bottom-up) methods and unseeded-

region (or top-down) methods [7]. Sometimes, triangle is selected as seed and region is 

aggregated by triangle [16]. Some improved region growing methods are also developed 

such as the two-phase octree-based region growing method [17]. 



In attributes clustering methods, the points are clustered into partitioned regions by 

evaluating their attributes. The results depend on the selected attributes and their derivation 

techniques as well as the clustering algorithm. Four clustering algorithms are commonly 

used for partitioning: K-means clustering [18,19], mean shift clustering [20,21], 

hierarchical clustering [22,23] and fuzzy clustering [24,25]. The attributes are selected 

according to the domain of interest, and the commonly used ones include curvature, 

convexity, normal, automorphism, slippage, etc. 

Shape fitting methods try to fit primitive shapes such as planes, spheres, cylinders, cones 

and tori from the point cloud. Points belonging to the same primitive shape are labeled as 

one partitioned region [26]. Vosselman et al. extended the classical Hough transformation 

in image segmentation to three dimensional point partitioning [27, 28]. Schnabel et al. [29, 

30] used RANSAC method to extract shapes by randomly drawing minimal sets from point

data and constructing corresponding shape primitives.

Model driven methods assume that objects in a point cloud or a mesh are presented in a 

certain pattern. Skeleton model extracts the skeleton of the object and use it to guide the 

partitioning [31,32]. Watershed model is a mathematical morphological approach similar 

to the way that water fills a geographic surface. The points where flood regions meet as the 

water floods its basins construct the watershed lines that divide the surface into different 

regions [33,34]. Markov random field (MRF) model is a probabilistic graphical model used 

to find the optimal labeling of the nodes of a graph [35]. Based on MRF model, each vertex 

of the mesh is assigned the most correct label and then clustered into different regions [36]. 

Recent advances in machine learning, especially deep learning technologies, have 

revolutionized 2D image segmentation and recognition with outstanding performance. 

Now the revolution has also been targeted on 3D point cloud and mesh. Shu et al. [37] 

developed an unsupervised algorithm for shape partitioning using deep learning. Guo et al. 

[38] proposed a 3D mesh partitioning method based on deep Convolutional Neural

Networks (CNN). Although 3D point cloud and mesh has a more explicit and accurate

representation of object, its complex structure makes its deployment in deep architectures

not simple [39]. Besides, the emerged deep learning methods for partitioning are mainly

applied on natural objects at present, the application on CAD parts needs to be developed.

Each partitioning method mentioned above has its own advantages and drawbacks. 

Therefore, these different methods are sometimes fused to improve overall performance. 

Roggero [40] combined the region growing techniques with principal component analysis 

(PCA) for object partitioning of data set from airborne laser scanners. Vieira and Shimada 

[41] developed a hybrid method integrating region growing and shape fitting methods to

partition laser range scanned data. Yi, et al. [42] combined tensor voting method, region

growing, attribute clustering method and RANSAC method to recognize primitive shapes.

Zhao and Anwer [43, 44] combined edge detection method and attribute clustering method

for mesh segmentation.



All the seven categorizations of partitioning methods mentioned above are summarized 

in Table 1 and their advantages and disadvantages are compared. It can be seen that none 

of the partitioning methods can recognize the exact shape of each segmented region except 

for shape fitting methods which can only identify some geometric primitives such as plane, 

cylinder, etc. However, ideal features defined in ISO GPS are classified according to the 

invariance classes. Therefore, it is critical to recognize the invariance classes of the 

partitioned regions for the implementation of the ISO GPS standards. 

{Please insert Table 1 here} 

In this paper, a hybrid partitioning process is proposed to partition point cloud and mesh 

into regions, and to recognize the exact invariance class of each region. Finally, a shape 

color wheel is defined for quick and accurate visual identification of the seven invariance 

classes. 

3. Invariance class related partitioning methods

According to ISO GPS, all ideal features can be categorized into one of the seven

invariance classes, and the invariance attributes can be captured by the notions of 

automorphism and slippable motion. Gelfand and Guibas [5] used slippage signature 

analysis for region partitioning, but they didn’t identify the invariance class that each 

region belonged to. Chiabert, et al. [45-48] proposed a statistical model to evaluate the 

invariance of a geometric set. It can be used to recognize the specific invariance class of 

each region.  

3.1 Invariance classes in ISO GPS 

As shown in Table 2, ISO GPS standards define seven invariance classes that cover all 

kinds of ideal features [2]. An automorphism of a geometric set S  is defined as a group of 

rigid motions that leaves S  invariant in the Euclidean space, denoted as 

{ }( ) : ( )Aut S m M m S S= ∈ = , where m  is rigid motion and M  is the set of all rigid

motions. The connected component of ( )Aut S  that contains the identity is denoted as 

0
( )Aut S [3]. When we use automorphism to define the invariance of a geometric set S , S  

is usually considered as a continuous surface. Since any continuous surface can be 

approximated by a triangular mesh represented by three topological elements that are 

vertices, edges and triangle facets, automorphism can also be used to describe the 

invariance of a triangular mesh. It is worth noticing that for precise approximation of 

continuous surface, the topological elements of a triangular mesh should be dense enough. 

Table 2 lists some examples of triangular mesh and their corresponding invariance 

attributes.   

{Please insert Table 2 here} 

Pottmann et al. [49] also proposed the concept of uniform equiform motion to describe 

the invariance attributes. They defined that an equiform kinematic surface is a surface 



traced out by a curve undergoing a uniform equiform motion [50] and classified the 

equiform kinematic surfaces into four categories.    

3.2 Statistical evaluation of invariance classes 

Corresponding to the seven invariance classes, seven semi-parametric models 

( )1, ,7
i

M i = L  define the structure of Probability Density Functions (PDFs) having the 

symmetries. These models are built upon the set of parameters 
i

R  related to the reference 

elements or tuple of invariance classes, and the projection function ( ; )i iF S R  which 

replaces the original set S  with its projection on the quotient set / iEℜ  (where iE  is the 

set of equivalent points by automorphism motions). The seven semi-parametric models are 

listed in Table 3, and more details can be referred to [45-48]. 

{Please insert Table 3 here} 

3.3 Slippage analysis method 

The invariance of a geometric set S can also be captured by the notion of slippable 

motion, under which the velocity vector of each vertex 
i

S∈p  is tangent to S  at ip [5]. If 

a triangular mesh can be approximated by an invariance surface, we deem it to be slippable. 

In order to calculate its slippable motions, the motion along the normal direction at each 

vertex is minimized as: 

( )( )2

[ ]
1

min
n

i i

i=

× + ⋅∑
r t

r p t n                                                                                                    (1) 

where, r  is a rotation vector, t  is a translational vector, ip  is the coordinates of the vertex 

and 
in  is the normal at the vertex. 

Eq.(1) is a least-squares problem, which can be solved by a linear system 0
c

M =x . 

c
M  is a covariance matrix of second partial derivatives of the objective function with 

respect to the motion parameters.    

ix ix ix iy ix iz ix ix ix iy ix iz

iy ix iy iy iy iz iy ix iy iy iy iz

iz ix iz iy iz iz iz ix iz iy iz iz

c

ix ix ix iy ix iz ix ix ix iy ix iz

iy ix iy iy iy iz iy ix iy iy iy iz

iz ix iz iy iz i

m m m m m m m n m n m n

m m m m m m m n m n m n

m m m m m m m n m n m n
M

n m n m n m n n n n n n

n m n m n m n n n n n n

n m n m n m

=
1

n

i

z iz ix iz iy iz iz
n n n n n n

=

 
 
 
 
 
 
 
 
  

∑                                                              (2) 

where ( ) , , ,
ik i i k

m k x y z= × =p n   



Let 
1 2 6λ λ λ≤ ≤ ≤L  be the eigenvalues of 

c
M  and 

1 2 6, , ,v v vL  be the corresponding 

eigenvectors. The slippable motions of a triangular mesh are eigenvectors whose 

corresponding eigenvalues are zero. However, 
c

M  could be full rank due to noise. 

Therefore, the slippage motions are those eigenvectors of 
c

M  whose eigenvalues are small 

enough as: 

6 / 1, ,i seth i kλ λ > = L                                                                                                (3) 

where k  is the number of small eigenvalues, and 
se

th  is a user-determined threshold. 

The corresponding eigenvectors 
1, , kv vL  are called the slippage signature of 

ip , and 

they are represented in a 6 k×  matrix  as [ ]1, ,
k

SS = v vL .  

Gelfand and Guibas [5] used slippage analysis for region partitioning and they pointed 

out that the algorithm was most sensitive to the chosen initial patch size. Besides, they 

didn’t identify the specific invariance class that each region belonged to. Yi et al. [42] also 

proved the impact of initial patch size on partitioning. If the initial patch size is too small, 

the patch may be incorrectly recognized as high slippage shapes since small patch usually 

looks like plane even if it is a cylinder of large radius. On the other hand, if the initial patch 

size is too large, the patch may be incorrectly recognized as low slippage shapes. Improper 

initial patch size also causes wide edges or disconnected edges. However, it is difficult to 

determine the most appropriate initial patch size analytically. The adopted solution in the 

literatures is iterative try out and adjustment of initial patch size by evaluating the 

partitioning quality, which evidently decreases the efficiency and robustness of the 

algorithm. 

4. Curvature-based partitioning method 

Curvature is an important tool for analyzing the geometry of surfaces because it 

specifies the second-order properties of a surface and is independent of the used 

parametrization. A surface can be approximated by a triangular mesh, and accurate 

definition and derivation of discrete curvatures is essential for high quality approximation. 

Meek and Walton [51] summarized three classes of discrete curvature estimation methods: 

discretization of curvature operators defined for smooth surface [52], approximation of a 

local quadric surface on a given vertex to the mesh and calculation of the discrete curvature 

by applying the derivatives [53]; and tensor-based techniques to estimate discrete curvature 

[54]. In this paper, we use the first method for discrete curvature estimation. 

4.1 Definitions of shape index and curvedness 

In this paper, two notions of shape index and curvedness [55] are applied to describe the 

local shape of surface quantitatively and intuitively. 

Shape index, ranged [−1, 1], specifies the local shape type in the neighborhood of a 

vertex 
i

p . It is independent from size and the assignment of principal directions. As a 



single shape indicator, shape index captures the notion of the local shape well and its value 

scale can be intuitively categorized into distinct shapes. The shape index of a vertex 
i

p  is 

calculated as:  

( ) ( ) ( )
( ) ( )

1 2

1 2

2
arctan

i i

i

i i

s
κ κ

π κ κ
 +−=   − 

p p
p

p p
     ( )1 2κ κ≥                                                            (4) 

where ( )1 i
κ p  and ( )2 i

κ p  are the maximum and minimum principal curvature of a vertex 

i
p , respectively. The principal curvatures are obtained from the shape operator which is 

also called Weingarten endomorphism [56].  

Curvedness, always positive, specifies the size, which is the amount of the surface 

curvatures in the neighborhood of a vertex 
i

p . It is calculated as: 

( )
( ) ( )( )2 2

1 2

2

i i

ic
κ κ+

=
p p

p                                                                                             (5) 

The pair of shape index and curvedness contains the information equivalent to the pair 

of maximum and minimum principal curvatures or the pair of Gaussian and mean 

curvatures. It is more intuitive by decoupling the size and shape: the shape index describes 

the shape independently of size while the curvedness describes the size. 

4.2 Invariance attribute of curvature  

Table 4 lists the curvatures of the invariance classes. It can be seen that for each 

invariance class the curvature is in a certain range. The spherical, cylindrical and planar 

classes have invariant shape index and curvedness values. As a special case of the revolute 

class, cone also has invariant shape index and curvedness values which are 0.5s = ± , 

1 / 2c κ=  or 2 / 2c κ= ( 2 2, constκ κ = ). Therefore, the spherical class, cylindrical class, 

planar class and cone which are commonly used primitive shapes in engineering can be 

robustly recognized by curvature. 

{Please insert Table 4 here} 

In addition, the curvature of a vertex has invariance attribute along the automorphism 

or slippable direction. Take the spherical class in Table 4 for example. Rotation 1R  is an 

automorphism motion of the sphere example S , that is 1R M∈ , so according to the 

definition of  automorphism we can obtain 1( )R S S= . Since the l  and m  are two vertices 

along rotation 1R  direction, we can obtain 1( )R l l m= = . In this case, the curvatures of 

vertices l  and m  are the same too. That is, l mκ κ= , l ms s= , l mc c= . Therefore, it’s not 

difficult to deduce that the curvatures of the vertices along the automorphism or slippable 

direction are the same.  



We can use the invariance attribute of curvature for invariance class-oriented 

partitioning. In practice, the curvatures of the vertices along the automorphism or slippable 

direction cannot be exactly the same because of the curvature estimation error due to noise 

and the definition of neighborhood. Therefore, shape index, ranged [−1, 1], is divided into 

multiple value intervals and in each value interval a distinct shape can be determined. And 

the planar class can be determined by the value of curvedness. 

4.3 Partitioning based on shape index and curvedness 

The shape index and curvedness of each vertex are evaluated at first, and then 

partitioning is achieved by identifying and clustering all the vertices into sharp edges and 

ten shape types according to their shape index and curvedness values [57, 58].   

Sharp edges are just transitions between two surfaces and they are transition features. 

Therefore, vertices belonging to sharp edges should be detected at first. In practice, the 

curvedness of a vertex at a sharp edge is usually much larger than other vertices. Therefore, 

it can be identified when the curvedness is larger than a given threshold ec : 

 min( ) { }
i i e

E c c c= − >p p                                                                                                   (6) 

where ( )E p  is the collection of vertices that locate on sharp edges, and ip  is one arbitrary 

vertex in ( )E p . ic  is the curvedness of 
i

p ; 
minc  is the minimum curvedness of all the 

vertices and 
e

c  is a given threshold calculated by: 

max min

2
e

c c
c δ + = ⋅ 

 
                                                                                                          (7) 

where 
maxc  is the maximum curvedness of all the vertices and δ  is a user-determined 

coefficient ( 1δ =  by default). If some sharp edges are not detected, δ  should be set lower 

so that the threshold 
e

c  is lower to identify the undetected edges. On the other hand, if 

some vertices that do not belong to sharp edges are detected as sharp edges, δ  should be 

set higher so that the threshold 
e

c  is higher to avoid mistakenly detecting vertices.  

After sharp edges detection, the other vertices are identified as one of the predefined ten 

local shape types according to their shape index and curvedness value. The value of 

curvedness is always positive except for an ideal plane vertex whose curvedness is zero. In 

practice, the curvedness of a plane vertex cannot be exactly zero due to noise and evaluation 

error, but is a small value. Therefore, the plane shape is identified when the curvedness is 

less than a given threshold 
p

c (
p

c  is a small value, for example: 
51 10

p
c

−= × ). The other 

nine shape types are determined according to the shape index range. The sharp edges and 

ten shape types are visualized in pre-assigned colors as shown in Fig.2.  

{Please insert Fig.2 here} 



The categorization of local shapes into ten shape types is reasonable because the 

discretization of shape index and curvedness value scale is fine enough to distinguish the 

invariance classes. Besides, the ten shape types are visually meaningful and can be easily 

discriminated. 

The curvature-based partitioning method is straightforward. However, since the 

curvature of individual vertex is usually estimated using vertices in local neighborhood, 

the curvature-based partitioning method is sensitive to the noise in the data and the 

definition of neighborhood.  

5. Invariance class-oriented hybrid partitioning process 

In Section 3.3 we have explained that by randomly decomposing the point cloud P  into 

initial patches 
1, , , ,i nP P PL L , the partitioning quality is influenced by the size of the initial 

patch greatly. However, it is difficult to determine the appropriate initial patch size 

analytically. To solve the problem, curvature-based method is applied to form the proper 

initial patches as the input of the slippage analysis method for partitioning.  

The shape index and curvedness of each vertex are calculated and then all the vertices 

are clustered into regions according to their shape types which is determined by the shape 

index and curvedness value range. Due to the invariant attribute of curvature, vertices in 

the same region have the same invariance, hence the regions are slippable unless it belongs 

to the complex class. These regions become the input initial patches of the slippage analysis 

method and their slippage signatures can be correctly evaluated. This guarantees good 

partitioning quality in the following steps. 

  

It is worth noting that both curvature-base method and slippage analysis method can 

only partition point cloud into regions with the same shape types or slippage signatures. 

However, none of the two methods can identify the exact invariance class that each region 

belongs to. Therefore, in this paper a statistical evaluation method is used to recognize the 

exact invariance class of each region after partitioning.  

5.1 Framework 

The framework of the proposed hybrid partitioning process is illustrated in Fig.3. The 

input is point cloud and mesh acquired by tessellation of nominal CAD model or from 

measurement. The output is partitioned features and each feature is recognized as one of 

the seven invariance classes defined in ISO GPS. It is proceeded in three main steps: 1) 

initial region partitioning based on shape index and curvedness, 2) refined region 

partitioning by slippage analysis and 3) invariance class recognition by statistical 

evaluation.   

{Please insert Fig.3 here} 



In the first step, the shape index and curvedness of each vertex are calculated and the 

vertices are clustered into sharp edge and ten local shape type clusters by evaluating the 

range of shape index and curvedness. An iterative voting algorithm is implemented to 

refine the local shape types of vertices. Finally, the shape type clusters are partitioned into 

isolated regions using region growing method by mesh crawling.  

The regions obtained in the first step becomes the input of the refined region partitioning. 

Adjacent region pairs are identified by checking topological neighborhood. Slippage 

signatures of regions are calculated and the similarity score of each adjacent region pair is 

evaluated. The adjacent regions having high similarity score are merged into one region. 

The merging process iterates until all adjacent region pairs have similarity scores lower 

than a given threshold. Thereafter, the refined regions are obtained.  

Every refined region is considered as a geometric set composed of points which can be 

projected on the quotient set with equivalent points by automorphism motion. Seven semi-

parametric models corresponding to the seven invariance classes are constructed. Then the 

original three dimensional Probability Density Functions (PDFs) are transformed 

according to the invariance hypothesis. By calculating and ranking the likelihoods of the 

seven semi-parametric models, it can be determined that the model with largest value of 

likelihood is the best fitting model. Hence, the region is identified as the corresponding 

invariance class of this model. 

After the above three steps, point cloud and mesh can be precisely partitioned into 

separated features and each feature is recognized as one of the seven invariance classes in 

ISO GPS. In the following sub-sections, each step will be explained in detail. 

5.2 Initial region partitioning based on shape index and curvedness 

As mentioned in Section 4.3, two curvature-based attributes that are shape index and 

curvedness are evaluated for each vertex first, and then the vertices are clustered into sharp 

edges and ten shape types. For convenient and straightforward representation of the local 

shape types, a series of integers { }4, 3, , 4,5− − L  are assigned for the local shape types 

according to their shape index and curvedness value range, formulized as follows: 

( ) [ ]8
, 1,1

2

5

p

i

p

s
c c s

T

c c

    ≥ ∈ − =  
 <

p                                                                             (8) 

where, ( )iT p  is the local shape type label of vertex ip . x    represents floor function (the 

largest integer less than or equal to x ), while x    represents ceiling function (the smallest 

integer greater than or equal to x ). 

Table 5 lists the ten shape types identified by shape index and curvedness and their 

corresponding integer representations calculated by equation (8). 



{Please insert Table 5 here} 

After local shape type identification, an iterative voting method is applied to refine the 

local shape types of all the vertices. Finally, the shape type clusters are partitioned into 

isolated regions using region growing method. 

5.2.1 Local shape type refinement 

The local shape types of vertices can be ideally identified for tessellated mesh model 

generated from nominal CAD model. However, for the mesh model built from measured 

point data, the local shape types may be incorrectly identified due to various errors, such 

as the manufacturing errors of surface, the measurement errors of point data and the 

mathematical errors from surface approximation and discrete curvature evaluation, etc.  

To solve the problem, an iterative voting method is applied to refine the local shape 

types of vertices according to their neighborhood information. In each iteration, given a 

vertex 
i

p  and its neighbor vertices (eg. one-ring stencil) ( )i
N p , we can calculate the shape 

type difference between 
i

p  and any neighbor vertex ( )j i
N∈p p  by Eq. (9). 
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( ) ( ) ( ) ( )
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                                                  (9) 

where ( )i
T p  and ( )jT p  are the local shape types of 

i
p  and j

p , respectively. 

 It can be explained by the ( )1 2,κ κ  plane shown in Fig.4. The direction of a half-ray 

reflects the local shape type while the distance from the origin reflects the local size of a 

vertex. Moreover, the origin represents planar vertex. When the shape type difference is 

calculated, size is not considered. So the shape types of all vertices can be projected on the 

same circle, and the difference of shape types can be evaluated by the angle between the 

two half-rays as shown in Fig.4. Four situations are considered for calculating the shape 

type difference between two vertices: 

• Both the shape types of 
i

p  and jp are non-planar:  the nine non- planar shape types 

are evenly distributed on the circle as shown in Fig.4. Assume the largest shape 

type difference is 1(between 4T =  and 4T = − ), then the shape type difference 

between any two vertices can be calculated as ( ) ( )1

8
j i

T T⋅ −p p .  

• Both the shape types of 
i

p  and jp are planar:  the shape types are the same, so the 

shape type difference is 0. 



• The shape type of 
i

p  is planar and jp  is non- planar: the shape type difference 

between planar and any of the nine non- planar shape types are the same and set as 

1/9. 

• The shape type of 
i

p  is non-planar and jp  is planar: since planar shape type is 

identified and adjusted by curvedness, so we don’t try to adjust non-planar shape 

type to planar shape type. In this case, we will ignore the influence of jp  on shape 

type refinement.   

 

{Please insert Fig.4 here} 

The possibility that the local shape type of 
i

p  should be relabeled to that of its 

neighboring vertex jp  can be evaluated by Eq. (10) and it should be refined to the one with 

maximum possibility, as shown in Eq.(11). The iteration terminates when the local shape 

types of all vertices do not change any more or a convergence condition is met. 

( ) ( )
( )

( )

1 ,

1 ,
j i

j i j

i j

j i j

N

d n
P T

d n
∈

 − ⋅   =   − ⋅ ∑
p p

p p
p

p p
                                                                           (10) 

where jn  is the number of vertices with local shape type ( )jT p  in the neighborhood 

( )iN p . 

( )
( )

( ){ }max
j i

i i j
N

T P T
∈

 =  p p
p p                                                                                            (11) 

5.2.2 Region growing by mesh crawling 

After sharp edge detection and local shape type identification, the vertices are clustered 

into eleven different shape type clusters. In each cluster, the local shape types of the 

vertices are the same but the vertices may not be connected. Therefore, the connected 

vertices are group together as one region using region growing method by mesh crawling. 

In this way, a shape type cluster is partitioned into several regions. 

A surface part example is used to explain the method, and its local shape types are 

visualized in Fig.5. It can be seen that the vertices are clustered into 3 shape type clusters: 

sharp edge cluster (lime), plane cluster (black) and ridge cluster (yellow). It’s evident from 

Fig.5 that the plane cluster contains two isolated regions. In order to explain and display 

the region growing process clearly, here we use coarse mesh so that the grid size is large 

enough for visualization, as shown in Fig.6. First of all, a vertex in the plane cluster is 

randomly chosen as the seed. Then the vertices that connect with the seed vertex are found 

based on the topological relationship. The search for connected vertices continues until all 

the vertices that have connective relationship are found. In this way, the isolated region is 



generated. The whole process is like mesh crawling starting from seed vertex toward radial 

outward direction until no more connected vertex can be found. The region generation 

process is iterated until all shape clusters are partitioned into isolated regions. 

{Please insert Fig.5 here} 

{Please insert Fig.6 here} 

Finally, the planar shape type cluster (shown as black in Fig.5) is partitioned into two 

isolated regions (shown as red and yellow in Fig.7) and the whole surface is segmented 

into four regions in total, as displayed in different colors in Fig.7. The sharp edge is shown 

in dark blue. The transition between region and sharp edge is displayed by gradient color. 

The sharp edge looks wide because the grid size is large along the sharp edge.  

{Please insert Fig.7 here} 

The initial regions obtained by curvature-based partitioning belong to the defined sharp 

edge and the ten local shape types. However, the ten local shape types can hardly convey 

invariance properties. Therefore, the initially obtained regions will be classified into the 

invariance classes based on slippage analysis in the next section. In addition, even with 

shape type refinement, some vertices can still be ill-identified due to the inaccurate 

estimation of curvature when there is noise. This will lead to some small improperly-

partitioned regions. In the next step, slippage analysis will be used to merge these 

improperly-partitioned regions into their neighboring regions with high similarity score. 

5.3 Refined region partitioning by slippage analysis 

The problem of partitioning by slippage analysis lies in the difficulty of determining the 

most appropriate initial patch size analytically. To solve this problem, point cloud or mesh 

is firstly partitioned based on shape index and curvedness. Then the obtained regions 

become the initial patches as the input of slippage signature-based partitioning. The 

vertices in each initial patch belong to the same local shape type, which makes the 

calculation of slippage signature more accurate. Meanwhile, sharp edges are detected by 

curvedness and won’t be influenced by the initial patch size. After slippage signature-based 

partitioning, the regions are refined and each of them belongs to one of the invariance 

classes.  

For each initial patch, we can form a covariance matrix 
c

M , and the slippage signature 

is calculated as the eigenvectors of small eigenvalues of 
c

M . The partitioning process 

proceeds by merging adjacent patches with high similarity score into slippable components. 

First, we identify the adjacency relationship between patches and form adjacent patch pairs. 

For mesh input, if two patches are connected by edges they are considered as adjacent patch 

pair. For point cloud input, if two patches share points they are adjacent patch pair.  



Consider each adjacent patch pair ( ),i jP P , their  slippage signatures are iSS  and jSS . 

Then their similarity score is computed as: 

1( , ) ( ) ( , ) ( , )i j k i jSim P P G C P k C P kσ += ⋅ ⋅                                                                           (12) 

where k  is the minimum number of slippable motions considered, 1kσ +  is the ( )1 stk +  

singular value of the combined matrix of slippage signatures 
i jSS SS    and G  is the 

Gaussian function centered around 0 with its width determining the difference degree 

between the slippage signatures of adjacent patch pair ( ),i jP P .  The function C  acts as a 

confidence multiplier for the similarity score:                                        
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                                                                 (13) 

where N  is the desired size of individual segmented components.  

The adjacent patches with high similarity score are merged into one region. The 

similarity evaluation and region merging process iterates for 3 times (from =3k  to =1k ) 

until all the adjacent regions have low similarity score [5]. The obtained regions belong to 

the invariance classes, whereas the regions with no slippable motion ( =0k ) belong to 

complex class. 

5.4 Invariance class recognition by statistical evaluation 

After refined region partitioning based on slippage signature, the invariance class that 

each region belongs to should be determined. Each region is a geometric set S  composed 

of a collection of vertices { }1, , , ,i np p pL L , where ( ), ,i i i ix y z=p . It can be represented 

by the indicator function Si  : 

{ } ( )3 3: 0,1 , 1S Si i Sℜ → ∀ ∈ℜ = ⇔ ∈p p p                                                                 (14) 

Then the indicator function 
Si  inherits the invariance attribute of S  in automorphism 

motions as described in Section 3. Each invariance class in Table 2 admits a probabilistic 

model iM  having some peculiar structure derived from the symmetries in S . The 

invariance class recognition process is explained as follows. 



A region { }1, , , ,
i n

S = p p pL L  where ( ), ,
i i i i

x y z=p  can be considered as a sample 

extracted from a PDF whose parametric form is unknown. Therefore, seven transformed 

PDFs based on the seven invariance probabilistic models ( )1, ,7iM i = L  are reconstructed 

for the region S , as shown in Table 3. Then the fitting degree between the region S  and 

the reconstructed PDFs is used to discover the symmetries in region. The likelihood of 

model 
i

M  is calculated by Leave-One-Out method [48] as 

( ) ( )( )
1

ˆ , , ,R , ;
n

i j j j i ij i j ij

j

L M p x y z M F S R
=

= ∏ %                                                                  (15) 

( ){ } { }\ , , 1, ,
j j j j

S S x y z j n= ∀ ∈ L                                                                                (16) 

( )( )arg max , , ;
i

ij j i i i j i
R

R p S M R F S R= %                                                                             (17) 

where ijR  is the maximum likelihood estimate of minimum reference parameters 
i

R  for jS . 

In practice, we use ( )ˆlog iL M  to evaluate the fitting degree. The model with the largest 

value of ( )ˆlog iL M  is considered as the best fitting model, and the region S  is considered 

to belong to the corresponding invariance class. 

After invariance class recognition, quick and accurate identification of features is 

meaningful and important for geometrical product specifications and verification. 

Therefore, in this paper a shape color wheel is developed to visualize features according to 

their invariance classes, as shown in Fig.8.  

{Please insert Fig.8 here} 

The main principle is that the colors should be easily recognizable and nameable. Six 

colors (red, yellow, green, cyan, blue and magenta) evenly distributed on the color circle 

are used to represent the six invariance classes with ( )0dim ( ) 0Aut S >  (planar, revolute, 

cylindrical, spherical, prismatic and helical). Features with the same dimension of 

automorphism are represented by complementary colors. Complex invariance class with 

( )dim ( ) 0Aut S =  stands out by black color. Sharp edges are visualized in purple. 

6. Experiments and results  

The hybrid partitioning process proposed in this paper is implemented in MATLAB 

R2017a environment. Various nominal models built in CATIA V5 and measured point 

clouds have been tested.  The results of the proposed partitioning process has also been 

compared with the curvature-based method and the slippage analysis method on low-

density data, high-density data as well as noisy data. 



6.1 Nominal models 

A case study part composed of semi-sphere and cube (we call it sphere-cube part) is 

used to explain and verify the proposed methodology.  In the initial partitioning step, sharp 

edges and shape types of case study model are identified and visualized as shown in 

Fig.9(a), and then 59 isolated regions are partitioned as shown in Fig.9(b). Fig.9(c) shows 

the refined regions obtained by slippage signature-based partitioning. The 59 initial regions 

are merged into 28 regions and each refined region belongs to one type of the invariance 

class. The color is randomly chosen to distinguish each region in Fig.9 (b) and (c). 

{Please insert Fig.9 here} 

Thereafter, the invariance class of each region is recognized by the statistical model. 

Three regions obtained by the refined region partitioning method and their corresponding 

rankings of ( )ˆlog iL M  against invariance classes are shown in Fig.10-12. It can be seen 

that the three regions are correctly recognized as planar, cylindrical and spherical classes, 

respectively. Since helical shape is not commonly used in engineering, it’s not considered 

in the case study. 

{Please insert Fig.10 here} 

{Please insert Fig.11 here} 

{Please insert Fig.12 here} 

Finally, the features of the case study model are recognized and visualized according to 

the invariance classes that they belong to, as shown in Fig.13. Features belonging to three 

invariance classes that are planar, cylindrical and spherical are correctly recognized and 

visualized in red, green and cyan, respectively. The sharp edge between sphere and plane 

is shown in purple color. 

{Please insert Fig.13 here} 

We have also tested our hybrid partitioning process on other nominal models. Fig.14 

shows the results of partitioning and recognition for a simple part. First of all, the nominal 

CAD model is tessellated into mesh model and vertices in mesh model are clustered into 

sharp edges and ten shape types by computing shape index and curvedness shown in 

Fig.14(a). Then it is partitioned into isolated regions shown in Fig.14(b). Because the part 

has a simple shape and discrete curvatures are accurately estimated, all vertices are 

correctly identified and partitioned into 20 regions including 19 surface regions and 1 sharp 

edge region. In this case, region refinement by slippage signature-based partitioning is even 

unnecessary. Finally, based on statistical evaluation, the exact invariance class of each 

region is recognized and visualized by the defined shape color wheel, as shown in Fig.14(c). 

{Please insert Fig.14 here} 



Fig.15 shows the results of partitioning and recognition for a revolution part example. 

Sharp edges and shape types are identified as shown in Fig.15(a). It is obvious that some 

vertices are incorrectly identified, especially in torus area.  This leads to the unsatisfying 

partitioning results of total 48 regions with some small regions as shown in Fig.15(b). 

Therefore, a slippage signature-based partitioning method is applied to refine the regions. 

The small regions are correctly merged into the neighborhood regions and the region 

number is refined into 16, including 6 sharp edge regions and 10 surface regions, as shown 

in Fig.15(c). The invariance class of each region is recognized and visualized in Fig.15(d). 

{Please insert Fig.15 here} 

Fig.16 shows the results of partitioning and recognition for a fandisk model. From left 

to right, the three columns give the back, right and front view of the fandisk. In Fig.16(a), 

the mesh model is identified into sharp edges and ten defined shape types based on shape 

index and curvedness and then it’s partitioned into 252 regions as shown in Fig.16(b). Next, 

the 252 regions are refined into 25 regions by using slippage signature-based partitioning, 

which includes 24 surface regions and 1 sharp edge region, as shown in Fig.16(c). The 

invariance classes are recognized as shown in Fig.16(d). 

{Please insert Fig.16 here} 

6.2 Point cloud 

The proposed partitioning process is also tested on measured point cloud of a blade, as 

shown in Fig.17(a). At first, the point cloud is meshed to build the topology of the shape 

so that discrete curvatures can be estimated. Then sharp edges and ten shape types are 

identified for all the vertices. The initial identification result is not so satisfactory due to 

various errors, as shown in Fig.17(b). Therefore, the local shape types are refined by the 

proposed iterative voting method, as shown in Fig.17(c). However, there are still some 

vertices with local shape type incorrectly identified, leading to many small regions in the 

initial region partitioning, as shown in Fig.17(d). After slippage signature-based region 

partitioning, small regions are merged and the number of regions is greatly decreased so 

that the segmentation quality is significantly improved, as shown in Fig.17(e). The 

invariance classes are recognized as shown in Fig.17(f). 

{Please insert Fig.17 here} 

6.3 Comparisons 

The curvature-based partitioning, the slippage analysis-based partitioning and the 

proposed hybrid partitioning are tested and compared on various data including a low-

density nominal data with 3520 vertices, a high-density nominal data with 12472 vertices 

and a low-density noisy data with 3520 vertices. The partitioning results are shown in 

Fig.18.   



{Please insert Fig.18 here} 

It can be seen that all the methods achieve better partitioning on the high-density 

nominal data than on the other two sets of data. It also shows that the results obtained by 

the hybrid partitioning process are the best. In the curvature-based partitioning, the 

curvature of a vertex is estimated approximately by its local neighborhood, so it is sensitive 

to the description of the neighborhood. Therefore, the curvatures of some vertices may not 

be accurately evaluated and then their shape types may not be correctly identified, which 

leads to incorrect small region generation. In the slippage analysis-based partitioning, the 

iterative adjustment of initial patch size increases the calculation amount of partitioning 

process evidently.  Moreover, the edges between two regions identified by the slippage 

analysis method are not as smooth as those identified by the other two methods.  

The performance of the curvature-based partitioning is affected greatly by the noise. 

Due to the influence of the noise, the evaluation of curvature is inaccurate and it then leads 

to many small regions in partitioning, as shown in Fig.18(c). The slippage analysis-based 

partitioning has poor performance on low density data. It is because that the low density 

can cause the inaccurate estimation of slippage signature and then lead to wrong patch 

growing, especially for transition area. It can be also seen that the proposed hybrid 

partitioning process has better performances than the curvature-based partitioning and the 

slippage analysis-base partitioning in all the situations. It is robust to both low density and 

noise situation.   

The results above show that the proposed hybrid partitioning process can achieve not 

only appropriate partitioning but also accurate invariance class recognition for geometrical 

product specifications and verification. The defined shape color wheel facilitates the 

visualization of invariance classes for quick and accurate identification. In addition, the 

proposed partitioning process performs well for both nominal models and measured point 

clouds. And it shows better robustness compared with the curvature-based partitioning and 

the slippage analysis-based partitioning in the situations of low-density data and noisy data. 

7. Conclusion

In this paper, a state-of-the-art survey of existing partitioning methods is performed and

a comprehensive and detailed classification of partitioning methods is proposed. 

Subsequently a hybrid partitioning process for geometrical product specifications and 

verification is developed. The method proceeds in three main steps: initial partitioning by 

evaluating shape index and curvedness, refined partitioning based on slippage analysis and 

invariance class recognition by statistical evaluation. Through these steps, the shape is 

partitioned into regions and each region is recognized as one of the seven invariance classes 

defined in ISO GPS. Finally a shape color wheel is defined to visualize regions according 

to their invariance classes.  

The proposed hybrid partitioning process has been tested on various models and point 

clouds. It has been proved that the proposed method can partition both tessellated nominal 



models and measured point clouds appropriately and it has good robustness in the situations 

of low density and noise of the vertices. In addition, it enables the accurate invariant class 

recognition for geometrical product specifications and verification.  

Therefore, it paves the way and draws new type of classification and usage for 

partitioning to enrich the concepts and provide scientific basis for ISO 18183 series 

spearheaded by the ISO/TC 213/AG 12 (Mathematical Support Group). Thus, default 

partitioning and geometric specifications can be addressed considering invariance classes 

of surfaces which is a fundamental classification principle in ISO GPS.  

A future work will investigate new statistical approaches for vertex clustering, robust 

estimation of normal and curvature parameters, and the evaluation of partitioning results. 

Furthermore, the newly emerging and promising geometric deep learning methods will be 

investigated to improve the proposed method [59].  
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i

L M  
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Complex -4.6792 e+03 

Planar -4.9760 e+03 

Invariance class ( )ˆlog
i

L M  

Spherical -1.7274 e+03 

Revolute -3.1129 e+03 

 Cylindrical -3.9109 e+03 

Complex -4.3946 e+03 

Prismatic -5.3517 e+03 

Planar -6.5109 e+03 
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Fig.18 Partitioning result comparison between the curvature-based partitioning, the 

slippage analysis-based partitioning and the proposed hybrid partitioning (For 

interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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Table 1 Summary and comparison of partitioning methods 

Partitioning 

methods 

References Advantages Disadvantages Shape 

recognition 

Edge detection 

methods 

[12] [13] 

[14] [15] 

High efficiency Insufficient robustness; 

Inaccurate results in case of 

noise and uneven density of 

point clouds 

� 

Region 

growing 

methods 

[16] [17] Robustness to 

noise 

Sensitivity to the initial seed 

selection, the attributes used and 

the termination criteria, etc. 

� 

Attributes 

clustering 

methods 

[18] [19] 

[20] [21] 

[22] [23] 

[24] [25] 

High efficiency Sensitivity to the noise in the 

data and the definition of 

neighborhood; the results 

depend on the selected attributes 

and their derivation techniques 

� 

Shape fitting 

methods 

[26] [27] 

[28] [29] 

[30] 

High efficiency; 

robustness to 

outliers 

Difficulty in determining the 

initial minimal point sets; 

Incapability for complex shapes 

Geometric 

primitives 

Model driven 

methods 

[31] [32] 

[33] [34] 

[35] [36] 

Being intuitive to 

use the existing 

models 

High computational complexity, 

having limitation on 3D point 

clouds, e.g. over segmentation 

� 

Deep learning 

methods 

[37] [38] 

[39] 

High accuracy 

and robustness 

High computational cost � 

Hybrid 

methods 

[40] [41] 

[42] [43] 

[44] 

Improved 

performance 
� Depend on 

combined 

methods 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 ISO GPS invariance classes [1-3] 

Number Invariance 

class  

Discrete differential 

geometry example S  
0 ( )Aut S  Reference 

element or tuple 
( )0dim ( )Aut S  

S1 Spherical 

 

(3)R  Point 3 

S2 Cylindrical 

 

 

(1) (1)T R×   Straight line 2 

S3 Planar 

 

(2) (1)T R×  Plane 3 

S4 Helical 

 

(1) (1)T R×  

with pitch µ   

Helix 2 

S5 Revolute 

 

(1)R  (Point, Straight 

line) 

1 

S6 Prismatic 

 

(1)T  (Straight line, 

Plane) 

1 

S7 Complex 

 

i   (Point, Straight 

line, Plane) 

0 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3 The seven semi-parametric models and their transformed PDFs [45-48] 

Semi-

parametric 

models 

Reference 

parameters 

Transformation of 

co-ordinate 

reference system 

Transformed PDF 

The spherical 

model 1M

Sphere center

{ }1 , ,x y zR o o o=
( ) ( ), , , ,x y z ρ ϕ θ→ ( )( )

( ) ( )( )
1 1 1 1

1 1

, , , , ;

cos
;

4

p M R F S R

p F S Rρ

ρ ϕ θ

θ
ρ

π

=

The 

cylindrical 

model 2M

Symmetry axis 

{ }2 , , ,x y x yR r r t t=
( ) ( ), , , , 'x y z zρ ϕ→ ( )( )

( )( ) ( )( )
2 2 2 2

'

2 2 2 ' 2

, , ' , , ;

1
; ' ;

2

z

Z

p z M R F S R

p F S R p z F S R
ρ

ρ

ρ ϕ

ρ
π

=

The planar 

model 3M

Normal vector 

{ }3
, ,

x y z
R n n n=

( ) ( ), , ', ', 'x y z x y z→ ( )( )
( )( ) ( )( ) ( )( )

3 3 3 3

' ' '

3 ' 3 3 ' 3 3 ' 3

', ', ' , , ;

' ; ' ; ' ;
x y z

x y z

p x y z M R F S R

p x F S R p y F S R p z F S R

=

The helical 

model 
4M

Symmetry axis 

and helix pitch 

{ }4 , , , ,x y x yR r r t t µ=

( ) ( ), , , , 'x y z h zρ→ ( )( )
( )( ) ( )( )

4 4 4 4

'

4 4 4 ' 4

, , ' , , ;

, ; ' ;h z

h z

p h z M R F S R

p h F S M p z F S R
ρ

ρ

ρ

ρ

=

The revolute 

model 
5M

Symmetry axis 

{ }5 , , ,x y x yR r r t t=
( ) ( ), , , , 'x y z zρ ϕ→ ( )( )

( )( )
5 5 5 5

,

5 5

, , ' , , ;

1
, ' ;

2

p z M R F S R

p z F S R
ρ

ρ ϕ

ρ
π

=

z'

The prismatic 

model 
6M

Normal vector 

{ }6 , ,x y zR n n n=
( ) ( ), , ', ', 'x y z x y z→ ( )( )

( )( ) ( )( )
6 6 6 6

' ' '

6 ' ' 6 6 ' 6

', ', ' , , ;

', ' ; ' ;x y z

x y z

p x y z M R F S R

p x y F S R p z F S R

=

The complex 

model 
7M

7
R = ∅ ( ) ( ), , , ,x y z x y z→ ( )( ) ( )7 7 7 7, , , , ; , ,p x y z M R F S R p x y z S=



Table 4 The curvatures of the invariance classes [1-3] 

Invariance 

class 

Discrete 

differential 

geometry 

example 

0 ( )Aut S Maximum and 

minimum principal 

curvature 1κ , 2κ

Shape index and 

curvedness 

Invariance of 

curvature 

Spherical (3)R  
1 2

constκ κ= = 1s = ± ,

1 2/ 2 / 2c κ κ= =
l m n o

κ κ κ κ= = =

l m n o
s s s s= = =

l m n o
c c c c= = =

Cylindrical (1) (1)T R× 1 constκ = , 2 0κ =
or 1 0κ = ,

2
constκ =

0.5s = ± , 1 / 2c κ=

or 2 / 2c κ=
l m n

κ κ κ= =

l m ns s s= =

l m nc c c= =

Planar (2) (1)T R× 1 2 0κ κ= = 0c =
l m n oκ κ κ κ= = =

l m n os s s s= = =

l m n oc c c c= = =

Helical (1) (1)T R×
with pitch 
µ  

1
0κ ≠ ,

2
0κ ≠ [ ]1,1s ∈ − , 0c > l m

κ κ=

l m
s s=

l m
c c=

Revolute (1)R 1 2κ κ≥ [ ]1,1s ∈ − , 0c > l mκ κ=

l ms s=

l mc c=

Prismatic (1)T 1 0κ > , 2 0κ =
or 1 0κ = , 2 0κ <

0.5s = ± , 1 / 2c κ=

or 2 / 2c κ=
l m

κ κ=

l m
s s=

l mc c=

Complex i
1 2κ κ≥ [ ]1,1s ∈ − , 0c > 0 

Table 5. Shape types and the corresponding integer representations.

l
m

n
 1R

 1T

 
µ

 1T
l

m
1R

 1R

l

m

 T
l
m



Shape Type Shape index and curvedness Integer representation 

Spherical cup [ )1, 7 / 8s ∈ − − -4

Trough [ )7 / 8, 5 / 8s ∈ − − -3

Rut [ )5 / 8, 3 / 8s ∈ − − -2

Saddle rut [ )3 / 8, 1/ 8s ∈ − − -1

Saddle [ )1/ 8, 1/ 8s ∈ − + 0 

Saddle ridge [ )1/ 8, 3 / 8s ∈ + + 1 

Ridge [ )3 / 8, 5 / 8s ∈ + + 2 

Dome [ )5 / 8, 7 / 8s ∈ + + 3 

Spherical cap [ ]7 / 8, 1s ∈ + + 4 

Plane
p

c c< 5 




