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Abstract 
Background: Glycemic variability is an important component of glycemic control for patients 
with type 1 diabetes. The inadequacy of existing measurements lies in the fact that they view 
the variability from different aspects, so that no consensus has been reached among 
physicians as to which metrics to use in practice. Moreover, although glycemic variability, 
from one day to another, can show very different patterns, few metrics have been dedicated to 
daily evaluations. 

Method: A reference (stable-glycemia) statistical model is built based on a combination of 
daily computed canonical glycemic control metrics including variability. The metrics are 
computed for subjects from the TRIMECO islet transplantation trial, selected when their β-
score (composite score for grading success) ≥ 6 after a transplantation. Then, for any new 
daily glycemia recording, its likelihood with respect to this reference model provides a multi-
metric score of daily glycemic variability severity. In addition, determining the likelihood 
value that best separates the daily glycemia with β-score = 0 from that with β-score ≥ 6, we 
propose an objective decision rule to classify daily glycemia into "stable" or "unstable". 

Results: The proposed characterization framework integrates multiple standard metrics and 
provides a comprehensive daily glycemic variability index, based on which, long term 
variability evaluations and investigations on the implicit link between variability and β-score 
can be carried out. Evaluation, in a daily glycemic variability classification task, shows that 
the proposed method is highly concordant to the experience of diabetologists. 

Conclusion: A multivariate statistical model is proposed to characterize the daily glycemic 
variability of subjects with type 1 diabetes. The model has the advantage to provide a single 
variability score that gathers the information power of a number of canonical scores, too 
partial to be used individually. A reliable decision rule to classify daily variability 
measurements into stable or unstable is also provided. 

 

Keywords: Continuous glucose monitoring, Type 1 diabetes, Islet cell transplantation, 
Glycemic variability, Statistical mixture models, Anomaly detection. 
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1 Introduction 
Glycemic variability (GV) is under scrutiny as an important contributing factor in the 
development of diabetic complications and it can greatly affect the quality of life of subjects 
with type 1 diabetes (D1T) [1] [2]. Studies evidenced the association between GV and 
mortality in critically ill patients [3] [4] [5] and GV appears as an important indicator of the 
quality of the glycemic control.  

Various metrics have been developed to assess GV [6] [7]. The conventional GV indices have 
been mostly developed based on self-monitoring of blood glucose (SMBG), before the 
appearance of continuous glucose monitoring (CGM) systems. Besides the basic statistical 
measurements such as Standard Deviation (SD), Coefficient of Variation (CV) and 
InterQuartile Range (IQR), there are still quite a number. Among them, may be cited the 
Mean Amplitude of Glycemic Excursion (MAGE) which aims at considering only major 
glycemic excursions, excluding minor ones (only glycemic variations that exceed one SD of 
the average blood glucose are included in the calculation). MAGE appears as an informative 
expression of the intra-day GV in insulin-treated diabetic patients [8] [9]. The Average Daily 
Risk Range (ADRR) [10] [11] summarizes the risk of hyper and hypoglycemia generated 
from risk functions based on skewness-corrected glycemia. Among the rare works aiming at 
daily difference evaluation, the Continuous Overlapping Net Glycemic Action (CONGA) [12] 
counts the SD of the glycemic differences at a certain time interval. The recent Glycemic 
Variability Percentage (GVP) [13] whose definition is similar to the Mean Absolute Glucose 
(MAG) [14] and the Lability Index (LI) [15] but is more suitable for continuous monitoring 
data. It is worth mentioning that the conventional metrics can be applied on continuous 
monitoring data as well, with a possible improvement of their characterization ability thanks 
to the increased sample rate brought by CGM. 

Actually, the frontier between “glycemic control” and “glycemic variability” indexes is 
somehow difficult to draw. GV is undoubtedly an important parameter to analysis the overall 
glycemic control so that some indices propose to measure the overall glycemic control 
including the glycemic variability. Most of them are composite metrics, such as the J-index 
[16] which perpetuates the inclusion of Mean and SD into one measurement, the M-value [17] 
which measures the difference between the observed glycemia and an Ideal Glucose Value 
(IGV, normally taken as 6.67 mmol/L) while incorporating the glycemic range, and more 
recently, the COGI [18], a weighted linear combination of TIR, TBR and SD. One can refer to 
[19] [20] [21] [22] for other composite metrics. 

Despite the abundant literature, a precise and complete GV analysis remains difficult to 
perform in clinical practice. No consensus has been reached on which GV metrics should be 
used to ideally and simply characterize GV. Each index analyses a specific component of GV 
and an index describing all the components of glycemic variability as a whole is currently 
lacking. A natural idea is to combine several metrics in an optimized way to offer clinicians 
such a possibility. Attempts include the work in [23] [24] which use Support Vector Machine 
(SVM) [25] or Multilayer Perceptron to obtain a unit index through learning from labels given 
by physicians, but the discriminative power of this index is then strongly dependent on the 
experience of the included physicians. 

Here, we propose a new optimized GV index that fuses several existing metrics and that takes 
into account the multiple aspects of GV. This GV index allows the classification of patients 
into “stable” and “unstable” glycemic profile. To do so, a population of patients with stable 
glycemia is referred to as the reference population. We compute daily the selected GV metrics 
for each individual in the population and characterize the joint statistical distribution of the 
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considered metrics by learning from them a multivariate parametric statistical model. 
Whatever the number of existing metrics being used, for any new observed glycemic profile, 
we can transform our multivariate distribution into a scalar score by considering the log-
likelihood of the new observation in the learned model. The rationale is that a high log-
likelihood occurs when the glycemic profile is close to a “stable” (reference) one. In contrast, 
a low log-likelihood means that the glycemic profile has no or very few equivalent in the 
reference population. In practice, the possibility given by the proposed GV index to clinicians 
to analyze and classify a patient into a “stable” or “unstable” glycemic profile is an helpful 
feature to guide patient therapy decision and control. In this work, we show how to use the 
proposed log-likelihood score to design a separation rule, the difficulty being to decide under 
which value the log-likelihood is too small to be considered as coming from a stable reference 
subject. A way to automatically set this threshold is provided and illustrated on real data 
showing good performance.  

The rest of the paper is organized as follows. Section 2 describes the general statistical 
characterization framework including reference model construction and classification 
methods. To apply the framework to our specific GV characterization problem, the pre-
processing of CGM data and GV feature selection are addressed. Section 3 illustrates the 
results on data from the TRIMECO trial [26]. The performance and robustness of the 
proposed index is illustrated by testing its consistency with physicians in a classification task. 
Section 4 discusses the implicit link between the clinical β-score [27] and GV by using the 
proposed index. The contribution of this work and some perspectives are given in the final 
Section 5. 

2 Mixture Model-based Anomaly Detection for Glycemic Variability 
Classification and Characterization 

We address the GV evaluation problem with a model-based anomaly detection method which 
assumes that the properties of the normal population can be captured by a statistical model. 
Therefore, to measure how much an observation inclines to be normal is equivalent to 
measure the distance of the observation to the reference model. Various choices of models are 
available for the reference construction [28]. Examples as mentioned before, the SVM [23] 
[24] tries to separate linearly the anomalies from normal ones by projecting them into a higher 
dimension space. Neural networks such as autoencoders [29] assume that the normal data can 
be reconstructed by the network while the reconstruction errors of anomalies are much higher. 
Besides their popularity on various applications, the choice of their kernel functions and the 
hyper-parameters are subtle and ambiguous. In contrast, the so-called mixture model is 
chosen here especially for its interpretability in a medical diagnosis context. 

2.1 Framework 
Figure. 1 summarizes the framework of the anomaly detection process. The method requires 
normal reference (inlier) learning samples for estimating appropriately the parameters of the 
statistical model (see appendix 8.1), so that they are given high probabilities by the model. 
The similarity of any input data compared to the reference population is then measured by the 
log-likelihood of the reference model. In this proposed framework, anomaly (outlier) samples 
are used to find a threshold to decide whether an input data is belonging or not to the 
reference population. 

2.1.1 Reference Model Construction 

The applied statistical model is a Mixture of Multiple-Scaled T-distributions (MMST) firstly 
proposed in [30]. Data x is assumed to follow the density of a 𝐾 components MMST denoted 
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by 𝑝(x |φ)  with 𝝋  representing the model parameters. Given an inlier learning set X =
x!, x!,⋯ , x! , the model parameter 𝝋 can be estimated through Expectation-Maximization 

(EM) algorithm [30] [31] and the component number 𝐾 can be decided from a possible range 
using the Bayesian Information Criterion (BIC) [32]. The MMST model and estimation 
strategy are detailed in Appendix 8.1. 

2.1.2 Index and Threshold Decision 

Once the reference model is learnt, the log-likelihood of the model denoted as 𝓛x is taken as 
an index for measuring the similarity of any new observation x to the reference population. 
Outliers of the reference model have relatively smaller log-likelihood values than inliers, then 
the problem comes to find a threshold which can appropriately separate them. We address this 
problem numerically by classifying the log-likelihood values of all samples into outliers and 
inliers trying various threshold values, and find the one that matches best the original classes. 
The detail of the method is described in Appendix 8.2. It is also possible to deal with the 
threshold decision by simply fixing an acceptable false positive rate, or through unsupervised 
methods for example [33].  

Once we get the threshold denoted by 𝓛thr, deciding whether a coming data x is outlier or not 
is straightforward: 

x  is  inlier, if 𝓛x  ≥  𝓛thr  
 outlier, otherwise  

                                              (1) 

2.2 On Application to Glycemic Variability Characterization 
Applying the proposed framework to daily GV characterization, the reference MMST 
describes the population of stable daily GV (inliers) while the unstable daily GV are taken as 
anomalies (outliers). MMST allows us to fuse a selected set of daily computed classic metrics, 
which means that the number of selected metrics 𝑀 is the dimension of x𝒏 ∈ ℝ! , and 
𝑛 ∈ 1,𝑁  represents the day index. To learn the reference MMST, we take the values of 
daily computed metrics from stable subjects as the input reference learning sample, while for 
finding the threshold, values of metrics from unstable subjects are used as the outlier sample. 

2.2.1 Pre-processing of Glycemic Recording 
To obtain the daily computed metrics, we need first to pre-process the glycemic recording 
from CGM in case of the presence of missing or disordered data. The pre-processing of CGM 
data goes as follows. 

1. Start and end counting at the start and end of a natural day (start at first integer decimal 
time (00:00h) and ends at the last); 

2. Suppress from analysis the day with long-term missing data (> 4.8 h); 
3. Linearly resample with the rate equivalent to the reading of the CGM to assure unit 

sampling interval. 

2.2.2 Glycemic Variability Feature Selection 
7 glycemic control metrics concerning variability: CV, J-index, M-value, ADRR, CONGA, 
MAGEavg, GVP, are selected to be combined into x!, since they are daily computable and not 
highly correlated among the large amount of metrics mentioned in the introduction1. The 

                                                
1  J-index and M-value are conceptually admitted as control metrics, while they are all related to GV 
performances. 
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computation of these metrics is detailed in Appendix 8.3. To avoid that a certain metric 
dominates the distribution, the metrics are all standardized. 

MMST can incorporate any set of metrics, but a high model dimension requires larger amount 
of learning data and leads to more computation. Considering the existence of correlation 
between selected metrics, dimension reduction methods can be used before fitting the model. 
We apply Principal Component Analysis (PCA) [34] to project data onto new orthogonal axis 
which are linear combinations of the metrics, and keep only the principal dimensions. Linear 
Discriminant Analysis (LDA) or kernel based nonlinear discriminant analysis can be 
alternative solutions [35] [36]. 

3 Performance of the Proposed Method 
The proposed method is applied to GV characterization using data from the TRIMECO trial 
[26]. This section deals with the learning sample construction from TRIMECO data, shows 
the performance of the new daily GV index, evaluates the performance and tests the 
robustness of the proposed method. 

3.1 Model Learning from TRIMECO Trial 
TRIMECO trial is a study on islet transplantation performance on 50 subjects with type 1 
diabetes, selected randomly from 15 university hospitals in France [26]. It provides the CGM 
data – of each subject – before, 6 month after, and 12 month after first injection of pancreas 
islet (infusion number can vary from 1 to 3). The CGMs receive glucose readings every 5 
minutes. The TRIMECO data set presents 4.62% of missing glycemic record. After the pre-
processing, the CGM data are distributed into 3 cohorts according to the number of months 
after transplantation named “M0”, “M6” and “M12” respectively. The middle column of 
Table 1 lists their basic information.  

Among the 50 subjects, glycemic records of 3 subjects are not available. “Valid subject 
number” shows how many subjects of 47 in total have CGM data of at least one complete day 
after pre-processing described in Section 2.2.1, while “complete day number” shows the sum-
up number of days which have CGM data after pre-processing in each cohort. 

The entire data is firstly normalized, then its dimension reduced with PCA. 2 principal 
components are kept out of 7 after PCA for an accumulation of almost 89% data variance. 
Thus, the data dimension is reduced to 𝑀 = 2. The projected data of the 3 TRIMECO cohorts 
are illustrated in Figure 2 (for a balanced view, a few data points are dropped in the outlying 
region, Dim1 > 5.0, Dim2 > 2.5  are not displayed). The data in cohort M0 before 
transplantation is further away from the lower-left (low variability) compared to cohorts M6 
and M12. 

3.1.1 β-score and Choice of Reference Sample 

β-score is a clinical score for measuring the islet graft functions which is composed by adding 
points evaluating normal fasting glucose (2 points), HbA1c (2 points), stimulated C-peptide (2 
points), and absence of insulin or oral hypoglycemic agent use (2 points) [27]. Thus, it is 
taken for measuring the performance of islet transplantation: A β-score ≥ 6 means a 
significant improvement of mean and standard deviation of glucose and hyperglycemia, 
which can be considered as the success of the transplantation [37]. Figure 3 reports the 
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histograms of the cases2 with different β-score values and verifies the improvement brought 
by transplantation as before the transplantation, no subject has its β-score above 3. 

We select the CGM subjects with β-score ≥ 6 after the first islet injection, and take their daily 
metrics as the reference learning sample, assuming that a successful transplantation well 
adjusts the GV to a normal range. The projected reference learning sample on principal 
components is marked by yellow triangles named “Reference” in Figure 2. We observe that 
they are more concentrated in low variability region. Reference MMST is then built on the 
learning sample, with its parameter estimated by EM algorithm and the number of component 
𝐾 chosen from the range 1 ≤ 𝐾 ≤ 10 by BIC criterion. The contour of the fitted reference 
MMST model well covers the reference sample as plotted over the scattered data in Figure 2 
(2 components, with the outer most contour density: 0.01). For an input daily glycemia, the 
log-likelihood which measures its probability to be an inlier of the reference MMST is 
therefore the index which integrates the characterization power of the 7 included classic 
metrics. 

To decide the log-likelihood threshold for classifying the daily GV, anomalies are selected 
from the subjects with β-score = 0, as these subjects diagnosed with the poorest beta-cell 
functions have rarely their GV under control. The cohort information about the reference and 
samples with β-score = 0 are listed in the right column of Table 1. The histograms of the log-
likelihood values of learning samples are displayed in the top sub-figure of Figure 4 where a 
dashed bar in light green shows the threshold decision given by the method described in 
Section 2.1.2. In this study, learning the reference model as well as finding the threshold takes 
11.44s on a PC with 3.6GHz CPU. However, once the reference model is learnt, to infer the 
likelihood of daily GV for a 10-day scenario requires only 0.001s. 

Let us remark here that both the reference and anomaly learning samples selected by β-score 
level are not perfect. Stable GV can be found, although rarely in subject with β-score = 0, 
while unstable days could happen for subject with β-score > 0. However, the method allows 
an acceptable degree of imperfection in learning samples. As shown in Figure 4, some 
reference learning points are finally classified below the threshold, while some anomalies are 
above the threshold. The three lower sub-figures of Figure 4 display the histograms of the log-
likelihood values of all daily glycemia in 3 TRIMECO cohorts separately. The classification 
using the given threshold has a false positive rate = 2.68%. As expected, the log-likelihood 
values concentrate above the threshold more often after the transplantation than before. 

3.1.2 Glycemic Variability Evaluation Using the New GV index (log-likelihood) 
The new GV index (log-likelihood) allows both daily and long-term integral GV evaluation 
for the interest of individual subject. Provided a series of daily log-likelihoods denoted by 
 𝓛X = 𝓛𝐱!  ,⋯ ,𝓛𝐱!  from a subject, we can investigate: 

1. 𝓛𝐱!: the daily log-likelihood, for daily GV evaluation; 
2. median 𝓛X : the median daily log-likelihood of recorded period, for global 

evaluation of GV; 
3. Stable day percentage 𝓟𝒔 : defined by 100× 𝓛𝐱! ≥ 𝓛thr 𝑁  %!

! , the 
percentage of stable days in the time length of glycemic record. 

Figure 5 shows an example of the GV characterization of an individual subject from 
TRIMECO. His glycemia trace is plotted in 5(a) with colors (“stable” in blue, 

                                                
2 Not to be confused with “subject”, a “case” refers to a subject under a certain cohort, as one subject often 
appears in all of the 3 cohorts. 
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“unstable” in red) corresponding to the automatic classification through the index 
threshold. The patient shows an unstable daily GV performance (as the red and blue 
alternate) before the transplantation indicated by the classification. 6 month after first 
islet injection, his β-score is adjusted from 1 to 7, and 12 month after, the value reaches 
8. The classification indicates at the same time, his stability of glycemia is improved, 
from a stable day percentage 𝓟𝒔 (labeled by “S” in titles of subplots) of 52.38% to 
100.00%. Besides, histogram of the values of log-likelihood is another way to view his 
daily GV statistically as displayed in 5(b). The left long tail of the daily values 
disappears after the transplantation. The value of median 𝓛X :  (“median llh” in titles 
of subplots) is improved from -1.63 before transplantation to 0.61, 6 month after and -
0.08, 12 month after the transplantation. 

3.2 Performance of Daily Glycemic Variability Classification Compared to 
Physicians Diagnostic 

To evaluate the performance of the proposed characterization, two diabetologists experienced 
with dealing with T1D patients with severe glycemic variability on routine bases are invited 
to classify the TRIMECO data daily into three classes (“stable”, “unstable” and “unsure”). 
Their classification is conducted independently without any information except the daily 
glycemia trace. The diabetologists performed the classification of glycemic profile while 
taking into account only GV without considering glycemia as a whole. A trace with multiple 
hypoglycemia episodes but low GV or a trace with persistent hyperglycemia and low GV 
were classified as a stable. 

As three classes exist in labels given by physicians instead of two from our auto-classifier, in 
order to unify the class numbers as well as to remove controversial labeling from physicians, 
the data with two “unsure” labels or with disagreement (one label is “stable” and the other is 
“unstable”) given by the physicians are excluded from comparison. Since there is actually not 
much discrepancy (1.21%) in between the labels from the two physicians, the remaining two 
sets of labels are fused into a single “consensus of physician”, taking their agreement on 
stability3. The performance of the likelihood based classification can be thus evaluated by 
“accuracy”, “sensitivity” and “specificity” compared to the “consensus of physician” serving 
as ground truth. 

The classification result of MMST is compared to One Class SVM (OCSVM) [38] and to five 
other single metric-based classification results. Specifically, the five compared metrics are: 
ADRR, CV, GVP which are included in the mixture (concerning the most, medium and least 
related to the principal component) of MMST; GRADE [39], which is rather a glycemic 
control metric measuring the risk of hyper or hypo glycemia; and COGI, a synthetic glycemic 
control metric including GV aspect. OCSVM is trained on the reference cohort with the 
hyper-parameters tuned using 10 fold cross-validation4. The cohort with β-score=0 serves as 
unstable samples in the testing process of the cross-validation. To be fair, the thresholds for 
the five compared metrics are decided through the same algorithm as for the MMST 
likelihood, rather than applying directly existing ones from certain clinical studies. Using 
“taken-in” thresholds can hardly result in good classification on specific data sets. For 
example, applying 36% [40] as threshold for CV results only in a 59.1% accuracy. 

                                                
3 The daily glycemia is agreed to be “stable”, if the assigned labels from the two physicians are either both 
“stable” or “stable” and “unsure”, so as for “unstable” case. 
4 The tuned hyper-parameters: kernel (RBF) coefficient γ = 7.45×10!! and error control ν = 0.01, are obtained 
from the grid searching range [2−40, 23] with step size 21 and [2−10, 2−1] with step size 20.1 respectively. 
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The performance of all methods is reported in Table 2. With appropriate threshold 
(hyperplane for OCSVM), the classifications of all metrics are fairly good. MMST 
outperforms its contribution metrics taken individually: ADRR, CV and GVP, while the three 
metrics have a performance proportional to their importance in building the MMST reference 
model (see Table 4 in Appendix for their combination coefficients in principal component). 
GRADE does not perform well against the others as a “non-GV” metric as expected. However, 
COGI and OCSVM actually obtain competitive results close to MMST. This lies in the fact 
that as a consensus, the log-likelihood of MMST reflects a global assessment, but for a GV 
classification task, MMST is not necessarily very outstanding compared to a metric with 
already good discriminative power. COGI gets good result with only 15% of its value comes 
from variability (SD). We interpret this as the evidence that corroborates to what we stated in 
the introduction – “from some aspects, GV assessment also relies on “control” factors”. The 
very high specificity of OCSVM can be explained by the tight hyperplane learnt at the frontier 
of the reference class, which leads to an accurate labeling of stable data. Further experiments 
on larger data sets would be necessary to compare the performance of MMST and OCSVM 
on this subject. However, we would like to highlight here that MMST identifies the density 
profile of the reference group, whereas the property identified by OCSVM is hard to explain 
physically. 

3.3 Robustness of Proposed Method 
To examine the robustness of the proposed method, “Leave One Case Out” (LOCO) test is 
conducted. Subjects in the reference cohort are removed in turn from the reference learning 
sample for model construction. 

Table 3 reports the average results of some measurements based on the proposed daily index 
in each TRIMECO cohorts. The definition of 𝓟𝒔 and median 𝓛X  were as introduced in 
Section 3.1.2. The “stable subject percentage” denotes the percentage of subjects with 
median 𝓛X ≥ 𝓛thr  in the cohort. The listed results corroborates the improvement of 
glycemic stability after the islet transplantation. The same measurements are calculated from 
the daily index given by each learnt reference model in LOCO experiment. Their Mean 
Absolute Deviation (MAD) from the original result are reported in brackets. The largest MAD 
2.9% in Table 3 indicates that the proposed method is fairly robust to missing subject. The 
learning samples are representative enough for slight changes not to bias a lot the constructed 
model. 

4 Discussion 
Compared to previous work, the proposed method avoids a number of ad hoc commitments. 
Making use of the clinical β-score for sample construction avoids the effect of human 
subjectivity. The reference model constructed has meaningful statistic properties that are easy 
to interpret. 

The proposed index also provides a way to investigate the relationship between β-score and 
GV statistically, which supplement the study in [37] representing GV by SD only. The 
TRIMECO cases are divided into 5 groups according to their corresponding β-score interval. 
The histograms of their log-likelihood values in the 5 different β-score intervals are displayed 
in Figure 6(a), with the mean value and standard deviation of the log-likelihood in each group 
summarized in Figure 6(b). It reveals that, a higher β-score is linked to a larger mean log-
likelihood and a smaller log-likelihood deviation. In another word, β-score increases with the 
improvement of glycemic stability of both intra and inter-day. 
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Recipients of islet transplantation offer per se unstable glycemic profile which is the main 
indication for transplantation. After transplantation, two categories of patient are commonly 
described: recipients with no functional graft evidencing high glycemic variability and 
recipients with functional graft and improved glycemic variability. This population is 
consequently an ideal population to classify glycemic variability and test our proposed score. 

Our proposed score is based on combined indices extracted from CGM data. It is easily 
exportable to all populations in which CGM are performed and in which raw data are 
available such as the general population with type 1 and type 2 diabetes. 

5 Conclusion and Perspectives 
A method for daily glycemic variability characterization is proposed in this work, which fuses 
the evaluation ability of existing metrics with a statistical model called “Mixture of Multiple-
Scale T-distributions” (MMST). The proposed framework provides a new index for an 
integral daily glycemic variability (GV) measurement. Additionally, several measurements 
are investigated based on this new index, with their interests on variability characterization 
demonstrated by examples applied on data from TRIMECO trial. Moreover, using outlier 
detection technique, a threshold of the new index is decided for classifying any daily input 
glycemia into “stable” (reference population) or “unstable” (outliers). The evaluation shows 
that the new index can provide a classification highly concordant with the experience of 
diabetologists, outperforming its comprising metrics and several other synthetic metrics. The 
proposed index helps to verify the improvement of glycemic stability brought by pancreas 
islet transplantation in TRIMECO trial, and allows a better understanding of the link between 
the clinical β-score and the glycemic variability. 

Future work includes the following directions: 

1. Methodology: though theoretically, a mixture model is able to fit a given distribution 
with large number of components, differences exist in practice, caused by factors such 
as the precision of estimated parameters. The framework allows to replace MMST by 
other mixture models for an investigation of these differences. Besides, introducing 
Markovianity [41] or considering more complete statistical dependencies of the daily 
glycemia using a boosted conditional mixture model [42] may improve the 
performance. In addition, the threshold decision in this work is learnt by using unstable 
samples, while it would worth trying some unsupervised methods for example as 
introduced in [33]. 

2. Application: The learnt reference model and index threshold can be easily applied to 
any input daily glycemia, the test on other data set for a further evaluation of the 
method’s characterization ability is planned. Learning the association of the proposed 
index with other clinical index such as HbA1c is a potential work. Furthermore, the 
entire framework can be rerun on samples from other essays to obtain a more 
representative reference model, if a larger amount of randomized subjects are available 
or a better way to build learning samples is available. Rerunning the framework on 
samples under more specific conditions, such as with glycemia values within a certain 
interval or with glycemia during the night only is also a promising direction. 
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8 Appendix 
8.1 Mixture of Multiple-Scale T-distributions 
A 𝐾-component Mixture of Multiple-Scale T distributions (MMST) can be written with the 
detail of the set of parameters in each Multiple-Scaled T (MST) component ℳ𝒮 x |𝝓!  as: 

𝑝 x 𝝋 = 𝜋!
!

!!!
ℳ𝒮 x |𝝁! ,𝚺! ,𝝂!  

                                   (2) 

where 𝝓! = 𝝁! ,𝚺! ,𝝂! , 𝜋! denotes the mixing coefficient of component 𝑘, and the entire 
parameter set is 𝝋 = 𝜋! ,𝝓! !!!

! . Each component follows a MST defined in the form of an 
infinite mixture of scaled Gaussians that is 

ℳ𝒮 x |𝝁,𝚺,𝝂 = ⋯
!

!
𝒩! x |𝝁,𝐃∆𝒘𝐀𝐃!

!

!
𝒢 𝜔

𝜈!
2 ,

𝜈!
2 𝑑𝜔!⋯

!

!!!

 𝑑𝜔! 

  (3) 

where 𝒩! ∙ |𝝁,𝚺  denotes the 𝑀-dimension Gaussian distribution, with mean 𝝁 and scale 
matrix 𝚺 = 𝐃∆𝐖𝐀𝐃! . 𝚺 can be taken as a Hermitian matrix5 𝚺! = 𝐃𝐀𝐃!  weighted by a 
𝑀×𝑀 diagonal matrix ∆𝒘 = diag 𝜔!!!,⋯𝜔!!! , in which the diagonal components are the 
inverse weights. Each weight 𝜔!  follows a Gamma distribution 𝒢 ∙  | 𝜈!/2, 𝜈!/2  and 
𝝂 = 𝜈! !!!

! . In practice, (3) is equivalently written as: 

ℳ𝒮 x |𝝁,𝚺,𝝂 =
Γ 𝜈! + 1 /2

Γ 𝜈!/2 𝐴!𝜈!𝜋 !/! 1+
𝐃! x - 𝝁 !

!

𝐴!𝜈!

! !!!! /!

,
!

!!!

 

(4) 

where 𝐃! x -  𝝁
!

 denotes the 𝑚 th component of variable vector 𝐃! x -  𝝁 , and 𝐴! 
represents the 𝑚th diagonal element of 𝐀. 

8.1.1 Parameter Estimation through EM algorithm 

To estimate the parameters of MMST from observations X = x!,⋯ , x!  given component 
number 𝐾, under the condition that the component indicators y = y!,⋯ , y!  are missing6, 
the Expectation-Maximization (EM) algorithm tries to find the maximum of the log-
likelihood log 𝑝 X |𝝋  iteratively. The algorithm runs as follows: 

E-step 

For iteration 𝑟 +  1 , compute the posterior probability 𝜏!"
(!)  of y!  using the estimated 

parameters 𝝋! from iteration 𝑟: 

                                                
5 𝐀 is the diagonal matrix with eigenvalues while 𝐃 is the matrix of eigenvectors. 
6 Each 𝑦!, 𝑛 ∈ 1,𝑁  indicates the component of the corresponding 𝐱!. 
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𝜏!"
(!) =

𝜋!
(!)ℳ𝒮 x!|𝝓!

(!)

𝜋!
(!)ℳ𝒮 x!|𝝓!

(!)!
!!!

 

(5) 

then update the expectation of the complete log-likelihood function with respect to X and the 

current 𝜏!"
(!)

!!!,!!!

!,!
: 

𝒬 𝝋|𝝋(!) = 𝔼y|x,𝝋(!) log 𝑝 X , 𝐲|𝝋 = 𝜏!"
(!) log 𝜋!

(!)ℳ𝒮 x𝒏|𝝓!
(!)

!

!!!

!

!!!

. 

(6) 

M-step 

Maximize (6) to update the parameters 

𝝋(!!!) = argmax𝝋 𝒬 𝝋|𝝋(!) . 

(7) 

For obtaining the updates, the common used way is to take the derivatives of 𝒬 𝝋|𝝋(!)  with 
respect to each parameter 𝜋! ,𝝁! ,𝚺! ,𝝂!, 𝑘 ∈ 1,⋯ ,𝐾  and set them to 0. 𝝋(!) is initialized 
empirically by clustering the observations using K-means. The algorithm stops when 
𝑝 X |𝝋(!!!) − 𝑝 X |𝝋 ! < 𝜀, with 𝜀 a preset threshold. Then the parameter 𝝋(!!!) of the 
last iteration is taken as the final estimated one denoted as 𝝋. 

Under the general case that the component number 𝐾 is unknown, the applied technique is to 
try different values and select the one by some criterion. In this work, we take BIC to select K 
from a range 1 ≤ 𝐾 ≤ 10. Other criterion choices could be Akaike Information Criterion 
(AIC) [43], Integrated Complete Data Likelihood (ICL) [44], etc. 

8.2 Threshold Decision for Outlier Detection 

Given the reference model, inlier samples X, and outlier samples denoted by 𝐗 = 𝐱𝒋 !!!

!
, the 

proposed threshold decision consists of the following steps. 

1. Compute the log-likelihoods of all samples, for inliers 𝓛X = 𝓛𝐱! 𝒏!𝟏

𝑵
 and outliers  

𝓛𝐗 = 𝓛𝐱𝒋 𝒋!𝟏

𝑱
. 

2. Fitting 2 MMSTs separately on 𝓛X and 𝓛𝐗 through EM algorithm as described in 8.1.1, 
and denote their parameter sets by 𝝋𝓛 and 𝝋𝓛 respectively. 

3. Denoting the entire log-likelihood set by 𝓛𝑿 =  𝓛𝑿𝒍 !!!

!!! = 𝓛X ∪ 𝓛𝐗 , and search 
numerically the optimal log-likelihood value 𝓛!!! ∈ min 𝓛𝑿 ,max 𝓛𝑿  as threshold 
that satisfies: 

𝓛!!! = argmax𝓛!!! 𝓛𝑿 − 𝓛!!! 𝑝 𝓛𝑿𝒍|𝝋𝓛 − 𝑝 𝓛𝑿𝒍|𝝋𝓛 ≥ 0 .
!!!

!!!

 

 
(8) 
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In practice, the searching range can be limited to a smaller one such as the inter-quartile. 

Figure 7 gives a visual demonstration of how the decided threshold separates the log-
likelihoods of inliers and outliers. 

8.3 Applied Glycemic Variability Features 
As no confusion will be introduced when describing the construction of a general daily data, 
the day index 𝑛 will be temporarily omitted. We denote the glycemic recording in a day by 
𝑮 = 𝐺!,⋯ ,𝐺! , 𝑇 represents the data length7. If no specification, 𝑮 is measured by the unit 
“mmol/L”. The mean of daily glycemia is 𝑢𝑮 = mean 𝑮 = !

!
𝐺!!

!!! , and the daily standard 

deviation is 𝜎𝑮 = sd 𝑮 = 𝐺! − 𝑢𝑮 !/ 𝑇 − 1!
!!! . The computation of the 7 chosen 

metrics which construct the 7 dimensions of 𝐱 = 𝑥!,⋯ , 𝑥!  are described as follows: 

• CV: 𝑥! = 𝜎𝑮/𝑢𝑮. 
• J-index: 𝑥! = 0.324× 𝑢𝑮 + 𝜎𝑮 !. 
• M-value8 [mg/dL]: defining IGV= 6.67 mmol/L which represents the ideal glucose 

value and range(𝑮)  =  max(𝑮)  −  min(𝑮), 
𝑥! = mean 10 log!" 𝑮/IGV ! + range 𝑮 ×18/20. 

• ADRR: defining 𝑓 𝐺! = 1.509 log 18×𝐺! !.!"# − 5.381  and  𝑟 𝐺! = 10𝑓 𝐺! !, 

𝑥! = max 𝑟 𝐺! |𝑓 𝐺! > 0 +max 𝑟 𝐺! |𝑓 𝐺! < 0 ;  1 ≤ 𝑡 ≤ 𝑇. 

• CONGA: 𝑥! = sd 𝑮!"#  with 𝑮!"# = 𝐺!" − 𝐺!,⋯ ,𝐺! − 𝐺!!!"  denoting the hourly 
difference. 

• MAGEavg: 𝑥! = mean 𝝀 , with 𝝀 representing the meaningful glycemic excursions that 
larger than 𝜎𝑮. 

• GVP [mg/dL]: defining 𝛥𝐺! = 18× 𝐺!!! − 𝐺!  and 𝛥𝑡 , the time interval [min] of 
CGM samples, 

𝑥! =  𝛥𝑡! + 𝛥𝐺!! 𝛥𝑡
!!!

!!!

!!!

!!!

− 1. 

Table 4 lists the combination coefficients of the first two principal components obtained from 
PCA. 

8.4 TRIMECO Trial Investigators 
Main centers: 

- Grenoble University Hospital: Pierre Yves Benhamou, Sandrine Lablanche, Rachel 
Tétaz, Paolo Malvezzi. 

- Besançon University Hospital: Sophie Borot, Alfred Penfornis. 
- Clermont-Ferrand University Hospital: Igor Tauveron, Béatrice Roche. 
- Lille University Hospital: François Pattou, Marie-Christine Vantyghem, Kanza 

Benomar, Christian Noel. 
- Lyon University Hospital: Charles Thivolet, Emmanuel Morelon, Lionel Badet, Fanny 

Buron. 
- Montpellier University Hospital: Anne Wojtusciszyn, Eric Renard. 
- Nancy University Hospital: Luc Frimat, Sophie Girerd, Bruno Guerci. 

                                                
7 For recording with a 5-minutes interval CGM, 𝑇 = 288. 
8 M-value is defined by the unit “mg/dL”. 
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- Strasbourg University Hospital: Laurence Kessler, François Moreau, Philippe 
Baltzinger, Thibault Bahoune. 

Islet production centers: 

- Geneva: Domenico Bosco, Nadine Pernin, Thierry Berney. 
- Grenoble: Harald Egelhofer, Anaick Moisan, Virginie Persoons. 
- Lille: Julie Kerr-Conte, Valery Gmyr, Rimed Ezzouaoui. 

Interventional radiologists and surgeons: 

- Frédéric Thony, Yvan Bricault, Mathieu Rodière, Christian Sengel (Grenoble). 
- Michel Greget, Iulian Enescu (Strasbourg). 
- Christian Noel, Marc Hazzan, Robert Caiazzo, Fanelly Torres, Kristell Le Mapihan, 

Violetta Raverdy (Lille). 
- Marie-Ange Pierredon (Montpellier). 
- Pierre-Jean Valette, Arnaud Muller, Jean Champagnac (Lyon). 
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