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Reduced models, mirroring self-similar, fractal nature of two dimensional turbulence are pro-
posed, using logarithmic spiral chains, which provide a natural generalization of shell models to
two dimensions. In a turbulent cascade, where each step can be represented by a rotation and a
scaling of the interacting triad, the use of a spiral chain whose nodes can be obtained by scaling and
rotating an original wave-vector provides an interesting perspective. A family of such spiral chain
models depending on the distance of interactions, can be obtained by imposing a logarithmic spiral
grid with a constant divergence angle and a constant scaling factor, and imposing the condition
of exact triadic interactions. Scaling factors in such sequences are given by the square roots of
known ratios such as the plastic ratio, the supergolden ratio or some small Pisot numbers. While
spiral chains can represent mono-fractal models of self-similar cascade, which can span a very large
range in wave-number domain with good angular coverage, it is also possible that spiral chains or
chains of consecutive triads play an important role in the cascade. As numerical models, the spiral
chain models based on decimated Fourier coefficients have the usual problems of shell models of two
dimensional turbulence such as the dual cascade being overwhelmed by statistical chain equipar-
tition due to an almost stochastic evolution of the complex phases. A generic spiral chain model
based on evolution of energy is proposed, which is shown to recover the dual cascade behavior in
two-dimensional turbulence.

I. INTRODUCTION

Two dimensional turbulence is a well studied
problem[1–3]. Its basic questions are relatively well un-
derstood, and direct numerical simulations with recent
computing capabilities provide reasonable amount of de-
tail for its study[4]. In other words, it is not a physics
problem, to which one would normally apply “reduction
techniques”, since direct numerical simulations can al-
ready cover a meaningful range of scales. However there
are problems in nature that are rather similar to two
dimensional turbulence, but can be rather demanding
in terms of the cost of the description of a large range
of scales in these systems. There are many examples,
from geophysics[5, 6] to plasma physics[7, 8], of complex,
rich, quasi-two dimensional problems, which are hard to
resolve either due to complexities involving multiscale
physics with large scale separation or complexities of the
description itself (for example a 2D kinetic problem re-
quiring 4D simulations[9, 10], where reduced models ac-
tually become very useful[11, 12]). While details such
as geometry, boundary conditions and linear physics in
these problems are rather different, advection of (regular
or potential) vorticity is a unifying theme[13–15]. There-
fore, if a novel reduction scheme is to be proposed for
one of these systems, this scheme must first be studied in
the setting of two dimensional turbulence, where the con-
frontation to physical reality can be achieved more easily
due to availability of a relatively good understanding of
physical processes and high resolution direct numerical
simulations. In this paper we propose a reduction scheme
based on a logarithmic grid in the form of a spiral. This

reduction scheme is the natural generalization of shell
models[16] to two dimensions, in that while shell models
have wave-numbers kn = k0g

n, spiral chain models have
kn = k0

(
geiα

)n , where g is the scaling factor and α
is the divergence angle, in complex vector notation [i.e.
kxn, kyn = Re (kn) , Im (kn)]. In other words, the scaling
factor g in the definition of the wave-number of the shell
model is replaced by the complex number z = geiα. This
simple proposition is worth developing since, while multi-
plication by a real number denote scaling, multiplication
by a complex number denote “scaling and rotation”. Fur-
thermore the systematic “derivation” of these models is
proposed by imposing a particular logarithmic spiral grid
and keeping only exact triadic interactions, which results
automatically in a limited interaction set. Here we in-
troduce these models for the first time, and demonstrate
their use for two dimensional turbulence and discuss their
capabilities and limitations.

Mathematically, the particularity of the spiral form is
that it keeps certain quantities (such as the angle between
two consecutive elements) invariant as the structure is
scaled and rotated. This provides a natural self-similar
framework with which some physical systems operate.
Spiral patterns emerge in many nonlinear problems in
nature, from galaxy formation to crystal growth, from
plants to animals and from atmospheric cyclones to small
scale turbulence, they appear at very different scales and
in very different problems. They are a fundamental el-
ement of phyllotaxis -the dynamical phenomenon of ar-
rangement of seeds or petals of a plant (sometimes in
the form of flowers) as it grows[17]. One of the key as-
pect of phyllotaxis is how a discrete structure that grows
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through iteration manages optimal packing, leading to
the observed fractal pattern[18, 19]. Similar concepts
apply to reaction-diffusion systems where spiral patterns
arise in a continuum of deformations[20]. Incidentally,
spiral patterns also occur in turbulence[21], especially in
two dimensions[6, 22], mainly as a result of self shearing
of smaller scale structures by large scale flows, and the
resulting self-similarity of the turbulent flow, where the
structure remains the same as it scales and turns. In fact
the basic motion of scale and rotate (i.e. “swirl”), associ-
ated with a turbulent flow naturally implies a spiral-like
pattern.

Of course all of these are spirals in real space. How-
ever, spirals in wave-vector space are also potentially in-
teresting for the study of turbulent dynamics. Common
sense suggests that nonlinear interactions that scale and
rotate real space structures, and would do the same to
wave-vectors as well. For instance, if we have a par-
ticular direction of anisotropy, at a given scale, nonlin-
earity tends to generate a “next” scale in the hierarchy,
which is anisotropic in a direction that is “at a certain an-
gle” to the original direction of anisotropy. Thus, when
there is a large scale source of anisotropy, going towards
smaller scales, the direction of anisotropy at each scale
keeps changing, which results in a spiral form.

Energy (and enstrophy for two dimensions), gets trans-
ferred via triadic interactions in turbulent flows[23, 24].
In general for a given scale, there are many such triads
that can transfer energy or enstrophy in either directions
to other scales. If, for some reason, one of these triads is
“dominant” -for example due to the fact that it maximizes
the interaction coefficient-, it is natural that this triad
will take more of the energy or enstrophy along. Then,
at the next scale the energy goes, the “same triad” (now
rotated and scaled), will likely win again for the same rea-
son that it won at the first scale, transferring the energy
to the next one along a chain of such dominant triads. It
is unclear if the small differences among nearby triads in
terms of their capacity to transfer energy and enstrophy
justifies a reduction of the turbulent transfer to a pic-
ture of transfer along a single chain of scaled and rotated
triads that arrange naturally into a spiral. Nonetheless
the picture of turbulent energy transfer as taking place
along chains of spirals that compete with and couple to
one another (instead of the naive and incorrect picture of
a “radial” flux in k-space) can be thought of as a theoret-
ical picture that can be useful to understand turbulent
cascade in Fourier space whose potential applications to
more complex unexplained issues in turbulence remains
to be seen.

Various kinds of reduced models have been proposed in
the past, in order to study both the nonlinear cascade and
the direction of anisotropy in turbulent flows from shell
models[16, 25], to differential approximation models[26–
28] to closure based models[29, 30] to tree models[31–33]
to reduced wave-number representations[34] as well as

models based on Galerkin truncation[35, 36]. Here we
propose a reduction of two dimensional turbulence based
on spiral chains, which are chains of wave-numbers that
are obtained by scaling and rotating a single triad such
that the smaller wave-number of the triad, after scaling
and rotation (or after a few scalings and rotations), be-
comes, first the middle wave-number and then the larger
wave-number. In principle a number of such spiral chains
can be used, instead of a single one, in order to span the
k-space more completely. Shortcomings of these models
should also be mentioned. For example, it is clear that
when compared to a regular grid, the logarithmic spi-
ral grid has very little angular resolution in small scales
(since the number of resolved angles at a given scale is
roughly constant). A more important shortcoming that
the basic version of the model share with shell models of
two dimensional turbulence is that due to randomization
of the complex phases, the basic model evolves towards
an unphysical chain equipartition solution instead of the
inverse energy cascade solution. This is a well known
problem for shell models of two dimensional turbulence
[37] and the usual solution is to increase the number of
degrees of freedom as a function of scale using for exam-
ple an hierarchical tree structure[31]. Here we propose an
alternative solution which basically gets rid of the phase
evolution by considering the evolution of quadratically
conserved quantities (in this case energy) directly.

The rest of the paper is organized as follows. In section
II, the problem of a single triad is revisited and the con-
cept of triad chains or consecutive triads by which the
energy is transferred is discussed. In section III, regu-
lar spiral chain models for certain chains with relatively
local interactions are introduced. The general case of
arbitrarily distant interactions is also covered in this sec-
tion where a list of possible values of scaling factors and
divergence angles are given in table I. Possible station-
ary solutions are discussed in Section IIIA, conservation
of energy and enstrophy for spiral chains is formulated
in Section III B and dual cascade solutions are inves-
tigated in Section III C. In Section IV a spiral chain
model formulated for chain energy En is introduced. Re-
interpreting this model as a model for shell energy, with
the assumption of isotropy, which allows the interactions
to be infinitesimally local, the continuum limit is com-
puted and found to be the usual differential approxima-
tion model form for the two dimensional Euler turbulence
in section IVA. A four spiral chain model with good an-
gular coverage is introduced in IVB. Numerical results
for a subset of these spiral chain models are given in V.
Section VI is conclusion.

II. DYNAMICS OF A SINGLE TRIAD

Two dimensional turbulence, as represented by an
equation of advection of vorticity[2], or more generally,
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of potential vorticity[38] can be relevant as a simplified
limiting case of many physical problems from rotating
turbulence in laboratory experiments[39], to geostrophic
turbulence in planetary atmospheres[40], to drift wave
turbulence in tokamak plasmas[41]. It can be described
using two dimensional Navier-Stokes equation, written
here in terms of the stream function:

∂t∇2Φ + ẑ×∇Φ · ∇∇2Φ +DΦ = 0 , (1)

where D could represent viscosity or hyper-viscosity nec-
essary for dissipation of energy and enstrophy for the
system. Its Fourier transform can be written in general
as

∂tΦk =
∑

p+q=−k

ẑ× p · q
(
q2 − p2

)
k2

Φ∗pΦ
∗
q −DkΦk

with the convention that
∑
p+q=−k represents a sum over

p and q such that k + p + q = 0 (with p < q, since the
interaction coefficient is symmetrized). Now consider a
single triad consisting of k, p and q such that k < p < q.
If η ≡ ln(q/k)

ln(p/k) ∈ Q (i.e. is rational) we can write p = kg`

and q = kgm (i.e. η = m/`). Obviously not all triangles
satisfy the condition η ∈ Q. However there is usually
an approximately equivalent triangle from a physics or
numerics perspective, which does. If one is restricted
to low order rationals for η, it is only a particular class
of triangles, which can be represented as p = kg` and
q = kgm with ` and m integers and g > 1 (i.e. g ∈ R).

For those triangles, we can write the interaction, with-
out dissipation and forcing as:

∂tΦk = k2 sinαqpg
m+`

(
g2m − g2`

)
Φ∗pΦ

∗
q

∂tΦp = k2 sinαqpg
m−` (1− g2m

)
Φ∗qΦ

∗
k

∂tΦq = k2 sinαqpg
`−m (g2` − 1

)
Φ∗kΦ∗p

where we have used (ẑ× p̂ · q̂) = sinαqp = sin (θq − θp).
Since g > 1 and the middle leg of the triad (i.e. p) is
unstable as long as m > ` (which we have assumed by
assuming q > p) and gives its energy to the other two
wave-numbers.

The energy evolves according to

∂tEk =
(
g2m − g2`

)
tkpq

∂tEp =
(
1− g2m

)
tkpq

∂tEq =
(
g2` − 1

)
tkpq

where

tkpq = gm+`k4 sinαqpΦ
∗
pΦ
∗
qΦ
∗
k

It is easy to see that the total energy of the triad is con-
served. Following the reasoning discussed in Ref. [42],
the instability assumption implies tkpq > 0 since Ep
should decrease in time, where the overbar implies sta-
tistical ensemble average, which can be replaced by time
average in most cases.

The energy that is transferred from p to k is g2mtkpq,
while the energy that is transferred from q to p is simply
tkpq. On the other hand there is energy that is trans-
ferred from k to q (from the smallest to the largest wave-
number), which is g2`tkpq. Since g2m > g2`, Ek gets more
energy than it looses. However since g2` > 1, Eq also
gets more energy than it looses. This means the energy
is transferred from the middle wave-number to the larger
and smaller wave-numbers. If the sign of tkpq changes,
then the flow will be towards the middle wave-number, in
fact the system will naturally undergo such oscillations
as the energy of the middle wave-number gets depleted.

A. Consecutive triads:

Imagine the triad k, p, q discussed above. If we scale
it by g−` and rotate by −θp, we obtain a second triad
where k becomes the middle wave-number instead of the
smallest one (we call the other two wave-numbers as p′
and q′ with p′ < k < q′). and if we scale it by g−m,
and rotate by −θq, k becomes the largest wave-number
(with p′′ and q′′ such that p′′ < q′′ < k). Note that
p′ = kg−`, q′ = kgm−`, p′′ = kg−m, q′′ = kg`−m. By
defining k → kn, and assuming that those three triads
exist, we can write the evolution equation for Φkn → Φn,
in the absence of forcing and dissipation as

∂tΦn = k2
n sinαqp

[
gm+`

(
g2m − g2`

)
Φ∗n+`Φ

∗
n+m

+ gm−3`
(
1− g2m

)
Φ∗n−`+mΦ∗n−`

+ g`−3m
(
g2` − 1

)
Φ∗n−mΦ∗n−m+`

]
.

(2)

The three terms on the right hand side of (2) are the
contributions from (p, q), (p′, q′) and (p′′, q′′) respectively
or to the three triangles from the largest to the smallest.
Note that for a given triangle shape, the three terms in
(2) appear naturally representing the three different size
triangles (but of the same shape), where k play the role
of the smallest, the middle and the largest wave-numbers
consecutively. In fact one can also imagine adding a sum
over different shapes of triangles in order to provide a
complete description.

If we call the triangles from the smallest to the largest
as 41, 42 and 43 respectively, we obtain 42 by scaling
41 by gm−` and rotating it by αqp = θq − θp, and 43,
by scaling 42 by g` and rotating it by θp. Obviously we
can repeat the procedure of rotating and scaling in order
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Figure 1. The triad 41 defined as ` = 1, m = 2, g =
√
ϕ.

Scaling41 by g and rotating by αqp = 141.830, we obtain42.
Scaling42 by g and rotating by π/2, we obtain43. Note that
the three triads share the common wave-vector q1 = p2 =
k3, which we can call kn. The energy inverse cascades via
p3 → kn → k2 (blue arrows, pointing from pi’s to qi’s) while
enstrophy forward cascades via p1 → kn → q2 (red arrows,
pointing from pi’s to ki’s).

to cover a whole range of k vectors in the wave-number
domain. However while the scaling is regular (i.e. we can
define a kn = k0g

n such that scaled wave-numbers always
have the form kn with n ∈ Z), in general the angles are
not perfectly regular.

Consider for example the triangle with g =
√
ϕ where

ϕ =
(
1 +
√

5
)
/2 is the golden ratio so that k = 1, p = g

and q = g2. The angle between k and p is a right angle
(since

√
1 + g2 = g2 with g =

√
ϕ), while the one be-

tween p and q can be computed from the law of cosines
as cosαqp = 1−p2−q2

2qp = 1−g2−g4
2g3 , which gives an angle

about αpq = 141.830 (note that αpq is the angle between
the two vectors, which is π minus the angle between the
two edges of the triangle). This corresponds to the tri-
angle defined by ` = 1, m = 2 and g =

√
ϕ. Scaling this

triangle 41 by g and rotating by π/2, we obtain triangle
42, scaling 42 by g and rotating by 141.830 we obtain
43. We can can construct a chain of such triads that are
connected to one another by the common wave-number
as shown in figure 1, for which the equation of motion
will still be (2). However the grid that is generated by
the triad chain is, in general, irregular.

However, it is obvious from this emerging picture that
if we had αqp = mαpk where m is some integer, we could
write the whole thing as a regular spiral, with kn = k0g

n

and θn = nα. It is also obvious that the class of triangles

that would result in such a regular spiral, are a very spe-
cial class: Each wave-number involved in such a system
is a rotated and scaled version of the wave-number before
it in a regular fashion.

III. SPIRAL CHAIN MODELS

Let us introduce the symbol Cs`sm`m to refer to a ba-
sic spiral chain consisting of the triad kn + s`kn+` +
smkn+m = 0, where kn = k0g

n and θn = αn [or us-
ing the equivalence between two dimensional vectors and
complex numbers, kcn = k0

(
geiα

)n with kn = Re (kcn) x̂+
Im (kcn)ŷ]. Note that g and α follows from `, m, s` and
sm, and therefore need not be stated explicitly. Here
s` and sm are the signs in front of the wave-numbers in
order to satisfiy the triad condition.

Considering ` = 2, m = 3 in (2), with θn = nα, so
that αpk = 2α, αqp = α and αqk = 3α, and all possible
interaction forms (i.e. k ± p ± q = 0), we find that the
law of cosines for the different cases give

cosαpk = ±
(
q2 − k2 − p2

2kp

)
= ±

(
g6 − g4 − 1

2g2

)
= cos 2α

cosαqp = ±
(
k2 − p2 − q2

2pq

)
= ±

(
1− g4 − g6

2g5

)
= cosα

cosαqk = ±
(
p2 − q2 − k2

2qk

)
= ±

(
g4 − 1− g6

2g3

)
= cos 3α

where the sign ± corresponds to the relative sign of the
two corresponding wave-numbers (e.g. p and k for αpk)
in the expression k±p±q = 0. We can obtain two poly-
nomial relations for g using the trigonometric relations
cos 2α = 2 cos2 α − 1 and cos 3α = cosα

(
4 cos2 α− 3

)
.

Both of these can be solved for the cases k − p + q = 0
and k − p − q = 0 with g ≈ 1.15096 and an angle
α = arccos

(
−g3/2

)
for the case k − p − q = 0 or

α = π − arccos
(
−g3/2

)
for the case k − p + q = 0.

Note that the actual positive root (g > 1 ) of the polyno-
mial equation is g =

√
ρ where ρ is the plastic number,

whose exact value can be written as:

ρ =

(
1

2

)1/3
(1−

√
23

27

)1/3

+

(
1 +

√
23

27

)1/3

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Figure 2. The spiral chain ` = 2, m = 3 with g =
√
ρ.

The counter clockwise primary spiral chain is shown in black
dashed lines while the clockwise secondary spirals are shown
in blue dashed lines. Note that as the energy travels along
the primary chain, it gets exchanged between the 5 secondary
chains. Finally an interacting triad with k = kn (black arrow,
pointing right), p = kn−2 (red arrow, pointing up) and q =
kn+1 (blue arrow, pointing left) is shown (i.e. k+q−p = 0).

1. Chain C−,−
2,3

For this basic chain, which can be denoted by C−,−2,3 a
basic evolution equation can be written as follows:

∂tΦn = k2
n sinα

[
g−7

(
g4 − 1

)
Φn−3Φ∗n−1

− g−3
(
g6 − 1

)
Φn−2Φ∗n+1

+ g9
(
g2 − 1

)
Φn+2Φn+3

]
+ Pn −DnΦn (3)

with Φn = Φ̂ (kn) as the Fourier coefficient of Φ, with
the wavevector kn = kn (cosαn, sinαn), where kn = k0g

n

and αn = αn, g =
√
ρ being the logarithmic scaling factor

and α = arccos
(
−g3/2

)
, being the divergence angle. Pn

and Dn are injection and dissipation respectively (i.e.
Dn = νk2

n for a usual kinematic viscosity and Pn = γnΦn
for an internal instability drive).

Note that using the relations g6−1 = g2, g4−1 = g−2

and g2 − 1 = g−8, possible due to the choice g =
√
ρ, we

can write (3) also as:

∂tΦn = k2
n sinα

[
g−9Φn−3Φ∗n−1 − g−1Φn−2Φ∗n+1

+ gΦn+2Φn+3

]
+ Pn −DnΦn (4)

While (4) conserves energy and enstrophy for g =
√
ρ, (3)

does so for arbitrary g, which makes it somewhat more

useful even though the two equations are identical for the
given value of g.

2. Chain C−,+
2,3

It is clear that there are many similar chains, such as
the one with α = π − arccos

(
−g3/2

)
= arccos

(
g3/2

)
,

which gives a similar model, but with a different conju-
gation structure:

∂tΦn = k2
n sinα

[
g−7

(
g4 − 1

)
Φ∗n−3Φn−1

− g−3
(
g6 − 1

)
Φn+1Φn−2

+ g5
(
g6 − g4

)
Φn+2Φ∗n+3

]
+ Pn −DnΦn (5)

and a different sampling of wave-vector directions.

3. Chain C+,+
−1,2 (or C+,+

1,3 )

We can obtain another chain by choosing ` = −1, m =
2, which gives αpk = −α, αqp = 3α and αqk = 2α. Using
the law of cosines and the relations between cosα, cos 2α
and cos 3α, we obtain g ≈ 1.21061, or g =

√
ψ where:

ψ =
1

3

[
1 +

1

21/3

((
29 + 3

√
93
)1/3

+
(

29− 3
√

93
)1/3

)]
is the so-called super golden ratio, and α =
arccos

(
g−3/2

)
for the form k + p + q = 0, and thus

an evolution equation of the form:

∂tΦn = k2
n sinα

[
g−11

(
g2 − 1

)
Φ∗n−2Φ∗n−3

− g−3
(
g6 − 1

)
Φ∗n−1Φ∗n+2

+ g3
(
g4 − 1

)
Φ∗n+3Φ∗n+1

]
+ Pn −DnΦn (6)

where we have used the fact that for this particular value
of α, we have sin 3α = −g−2 sinα.

4. Chain C−,+
−1,2 (or C−,−

1,3 )

A similar case to chain C+,+
−1,2 exists with g =

√
ψ and

α = arccos
(
−g−3/2

)
= π − arccos

(
g−3/2

)
, which corre-

sponds to k + q − p = 0 and the evolution equation of
the form:

∂tΦn = k2
n sinα

[
g−11

(
g2 − 1

)
Φ∗n−2Φn−3

− g−3
(
g6 − 1

)
Φn−1Φ∗n+2

+ g3
(
g4 − 1

)
Φn+3Φn+1

]
+ Pn −DnΦn
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The chain denoted by ` = 1, m = 3 corresponds to the
same chain as the one denoted by ` = −1, m = 2. (since
we can obtain one from the other by exchanging k and p).
This means we can write C+,+

−1,2 = C+,+
1,3 and C−,+−1,2 = C−,−1,3

or in general Cs`,sm`,m = Cs`,sm∗s`−`,m−` . This means that it is
sufficient to consider the case m > ` > 0.

5. Chains C−,−
2,3 + C−,−

1,5

Remarkably, the case ` = 1 and m = 5 gives g =
√
ρ

and α = arccos
(
−g3/2

)
exactly as in the case ` = 2 and

m = 3. This means that in fact these two spiral chains
are inseparable since a choice of g and α, will lead to an
evolution equation of the form:

∂tΦn = k2
n sinα

[
− g−19

(
g2 − 1

)
Φn−5Φ∗n−4

+ g−7
(
g4 − 1

)
Φn−3Φ∗n−1 − g−3

(
g6 − 1

)
Φn−2Φ∗n+1

+ g−3
(
g10 − 1

)
Φn−1Φ∗n+4 − g3

(
g8 − 1

)
Φn+1Φn+5

+ g9
(
g2 − 1

)
Φn+2Φn+3

]
+ Pn −DnΦn , (7)

It is easy to show that these are in fact all the interactions
that take place among the points of this particular spiral
(i.e. defined by g and α). Similarly there is another
double chain of the form C−,+2,3 + C+,+

1,5 as well.

6. Supplementary chains

Consider the two chains represented by C+,+
1,3 and C−,−1,3

discussed above. The two chains have the same g’s but
supplementary angles. This means that while the ++
chain has the angles θn = nα, the supplementary chain
has the angles θn = n (π − α). However since both Φn
and Φ∗n are considered for a given kn, adding or subtract-
ing π to an angle is equivalent to taking the complex con-
jugate or replacing kn → −kn. Therefore we can instead
use θn = −nα, and note that it corresponds to the spi-
ral that rotates in the opposite direction to the original
spiral. But with kn + kn+1 + kn+3 = 0, since the signs
of kn±` for odd ` change direction.

7. Other Chains:

If we consider other ` and m values, it is clear that
` = 4, m = 6 gives g4,6 = (g2,3)

1/2 and α4,6 = α2,3/2
etc. These are not unique chains but simply the same
chains that are repeated twice [or n times to get g2n,3n =

(g2,3)
1/n, and α2n,3n = α2,3/n]. In contrast, for a unique

chain, we have to compute g and α. In general, for any

` and m such that kn + s`kn+` + smkn+m = 0, we can
write

cos `α = s`

(
g2m − g2` − 1

)
2g`

cosmα = sm

(
g2` − g2m − 1

)
2gm

cos (m− `)α = sms`

(
1− g2m − g2`

)
2g(m+`)

.

Consistency requires that:

1

`
arccos

[
s`

(
g2m − g2` − 1

)
2g`

]

=
1

m
arccos

[
sm

(
g2` − g2m − 1

)
2gm

]

=
1

m− `
arccos

[
s`sm

(
1− g2m − g2`

)
2g(m+`)

]
(8)

where the arccos function is considered as multi-valued.
These equations can be solved numerically in order to
obtain spiral chains for any ` andm values. In general for
a given ` and m, one may have multiple solutions of (8)
because of the multivaluedness of the arccosine functions.
Note that the combination of s` and sm and g define a
unique angle α. See table I for the list of all possible
chains up to m = 9. Note that for each chain that is
represented in table I, there is also the supplementary

chain with α′ = π − α and s
′

` =

{
s` ` : even
−s` ` : odd

and

s
′

m =

{
sm m : even
−sm m : odd

.

A. Power law steady state solutions

Substituting Φn → Akαn in (2), the nonlinear term van-
ishes when:

g(α+3)m+(α+1)` − gm(α+1)+(α+3)`

+g(α+1)m−(2α+3)` − g(α+3)m−(2α+3)`

+g(α+3)`−(2α+3)m − g(α+1)`−(2α+3)m = 0

which can be satisfied if a) (α+ 1) = − (2α+ 3) (i.e.
α = −4/3) independent of the value of ` and m, in which
case the first term cancels the fourth one, the second term
cancels the fifth and the third term cancels last one, or
b) (α+ 3) = − (2α+ 3) (i.e. α = −2), where the first
term cancels the last one, second term cancels the third
one and the fourth term cancels the fifth one. These
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`,m g α s` sm `,m g α s` sm

1, 3
√
ψ arccos

(
g−3

2

)
+ + 1, 8 1.03945070 1.46320427 − −

2, 3
√
ρ arccos

(
g3

2

)
− + 1.06621540 1.25975111 + +

1, 4 1.06333694 1.33527844 − − 1.08374370 0.84015125 + −
1.18375182† 0.90934345 + + 3, 8 1.01792429 1.69767863 − −

3, 4 1.18375182† 0.53405772 − + 1.06244389 0.49612812 + +

1, 5 1.09900032 1.73645968 − + 1.09231550 0.71393754 − −
√
ρ arccos

(
g3

2

)
+ + 1.10929363 1.21438451 − +

2, 5 1.08646367 0.80694026 + + 5, 8 1.03950336 0.26297678 − +

1.16798953 1.16141175 − − 1.09658675 0.88770503 − −
3, 5 1.05036656 0.42007091 − + 1.13377435 1.12333647 + +

1.18711214 1.38623505 − − 7, 8 1.06295569 0.64055127 + −
4, 5 1.18738019 0.43181263 − + 1.16615357 0.27659675 − +

1, 6 1.04984644 1.42286906 − + 1, 9 1.02209200 1.29189202 − −
1.09917491 1.14794978 + − 1.04695854 1.66073000 − +

1.12611265 0.57438369 + + 1.06444465 1.11107685 + +

5, 6 1.03282504 0.86317030 + − 1.07613313 0.74087364 + −
1.18224537 0.36320601 − + 2, 9 1.01283840 0.58665015 − −

1, 7 1.01960526 1.20613634 − + 1.04380602 0.79080898 + −
1.06387323 1.45420091 + + 1.06554885 0.97639366 − +

1.09195331 0.97020783 + − 1.08001175 0.39672051 + +

1.10769105 0.48526744 + + 4, 9 1.02868986 0.45935343 + +

2, 7 1.05832758 0.77578744 − − 1.06421568 1.13693694 − +

1.09594733 0.53256457 + + 1.08867435 1.33411185 + −
1.11696283 1.30397985 − + 1.10276124 0.66651527 − −

3, 7 1.04634171 0.58605974 + + 5, 9 1.01511363 0.23291213 − +

1.09867941 1.44528037 − + 1.05910448 0.94513949 + +

1.12854879 0.84668921 − − 1.09277920 1.67194846 − +

4, 7 1.02518774 0.29962941 − + 1.11272153 0.73604039 − −
1.09707453 1.22673682 + + 7, 9 1.03085468 1.16917138 + +

1.14333477 0.96167330 − − 1.08966388 0.23866415 − +

5, 7 1.08331646 0.30342198 − + 1.14226818 1.46119977 − −
1.16177283 1.43362675 + + 8, 9 1.01340552 0.92556775 − +

6, 7 1.05175240 0.73504742 + − 1.06962466 0.5679008 + −
1.17446465 0.31385868 − + 1.15808690 0.24742995 − +

†1.18375182 =
√

1.40126837 is the square root of the smallest Salem number of degree 6.

Table I. Table of all spiral chains up to m = 9, corresponding to different interaction distances. Note that {`,m} = {2, 3} and
{`,m} = {1, 5} have exactly the same g and α and therefore can be combined in a single spiral chain model.

correspond to the usual Kraichnan-Kolmogorov spectra
E (k) ∝

{
k−3, k−5/3

}
since E (kn) ≡ Φ2

nkn[3]. Note that
these self-similar power law solutions on any spiral chain
Cs`,sm`,m , may be anisotropic in the sense that Φkx,0 6= Φ0,ky

for a given scale, are isotropic in the sense that if we
average over a few consecutive scales we get a solution
that is independent of the direction of k. The details
of the relation of these solutions to the dual cascade is
further discussed in Section III C.

However, numerical integration of the model with en-
ergy injected roughly in the middle of the spiral does
not seem to converge to these solutions (see sections

19 and V). Instead it seems that the Φn act as “ran-
dom” variables and the system goes to a chain equipar-
tition solution expected from statistical equilibrium such
that P (Φn) = e−(β1k

4
n|Φn|2+β2k

2
n|Φn|2)/2, which gives (i.e.

T1 = β−1
1 and T2 = β−1

2 ):〈
|Φn|2

〉
=

T1

k4
n + T1

T2
k2
n

and thus a spectral energy density scaling of the form
E (k) ∝

{
k−3, k−1

}
. In general which of these solutions

will be observed depends on various factors from numer-
ical details to the way the system is driven. In practice,
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the chain equipartition does not give a clean k−1 spec-
trum either (e.g. see section V). It is likely that the
resulting spectrum is actually that of an equipartition
along a structure of fractal dimension[43] implied by the
spiral chain. which could be thought of as a Fourier space
decimation [44].

B. Energy and Enstrophy

Multiplying (2) by Φ∗nk
2
n and taking the real part, we

can write the evolution of energy:

∂tEn =

[ (
g2m − g2`

)
tEn+` +

(
1− g2m

)
tEn

+
(
g2` − 1

)
tEn−m+`

]
+ PEn −DE

n (9)

where En = k2
n |Φn|

2

tEn ≡ Re
[
gm−3`k4

n sinαqpΦ
∗
n−`+mΦ∗n−`Φ

∗
n

]
(10)

or multiplying (2) by Φ∗nk
4
n,

∂tWn =

[(
g2(m−`) − 1

)
tWn+` +

(
1− g2m

)
tWn

+
(
g2m − g2(m−`)

)
tWn−m+`

]
+ PWn −DW

n (11)

where Wn = k4
n |Φn|

2, and

tWn ≡ Re
[
gm−3`k6

n sinαqpΦ
∗
n−`+mΦ∗n−`Φ

∗
n

]
. (12)

It is easy to see that total energy E =
∑
nEn and total

enstrophy W =
∑
nWn are conserved since tn’s can-

cel each-other at different orders. This is basically due
to the fact that each triad conserves energy and enstro-
phy, and thus each chain of triads represented by the spi-
ral chain conserves energy and enstrophy independently.
Considering mid scale, well localized drive (say around
the wave-number kf ), with both large scale and small
scale dissipations. If we sum over (9) from n = 0 up to
an n such that kn < kf , in the inertial range for energy,
we get:

∂t

n∑
n′=0

En′ + ΠE
n = −ε`

where ε` is the total large scale energy dissipation and

ΠE
n ≡ −

[ (
g2m − g2`

) m∑
j=1

tEn−m+`+j

+
(
1− g2m

)m−∑̀
j=1

tEn−m+`+j

]
(13)

A statistical steady state may imply:

Π
E

n = −ε` (14)

and if tEn is independent of n for an inertial range, we can
write

Π
E

n = −λEt
E
n (15)

where λE =

[ (
1− g2`

)
m −

(
1− g2m

)
`

]
. Note that for

g = 1 + ε, so that g2` = 1 + 2`ε+
(
2`2 − `

)
ε2 and finally

λ = 2 (m− `)m`ε2 > 0, since m > `. If we increase g,
λ > 0 will be more easily satisfied. So practically for any
g > 1 and ` > m, we have λ > 1.

Note that the instability assumption of a single triad
discussed in Section II for an arbitrary triad implies tEn >

0, resulting in an inverse cascade of energy (i.e. Π
E

n < 0).
Similarly by computing the sum over (11) from n to N
such that kn > kf is in the inertial range for enstrophy:

∂t

N∑
n′=n

Wn′ −ΠW
n = −εs

where εs is the total small scale dissipation and

ΠW
n ≡

[(
g2(m−`) − 1

) m∑
j=1

tWn−m+`+j

+
(
1− g2m

)m−∑̀
j=1

tWn−m+`+j

]
(16)

is the k-space flux of enstrophy. A statistical steady state
would imply:

Π
W

n = εs (17)

therefore a constant tWn that is independent of n. This
gives:

Π
W

n = λW t
W
n (18)

where

λW ≡
(
1− g2m

)
(m− `)−

(
1− g2(m−`)

)
m > 0

which can be seen from the fact that λW has the same
form as λE but ` replaced by m− `, and m− ` < m. The
instability assumption for a single triad suggests tWn > 0,
so we get a forward cascade of enstrophy.

C. Dual cascade solutions

In addition of the direction of the cascade, above for-
mulation can be used to obtain the cascade solutions.
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Recall that the idealized picture of the dual cascade is
that of a forward cascade of enstrophy consisting of a
constant enstrophy flux accompanied by zero energy flux
and an inverse cascade of energy consisting of a constant
(negative) flux of energy accompanied by zero enstrophy
flux. In real turbulence, these solutions are manifested
statistically, while in a reduced model they may appear
as exact solutions of the model.

Let us consider the solution for the forward enstrophy
cascade range. In this case we would have Π

E

n = 0 and
Π
W

n = εs as in (17), this gives tWn = εs/λW a constant
independent of n (see Eqn. 18). When this solution is
substituted into tEn = t

W
n k
−2
n = εsk

−2
n /λW , we find that

from (13) that:

Π
E

n = − εs
λW k2

n−m+`+1

[ (
g2m − g2`

)m−1∑
j=0

g−2j

+
(
1− g2m

)m−`−1∑
j=0

g−2j

]

and using the relation
∑m−1
j=0 g−2j =

(1−g−2m)
(1−g−2) , it is easy

to see that:

Π
E

n = −
εsk
−2
n−m+`+1

λW (1− g−2)

[ (
g2m − g2`

) (
1− g−2m

)
+
(
1− g2m

) (
1− g−2(m−`)

)]
= 0

Using the definition tWn from (12), assuming Φn is a
power law, or using t

E
n ∼ k−2

n , and t
E
n ∝ k4

n

〈
|Φn|3

〉
, one obtains a spectral energy density of the form
E (kn) = |Φn|2 kn ∝ k−3

n for the forward enstrophy cas-
cade range. This solution satisfies both Π

W

n = εs and
Π
E

n = 0 simultaneously as it should.
Similarly for the inverse energy cascade range, we have

a constant energy flux Π
E

n = −E` as in (14), and zero en-
strophy flux, Π

W

n = 0. These conditions give tEn = E`/λE
, which is a constant independent of n (see Eqn. 15) and
t
W
n = E`k2

n/λE . Substituting this into the definition of
Π
W

n from (16), we find that it satisfies the condition that
Π
W

n = 0.
Note finally that the requirement, for example that tWn

be a constant means

t
W
n = gm−3`k6

n sinαqpΦn−`+mΦn−`Φn

× 〈cos (φn−`+m + φn−` + φn)〉

now if the phases φn become random, average of a co-
sine of the sum of these random variables would be very
small, and would not allow much transfer. Since there
are no other triads through which the enstrophy can flow
to small scales in such a model, the cascade may be over-
whelmed by the statistical equipartition solution that we

discussed at the end of section IIIA. One way to fix this
issue for numerical convenience is to get rid of this de-
tailed phase evolution as we will discuss in the following
section.

IV. THE MODEL FOR En

The general model for the evolution of turbulent energy
on the spiral chain can be formulated as

∂tEn =

[ (
g2m − g2`

)
tEn+` +

(
1− g2m

)
tEn

+
(
g2` − 1

)
tEn−m+`

]
+ PEn −DE

n (19)

where

tEn = g−`kn sin [(m− `)α]E3/2
n (20)

Note that E (kn) = Enk
−1
n and that En > 0 and PEn > 0

to assure realizability. The model still conserves energy
and enstrophy, and results in a clean dual cascade solu-
tion. And the difference from a model that solves the
complex amplitudes Φn is mainly in the definition (10)
vs. (20). The two models would become “equivalent”
if the sums of the complex phases would vanish at each
scale (for example for ` = 2, m = 3, this would mean
φn+φn+1−φn−2 = 0, where φn are the complex phases).
The condition is nontrivial and is not satisfied in the non-
linear stage by a complex chain model for Φn. Hence the
complex chain fails to describe the cascade but instead
evolves towards statistical chain equipartition.

Model in (19), works for any ` and m combination
given in Table I, but one should pay attention to the
fact that as ` and m change, g, and therefore the range
of wave-numbers that are covered by the model changes,
which means that the dissipation and the boundary terms
should also be modified accordingly. Note finally that
the assumption of tEn ∝ knE

3/2
n is in fact similar to the

Kovasznay’s hypothesis for the transfer function as dis-
cussed in Monin and Yaglom[45].

A. Continuum limit

It is also possible to interpret (19) as a shell model
by disregarding the information on angles and therefore
lifting the restriction on g values. In this case the result-
ing model is a simple discrete formulation of a general
model where any value of g is allowed and an arbitrary
factor [instead of the sin (m− `)α] multiplies the nonlin-
ear term, as in shell models. This interpretation allows us
to transform the problem into a differential approxima-
tion model by considering the continuum limit of (19),
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Figure 3. wave-number spectra for the two variants of the
` = 1, m = 3 spiral chain model. The red line (if in color) is
the model for the complex amplitude Φn, whereas the black
line is the model for En. While the model for En is driven
with constant forcing Pn = 2.5 × 10−4, the model for Φn is
driven with random forcing such that 〈Pn〉 = 2.5×10−4. The
spectrum for the Φn model is averaged over a long stationary
phase, where E (kn) =

〈
|Φn|2

〉
kn, which is integrated up to

t = 10000 and the average is computed over t = [5000, 10000],
whereas the spectrum for the En model is averaged over
t = [190, 200] (in fact the instantaneous solution is not that
different from the averaged result).

with ` = 1, m = 2, by considering g → 1 + ε. Defin-
ing E (k) = Enk

−1
n and F (k) = k3/2E (k)

3/2, so that
kn+1 = k (1 + ε) and kn−1 = k

(
1− ε+ ε2

)
so that

F (kn+1) ≈
(
F + kε

dF

dk
+

1

2
ε2k2 d

2F

dk2

)

F (kn−1) ≈
(
F (k)− k

(
ε− ε2

) dF
dk

+
1

2
ε2k2 d

2F

dk2

)
and [

g2k−1
n tEn+1 −

(
1 + g2

)
k−1
n tEn + k−1

n tEn−1

]
≈ 3ε2F + 5ε2k

dF

dk
+ ε2k2 d

2F

dk2
.

This finally gives:

∂tE − C
∂

∂k

(
k−1 ∂

∂k

(
k9/2E3/2

))
= PE (k)−DE (k)

(21)
as a differential approximation model[26]. It is clear
that the two solutions E (k) ∝ k−5/3 and E (k) ∝ k−3

both cause the nonlinear term to vanish. In fact the
way the flux is approximated, it works nicely that k−5/3

gives a constant and negative energy flux. In fact the
constant flux solution of the above equation is E(k) =

Figure 4. Energy and enstrophy fluxes for the two variants
of the ` = 1, m = 3 spiral chain model. The red solid and
dashed lines (if in color) are the energy and enstrophy fluxes
for the complex amplitude model, whereas the black solid
and dashed lines are the energy and enstrophy fluxes for the
En model respectively, normalized to their maximum values.
We can see that rapid oscillations of the phases observed in
the complex model causes the suppression of the fluxes and
results in statistical chain equipartition solutions instead of
proper dual cascade solutions.

(
ε`
2C

)2/3
k−5/3, which is helpful for picking the value of

C in order to normalize the model properly. The con-
tinuum limit as discussed above results in an isotropic
model, since its derivation starts from a shell-model with
no regards to angles.

B. 4-Spiral Chain Model

Considering the model in (7) and using 4 such spiral
chains that are basically rotated by δα = jα/4 and scaled
by gj/4 where j = 1, 2, 3 with respect to the original spiral
(together with the original spiral itself, see fig. 5 ) gives
us a 4-spiral chain model, where the each spiral chain is
coupled with itself but not with the other three. The ad-
vantage of the existence of the other chains is therefore a
better coverage of the k-space but not a better descrip-
tion of the nonlinear interaction (i.e. the number of triads
in the 4 spiral chain model is basically 4 times the single
spiral chain one). Such a model can be formulated alter-
natively by defining g = ρ1/8 and α = 1

4 arccos
(
− g

12

2

)
and using kn = kn (cosαn, sinαn), where kn = k0g

n and
αn = αn as usual (note that g here is obviously different
from the earlier one). The evolution for Φ can then be
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Figure 5. The 4-spiral chain grid shown explicitly. The orig-
inal spiral chain is shown in black squares, while its reflec-
tion with respect to the origin is shown in red squares (if in
color). The full system is symmetric with respect to reflection
k → −k, and therefore one can actually use only half of the
k-plane (e.g. the upper half) and obtain the rest of the points
by reflection.

written as

∂tEn = kn sinα

[
g16
(
g8 − 1

)
E

3/2
n+8 +

(
g32 − 1

)
g−12E

3/2
n+4

+
[
g−8 − 2g16 + g−24

]
E3/2
n +

(
g16 − 1

)
g−12E

3/2
n−4

+
(
g8 − 1

)
g−40E

3/2
n−16

]
+ PEn −DE

n (22)

Please note the simplicity of the nonlinear couplings in
this model. Albeit the fact that the model considers two
kinds of triangles and spans roughly about 10 different
directions for a given “scale” it represents these nonlinear
interactions with only 5 terms.

The spiral grid corresponding to the 4-spiral chain, and
its reflection with respect to the origin is also shown in
figure 5. The grid provides an alternative way of looking
at the spiral chain as a partition of the k-space. The
surface element for a given cell n, can then be written as:

Sn =
π
(
g1 − g−1

) (
g5 − g−5

)
20 ln (g)

k2
n ≈ 0.03534× πk2

n

which is basically a small percentage of the area of the
circle with that same radius. One obvious problem with
this perspective is the “hole” that it leaves at the cen-
ter. One can remedy this either by computing the actual
shape of the leftover region and adding it as a partition
cell, or alternatively adding a circular cell around the
origin and reducing the surface elements of the first few
cells of the partition by subtracting the part of the cir-
cular region that intersects with the cell that is left for
the circular element defined at the origin. While rather

Figure 6. Two dimensional “log-log” [i.e.
{log10 (k) cos (θk) , log10 (k) sin (θk) , log10 (E (k))}] plot
of the wave-number spectrum for the 4-spiral chain model
discussed in Section IVB. The energy injection is located
around kx = 0, ky = ±2 × 103, shown above as black ×’s.
The resulting spectrum consists of a clear inverse energy
cascade range of E (k) ∝ k−5/3 (the red central region),
and a forward enstrophy cascade range of E (k) ∝ k−3 (the
blue peripheral region). One dimensional spectrum, which
can be obtained by plotting E(kn) = En/kn as a function
of kn = |kn|, is also shown with guiding lines showing the
theoretical predictions.

promising, spiral partitioning of k-space is not the fo-
cus of this paper. Thus we leave it for future studies to
resolve its particular issues.

V. NUMERICAL RESULTS

Existence of all possible triads enabled by neatly
matching grid points of a regular mesh allows important
advantages such as good statistical behavior, mathemat-
ical clarity and use of efficient numerical methods such as
fast Fourier transforms. The models that we present in
this paper are not likely to replace direct numerical sim-
ulation schemes such as pseudo-spectral methods even
when very large wave-number ranges are needed. In-
stead, they may be used as models of cascade that can
provide a mathematical framework for understanding the
detailed structure of the cascade process through self-
similar triad interactions.

Various models introduced in this paper, can be con-
sidered as sets of ordinary differential equations that can
be solved numerically in the presence of well-localized
forcing and dissipation in the hope of establishing nu-
merical inertial range cascade behavior. However, note
that the primary goal of this paper is to introduce the
framework of spiral chains and not to perform a detailed
numerical study of these models.
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Figure 7. Time evolution of the one dimensional k-spectrum,
showing how it gets established in time in an asymmetric non-
linear diffusion where the small scales are rapidly filled while
large scales take a while to populate. Here the colors show
different levels of E (k), where as before red region between
log (k) = 0 and 3 corresponds to the inverse cascade and the
blue region between 4 and 6 corresponds to the forward cas-
cade region as in Figure 6.

The results for the basic chain model for complex am-
plitudes Φn’s for the chain ` = 1, m = 3, driven with
stochastic forcing, with dissipation of the form Dn =(
νk4 + νL/k

6
)

Φk, can be seen in figure 3 and Figure
4 along with the model for En for comparison. Even
though the evolution of the complex phase is due to non-
linear couplings, the phases rapidly become “random” in
practice, causing the fluxes to oscillate (both in time and
along the chain), resulting in a statistical chain equipar-
tition solution, which overwhelms the cascade process.
In contrast the results for the chain model for En for
` = 1, m = 3 show a clear dual cascade and thus a dis-
tinct Kraichnan-Kolmogorov spectrum. Here we used a
simple python solver[46], based on scipy ode solver[47].

The four chain model introduced in section IVB has
a good coverage of the k-space both in radial and in an-
gular directions. Here, we present the two dimensional
wave number spectrum that we obtain from this model,
with N = 440, ν = 10−24, νL = 10, and anisotropic forc-
ing PEn = 2.5 × 10−4 for the 4 wave-numbers closest to
kx = 0, ky = ±2 × 103 in Figure 6. Even though the
drive is anisotropic, the resulting spectrum is isotropic
since the flux along the spiral chain results naturally in
isotropization of the spectrum. The time evolution of
the wave-number spectrum is shown in Figure 7 and the
fluxes are shown in Figure 10. Finally no intermittency
has been observed in any of the models for En, since
Sj (kn) ≡

〈
E
j/2
n

〉
∼ k

−j/3
n for the inverse cascade range

and Sj (kn) ≡
〈
E
j/2
n

〉
∼ k−jn for the forward cascade

range, with no discernible correction.

Figure 8. Snapshot of the stream function Φ (x, t) obtained
from the spiral chain model with ` = 1, m = 3 for the evolu-
tion of En. The fractal structure that we observe consist of
discrete logarithmic spirals, where each point of the spiral is
a spiral in itself centered around that point. The weights are
such that in the end we obtain a k−5/3 spectrum for energy.

Physical real space fields such as the stream function
and the vorticity can be obtained from the spiral chain
representation of Φn as:

Φ (x, t) =
∑
n

Φn (t) eikn·x , ω (x, t) =
∑
n

k2
nΦn (t) eikn·x

(23)
Since the Φn does have the phase information, Φ (x, t)
does have detailed spatial structure and its evolution.
However for the model based on En, the phase informa-
tion is lost, and if we use Φn =

√
Enk

−1
n in (23), we get a

fractal-like structure localized at the origin (see figure 8).
The physical structure of the fractal consists of discrete
logarithmic spirals, where each point of the spiral is an-
other spiral centered around that point. The weights are
such that in the end we get a k−5/3 spectrum for E (k),
since what we see in figure (8) is mainly the inverse cas-
cade range (i.e. because the spiral chain has extremely
high effective resolution, when we switch to spatial repre-
sentation with a finite resolution, we are effectively using
a low-pass filtered version of the field). Similarly for the
vorticity field, we see basically white noise at large scales
and the hierarchical spiral fractal structure with k−3 scal-
ing for the E (k) for the small scales as seen in figure 9.
The fractal structure grows from an initial crystal-like
state that corresponds to the drive, and once the growth
is completed, the En model remains stationary.

VI. CONCLUSION

The geometry of the self-similar dual cascade in two di-
mensions as the energy or enstrophy is transferred from
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Figure 9. Snapshot of the vorticity field ω (x, t) obtained from
the spiral chain model with ` = 1, m = 3 for the evolution of
En. Low-pass filtered vorticity field is shown at the top left
plot. The box in the center (which is 1/10 of the original box)
is then expanded to show the band-passed filtered vorticity
field on the top right. The box in the center of this plot is
then expanded to show the band-pass filtered vorticity field
on the bottom left and so on. The fractal structure, which
consists of discrete logarithmic spirals, where each point of
the spiral is a spiral centered around that point is now visible
mainly at the smallest spatial scales (lower right plot). This
is actually the other end of the same fractal structure visible
for the large scales in figure 8 for the stream function. The
weights of the fractal form at those smaller scales are such
that we have a k−3 spectrum for energy.

one wave-vector to another through triadic interactions
are considered. The resulting picture is that of a chain
of triangles that are rotated and scaled, such that the
smallest wave-number of one triangle becomes the mid-
dle and largest wave-numbers of the consecutive triads.
A particular class of triangles, make it such that one can
form regular logarithmic spiral grids out of the wave-
numbers kn = k0

(
geiα

)n, where the complex number is
interpreted as a two-dimensional vector so that the real
and imaginary parts are the x and y components, with g
and α being the scaling factor and the divergence angle
respectively. Nonlinear interactions take place among the
wave vectors kn, kn+` and kn+m on such a spiral, where
the values of ` and m define (not necessarily uniquely)
particular values of g and α. There is in fact a large num-
ber of such triangles, some of which are listed explicitly
in table I. It is argued that the self-similar cascade takes
place along triad chains, and therefore the concept of spi-
ral chains can give us refuter insight into this mechanism,
without the explicit assumption of isotropy.

In order to demonstrate the usefulness of the concept,
a series of spiral chain models both for the complex am-
plitudes Φn as well as energy En have been developed.
It is shown that analytical solutions of these models
agree with the Kraichnan-Kolmogorov phenomenology of
isotropic cascade. While the complex models, that are

Figure 10. Energy and enstrophy fluxes ΠE
n and ΠW

n , normal-
ized to their maximum values, for the 4-spiral chain model.
This is averaged over 10 time steps, but even instantaneously,
they are extremely flat and stationary.

basically “shell models” with elongated triads can not nu-
merically reproduce the dual cascade (because the non-
linear evolution of the phases, lead to oscillatory solutions
for the fluxes of conserved quantities), and instead con-
verge to unphysical chain equipartition solutions. The
model for En in (19) can reproduce the dual cascade re-
sults numerically for any ` and m.

In particular, a 4-spiral chain model for En is intro-
duced in (22), which has good angular coverage and has
two kinds of triads thanks to the choice of g and α to
include ` = 2, m = 3 and ` = 1, m = 5 simultane-
ously. While a simple test of anisotropic energy injection
leads to the usual isotropic dual cascade result, the model
can be developed for self-consistent drive or other similar
cases for more complex problems such as two dimensional
plasmas or geophysical fluids.

The authors would like to thank P. H. Diamond, W-C.
Müller and attendants of the Festival de Théorie, Aix en
Provence in 2017.

[1] G. Boffetta and R. E. Ecke, Annual Re-
view of Fluid Mechanics 44, 427 (2012),
https://doi.org/10.1146/annurev-fluid-120710-101240.

[2] R. H. Kraichnan and D. Montgomery, Reports on
Progress in Physics 43, 547 (1980).

[3] R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).
[4] G. Boffetta and S. Musacchio, Phys. Rev. E 82, 016307

(2010).
[5] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics :

Fundamentals and Large-scale Circulation, 1st ed. (Cam-
bridge University Press, Cambridge, UK, 2006).

[6] F. Bouchet and A. Venaille, Physics Reports 515, 227
(2012).

[7] W. Horton and A. Hasegawa, Chaos 4, 227 (1994).



14

[8] P. H. Diamond, A. Hasegawa, and K. Mima, Plasma
Physics and Controlled Fusion 53, 124001 (2011).

[9] G. Depret, X. Garbet, P. Bertrand, and A. Ghizzo,
Plasma Physics and Controlled Fusion 42, 949 (2000).

[10] T. Drouot, E. Gravier, T. Reveille, A. Ghizzo,
P. Bertrand, X. Garbet, Y. Sarazin, and T. Cartier-
Michaud, The European Physical Journal D 68, 280
(2014).

[11] S. Xu, P. Morel, and Ö. D. Gürcan, Physics of Plasmas
25, 022304 (2018).

[12] S. Xu, P. Morel, and Ö. D. Gürcan, Physics of Plasmas
25, 102306 (2018).

[13] M. McIntyre and W. Norton, J. Atmos. Sci. 57, 1214
(2000).

[14] C. J. McDevitt, P. H. Diamond, O. D. Gürcan, and T. S.
Hahm, Physics of Plasmas 17, 112509 (2010).

[15] Ö. D. Gürcan and P. H. Diamond, Journal of Physics A:
Mathematical and Theoretical 48, 293001 (2015).

[16] L. Biferale, Ann. Rev. Fluid Mech. 35, 441 (2003).
[17] I. Adler, D. Barabe, and R. V. Jean, Annals of Botany

80, 231 (1997).
[18] S. Douady and Y. Couder, Journal of Theoretical Biology

178, 255 (1996).
[19] A. C. Newell, P. D. Shipman, and Z. Sun, Journal of

Theoretical Biology 251, 421 (2008).
[20] E. J. Crampin, W. W. Hackborn, and P. K. Maini, Bul-

letin of Mathematical Biology 64, 747 (2002).
[21] T. S. Lundgren, Physics of Fluids 25, 2193 (1982).
[22] A. D. Gilbert, Journal of Fluid Mechanics 193, 475

(1988).
[23] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov

(Cambridge University Press, Cambridge, 1995).
[24] A. Alexakis and L. Biferale, Physics Reports 767-769, 1

(2018), cascades and transitions in turbulent flows.
[25] K. Ohkitani and M. Yamada, Progress of Theoretical

Physics 81, 329 (1989).
[26] C. E. Leith, The Physics of Fluids 10, 1409 (1967).
[27] D. K. Lilly, J. Atmos. Sci. 46, 2026 (1989).
[28] V. S. L’vov and S. Nazarenko, JETP Letters 83, 541

(2006).
[29] R. H. Kraichnan, Journal of Fluid Mechanics 5, 497

(1959).
[30] S. A. Orszag, Journal of Fluid Mechanics 41, 363 (1970).
[31] E. Aurell, P. Frick, and V. Shaidurov, Physica D: Non-

linear Phenomena 72, 95 (1994).
[32] E. Aurell, E. Dormy, and P. Frick, Phys. Rev. E 56, 1692

(1997).
[33] F. Waleffe, Proceedings of the American Mathematical

Society 134, 2913 (2006).
[34] S. Grossmann, D. Lohse, and A. Reeh, Phys. Rev. Lett.

77, 5369 (1996).
[35] S. S. Ray, Pramana 84, 395 (2015).
[36] S. S. Ray, U. Frisch, S. Nazarenko, and T. Matsumoto,

Phys. Rev. E 84, 016301 (2011).
[37] E. Aurell, G. Boffetta, A. Crisanti, P. Frick, G. Paladin,

and A. Vulpiani, Phys. Rev. E 50, 4705 (1994).
[38] J. Pedlosky, Geophysical Fluid Dynamics, 2nd ed.

(Springer-Verlag, New York, 1987).
[39] F. S. Godeferd and M. F., Applied Mechanics Reviews ,

030802 (2015).
[40] P. B. Rhines, Annual Review of Fluid Mechanics 11, 401

(1979).
[41] W. Horton, Rev. Mod. Phys. 71, 735 (1999).
[42] M. De Pietro, L. Biferale, and A. A. Mailybaev, Phys.

Rev. E 92, 043021 (2015).
[43] V. S. L’vov, A. Pomyalov, and I. Procaccia, Phys. Rev.

Lett. 89, 064501 (2002).
[44] U. Frisch, A. Pomyalov, I. Procaccia, and S. S. Ray,

Phys. Rev. Lett. 108, 074501 (2012).
[45] A. Monin, A. Yaglom, and J. Lumley, Statistical Fluid

Mechanics: Mechanics of Turbulence, v. 2 (MIT Press,
1975).

[46] Ö. D. Gürcan, “Spiral chain models,” https://github.
com/gurcani/scms (2019).

[47] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open
source scientific tools for Python,” (2001–).


