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Abstract

In this article we study the Arnold conjecture in settings where
objects under consideration are no longer smooth but only continuous.
The example of a Hamiltonian homeomorphism, on any closed sym-
plectic manifold of dimension greater than 2, having only one fixed
point shows that the conjecture does not admit a direct generalization
to continuous settings. However, it appears that the following Arnold-
type principle continues to hold in C0 settings: Suppose that X is a
non-smooth object for which one can define spectral invariants. If the
number of spectral invariants associated to X is smaller than the num-
ber predicted by the (homological) Arnold conjecture, then the set of
fixed/intersection points of X is homologically non-trivial, hence it is
infinite.

We recently proved that the above principle holds for Hamiltonian
homeomorphisms of closed and aspherical symplectic manifolds. In this
article, we verify this principle in two new settings: C0 Lagrangians in
cotangent bundles and Hausdorff limits of Legendrians in 1-jet bundles
which are isotopic to 0-section.

An unexpected consequence of the result on Legendrians is that the
classical Arnold conjecture does hold for Hausdorff limits of Legendri-
ans in 1-jet bundles.
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1 Introduction and main results

The Arnold conjecture states that a Hamiltonian diffeomorphism of a closed
and connected symplectic manifold (M,ω) must have at least as many fixed
points as the minimal number of critical points of a smooth function on
M . The classical Lusternik-Schnirelmann theory shows that this minimal
number is always at least the cup length of M , a topological invariant of M
defined as1

cl(M) := max{k + 1 : ∃ a1, . . . , ak ∈ H∗(M), ∀i,deg(ai) 6= dim(M)

and a1 ∩ · · · ∩ ak 6= 0}.

Therefore, a natural interpretation of the Arnold conjecture, sometimes
referred to as the homological Arnold conjecture, is that a Hamiltonian dif-
feomorphism of (M,ω) must have at least cl(M) fixed points.2 Successful
efforts at resolving this conjecture were pioneered by Floer [7, 8, 10] and led
to the development of what is now called Floer homology. The original ver-
sion of the Arnold conjecture has been proven on symplectically aspherical
manifolds [31], [9], [12] while the homological version has been proven on a
larger class of manifolds, e.g. CPn by Fortune-Weinstein [11], and symplectic
manifolds which are negatively monotone by Lê-Ono [21].

The Arnold conjecture admits reformulations for symplectic objects other
than Hamiltonian diffeomorphisms: For example, a Lagrangian version of
the conjecture states that in a cotangent bundle T ∗N , a Lagrangian sub-
manifold which is Hamiltonian isotopic to the zero section must have at least
cl(N) intersection points with the zero section ON (See [12, 20]). Here is a
Legendrian reformulation of this last statement: a Legendrian submanifold
in a 1-jet bundle J1N = T ∗N × R, which is isotopic to the zero section
through Legendrians, must have at least cl(N) intersections with the 0-wall
ON × R.3

The goal of this article is to understand the Arnold conjecture in settings
where objects under consideration are no longer smooth but only continuous.

1Here, ∩ refers to the intersection product in homology. The cup length can be equiv-
alently defined in terms of the cup product in cohomology.

2Note that we do not make any assumptions regarding non-degeneracy of Hamiltonian
diffeomorphisms here.

3Sandon has recently presented a reformulation of the Arnold conjecture for contacto-
morphisms; see [32, 33].
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Although the Arnold conjecture is true for Hamiltonian homeomorphisms
of surfaces [25], we showed in [3] that every closed and connected symplectic
manifold of dimension at least 4 admits a Hamiltonian homeomorphism with
a single fixed point.

In spite of the counter-example from [3], it appears that certain refor-
mulations of the Arnold conjecture do survive in C0 settings. These re-
formulations, which involve counting fixed/intersection points and certain
“homologically essential” critical values of the action (i.e. spectral invari-
ants), are inspired by the following statement from Lusternik–Shnirelman
theory:

Let f be a smooth function on a closed manifold M . If the number of
homologically essential critical values of f is smaller than cl(M), then the
set of critical points of f is homologically non-trivial.

The above statement can be deduced from Proposition 3.1. Homologi-
cally essential critical values, which are usually referred to as spectral invari-
ants in the symplectic literature, are defined in Section 3.1. A subset A ⊂M
is homologically non-trivial if for every open neighborhood U of A the map
i∗ : Hj(U)→ Hj(M), induced by the inclusion i : U ↪→M , is non-trivial for
some j > 0. Clearly, homologically non-trivial sets are infinite.

The reformulations of the Arnold conjecture which continue to hold in
C0 settings may be summarized as follows:

Principle 1. Suppose that X is a non-smooth object for which one can
define spectral invariants. If the number of spectral invariants associated to
X is smaller than the number predicted by the homological Arnold conjecture,
then the set of fixed/intersection points of X is homologically non-trivial,
hence it is infinite.

In our recent article [2], we established the above principle for Hamilto-
nian homeomorphisms of symplectically aspherical manifolds: Suppose that
(M,ω) is closed, connected, and symplectically aspherical. In Theorem 1.4
of [2] we prove that if φ is a Hamiltonian homeomorphism of (M,ω) with
fewer spectral invariants than cl(M), then the set of fixed points of φ is ho-
mologically non-trivial. A variant of this statement for negative monotone
symplectic manifolds and for complex projective spaces has been proven by
Y. Kawamoto in [17].

The main results of this article establish Principle 1 in two more contexts:
C0 Lagrangians in cotangent bundles and Hausdorff limits of Legendrians
in 1-jet bundles.

C0 Lagrangians: Consider the cotangent bundle T ∗N of a closed manifold
N and denote by ON its zero section. As we will see in Section 4, (La-
grangian) spectral invariants can be defined for a C0 Lagrangian of the form
L = φ(ON ) where φ is a compactly supported Hamiltonian homeomorphism
of T ∗N ; this is proven in Theorem 4.1. We call such a C0 Lagrangian “a
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C0 Lagrangian Hamiltonian homeomorphic to the zero section”. It is not
difficult to see that in this setting our principle translates to the following
statement.

Theorem 1.1. Let φ denote a compactly supported Hamiltonian homeo-
morphism of T ∗N and suppose that L = φ(ON ). If the number of spectral
invariants of L is smaller than cl(N), then L ∩ ON is homologically non-
trivial, hence it is infinite.

Remark 1.2. We expect that by adapting the construction of the coun-
terexample in [3], one should be able to construct L as in the above theorem
such that L∩ON is a singleton. Of course, as a consequence of the theorem,
such L must have at least cl(N) distinct spectral invariants. J

Remark 1.3. It is reasonable to ask if in the above theorem the hypothesis
L = φ(ON ) could be weakened to L being the Hausdorff limit of a sequence
Li, where each Li is Hamiltonian isotopic to the zero section. This is related
to a conjecture of Viterbo; see also Remark 4.4 below. J

Hausdorff limits of Legendrians: As we will show in Section 5, one can
associate spectral invariants to the Hausdorff limit of a sequence of Legen-
drians which are contact isotopic to the zero section in a 1-jet bundle J1N .
The interpretation of our principle in this case turns out to be particularly
interesting for the following reason: Consider an intersection point (q, 0, z)
between such a Legendrian L and the 0-wall. This point corresponds to a
critical point of the action and the associated critical value is z. In other
words, the critical value can be read directly from the intersection point. It
follows that in this context Principle 1 implies the Arnold conjecture itself!

As explained above, for a smooth Legendrian L the action spectrum is
given by spec(L) = πR(L ∩ (ON × R)), where πR : J1N = T ∗N × R → R
is the natural projection. By analogy, we will define the spectrum of any
subset L ⊂ J1N to be

spec(L) = πR(L ∩ (ON × R)).

Theorem 1.4. Let Li be a sequence of Legendrian submanifolds in J1N
which are contact isotopic to the zero section ON × {0}. Suppose that this
sequence has a limit L for the Hausdorff distance, where L ⊂ J1N is a
compact subset.

Assume that the cardinality spec(L) is strictly less than cl(N). Then,
there exists λ ∈ spec(L) such that L ∩ (ON × {λ}) is homologically non-
trivial in ON × {λ}. In particular, L ∩ (ON × R) is infinite.
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Note that we make no assumptions with regards to regularity of L. In
fact, we do not even require L to be a C0 submanifold of J1N .

Remark 1.5. A careful examination of the proof of Theorem 1.4 reveals
that the assumption of Hausdorff convergence of Li to L can be relaxed to
the following: any neighborhood of L contains Li for i large. J

Remark 1.6. In an ongoing project [16], the second author and N. Vichery
show that Principle 1 can also be established for singular supports of sheaves
(belonging to a certain subcategory of sheaves introduced by Tamarkin).
These singular supports can be seen as (singular) generalizations of Legen-
drian submanifolds. J

Organization of the paper

In Section 2, we recall some basic notions from symplectic geometry. In
Section 3, we introduce preliminaries on Lusternik-Schnirelmann theory and
spectral invariants.

Section 4 is dedicated to establishing Principle 1 for C0 Lagrangians
Hamiltonian homeomorphic to the zero section. The main technical step
for doing so, which is of independent interest, consists of proving that La-
grangian spectral invariants can be defined for such C0 Lagrangians. This
is achieved in Section 4.1; see Theorem 4.1 therein. Theorem 1.1 is proven
in Section 4.2. Lastly, Theorem 1.4 is proven in Section 5.
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2 Preliminaries from symplectic geometry

For the remainder of this section (M,ω) will denote a connected symplec-
tic manifold. Recall that a symplectic diffeomorphism is a diffeomorphism
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θ : M →M such that θ∗ω = ω. The set of all symplectic diffeomorphisms of
M is denoted by Symp(M,ω). Hamiltonian diffeomorphisms constitute an
important class of examples of symplectic diffeomorphisms. These are de-
fined as follows: A smooth Hamiltonian H ∈ C∞c ([0, 1] × M) gives rise
to a time-dependent vector field XH which is defined via the equation:
ω(XH(t), ·) = −dHt. The Hamiltonian flow of H, denoted by φtH , is by
definition the flow of XH . A compactly supported Hamiltonian diffeomor-
phism is a diffeomorphism which arises as the time-one map of a Hamiltonian
flow generated by a compactly supported Hamiltonian. The set of all com-
pactly supported Hamiltonian diffeomorphisms is denoted by Hamc(M,ω);
this forms a normal subgroup of Symp(M,ω).

2.1 Symplectic & Hamiltonian homeomorphisms

We equip M with a Riemannian distance d. Given two maps φ, ψ : M →M,
we denote

dC0(φ, ψ) = max
x∈M

d(φ(x), ψ(x)).

We will say that a sequence of compactly supported maps φi : M → M ,
C0–converges to φ, if there is a compact subset of M which contains the
supports of all φi’s and if dC0(φi, φ)→ 0 as i→∞. Of course, the notion of
C0–convergence does not depend on the choice of the Riemannian metric.

Definition 2.1. A homeomorphism θ : M → M is said to be symplectic
if it is the C0–limit of a sequence of symplectic diffeomorphisms. We will
denote the set of all symplectic homeomorphisms by Sympeo(M,ω).

The Eliashberg–Gromov theorem states that a symplectic homeomor-
phism which is smooth is itself a symplectic diffeomorphism. We remark
that if θ is a symplectic homeomorphism, then so is θ−1. In fact, it is easy
to see that Sympeo(M,ω) forms a group.

Definition 2.2. A symplectic homeomorphism φ is said to be a Hamilto-
nian homeomorphism if it is the C0–limit of a sequence of Hamiltonian dif-
feomorphisms. We will denote the set of all Hamiltonian homeomorphisms
by Ham(M,ω).

It is not difficult to see that Ham(M,ω) forms a normal subgroup of
Sympeo(M,ω). It is a long standing open question whether a smooth Hamil-
tonian homeomorphism, which is isotopic to identity in Symp(M,ω), is a
Hamiltonian diffeomorphism; this is often referred to as the C0 Flux con-
jecture; see [19, 36, 1].

We should add that alternative definitions for Hamiltonian homeomor-
phisms do exist within the literature of C0 symplectic topology. Most no-
table of these is a definition given by Müller and Oh in [29]. A homeomor-
phism which is Hamiltonian in the sense of [29] is necessarily Hamiltonian

6



in the sense of Definition 2.2 and thus, the results of this article apply to
the homeomorphisms of [29] as well.

2.2 Hofer’s distance

We will denote the Hofer norm on C∞c ([0, 1]×M) by

‖H‖ =

∫ 1

0

(
max
x∈M

H(t, ·)− min
x∈M

H(t, ·)
)
dt.

The Hofer distance on Ham(M,ω) is defined via

dHofer(φ, ψ) = inf ‖H −G‖,

where the infimum is taken over all H,G such that φ1H = φ and φ1G = ψ.
This defines a bi-invariant distance on Ham(M,ω).

Given B ⊂M , we define its displacement energy to be

e(B) := inf{dHofer(φ, Id) : φ ∈ Ham(M,ω), φ(B) ∩B = ∅}.

Non-degeneracy of the Hofer distance is a consequence of the fact that
e(B) > 0 when B is an open set. This fact was proven in [13, 30, 18].

3 Preliminaries on spectral invariants

We fix a ground field F, e.g. Z2,Q, or C. Singular homology, Floer homology
and all notions relying on these theories depend on the field F.

3.1 Min-max critical values and Lusternik-Schnirelmann the-
ory

Let f ∈ C∞(M) a smooth function on a closed and connected manifold M .
For any a ∈ R, let Ma = {x ∈M : f(x) < a}. Let α ∈ H∗(M) be a non-zero
singular homology class and define

cLS(α, f) := inf{a ∈ R : α ∈ Im(i∗a)},

where i∗a : H∗(M
a)→ H∗(M) is the map induced in homology by the natural

inclusion ia : Ma ↪→ M . The number cLS(α, f) is a critical value of f and
such critical values are often referred to as homologically essential critical
values.

The function cLS : H∗(M)\{0}×C∞(M)→ R is called a min-max criti-
cal value selector. In the following proposition [M ] denotes the fundamental
class of M and [pt] denotes the class of a point.

Proposition 3.1. The min-max critical value selector cLS possesses the
following properties.
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1. cLS(α, f) is a critical value of f ,

2. cLS([pt], f) = min(f) 6 cLS(α, f) 6 cLS([M ], f) = max(f),

3. cLS(α ∩ β, f) 6 cLS(α, f), for any β ∈ H∗(M) such that α ∩ β 6= 0,

4. Suppose that deg(β) < dim(M) and cLS(α ∩ β, f) = cLS(α, f). Then,
the set of critical points of f with critical value cLS(α, f) is homologi-
cally non-trivial.

The above are well-known results from Lusternik-Schnirelmann theory
and hence we will not present a proof here. For further details, we refer the
reader to [24, 6, 40].

3.2 Spectral invariants for Lagrangians

Let N be a closed manifold. The canonical symplectic structure on the
cotangent bundle T ∗N is induced by the form ω0 = −dλ where λ = p dq.
We will denote by Lag the space of Lagrangian submanifolds of T ∗N which
are Hamiltonian isotopic to the zero section, i.e. Lag := {φ(ON ) : φ ∈
Hamc(T

∗N,ω0)}.
Consider φ ∈ Hamc(T

∗N,ω0) and let L = φ(ON ). We will briefly ex-
plain how one may associate Lagrangian spectral invariants to the Hamil-
tonian diffeomorphism φ. Pick a compactly supported Hamiltonian H ∈
C∞c ([0, 1]× T ∗N) such that φ = φ1H . The action functional associated to H
is defined by

AH : Ω(T ∗N)→ R , z 7→
∫ 1

0
Ht(z(t)) dt−

∫
z∗λ

where Ω(T ∗N) = {z : [0, 1] → T ∗N | z(0) ∈ ON , z(1) ∈ ON}. The critical
points of AH are the chords of the Hamiltonian vector field XH which start
and end on ON . Note that such chords are in one-to-one correspondence
with L∩ON . The spectrum of AH consists of the critical values of AH . It is
a nowhere dense subset of R which turns out to depend only on the time–1
map φ1H , hence we will denote it by Spec(L;φ).

Now, using Lagrangian Floer homology, in a manner similar to what was
done in the previous section, one can define a mapping

` : H∗(N) \ {0} ×Hamc(T
∗N,ω0)→ R

which associates to a homology class a ∈ H∗(N) \ {0} a value in Spec(L;φ).
These numbers are often referred to as the Lagrangian spectral invariants
of φ. They were first introduced by Viterbo in [40] via generating function
techniques. The Floer theoretic approach was carried out by Oh [27]. La-
grangian spectral invariants have many properties some of which are listed
below. For a more comprehensive list of their properties, as well as a survey
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of their construction, we refer the reader to [26]; see for example Theorems
2.11 and 2.17 in [26].

Proposition 3.2. The map ` : H∗(N)\{0}×Hamc(T
∗N,ω0)→ R, satisfies

the following properties:

1. `(a, φ) ∈ Spec(L;φ),

2. |`(a, φ1H)− `(a, φ1G)| 6 ‖H −G‖,

3. `(a ∩ b, φψ) 6 `(a, φ) + `(b, ψ),

4. `([pt], φ) 6 `(a, φ) 6 `([N ], φ),

5. `([N ], φ) = −`([pt], φ−1),

6. If φ(ON ) = ψ(ON ), then ∃ C ∈ R such that `(a, φ) = `(a, ψ) + C for
all a ∈ H∗(N) \ {0},

7. Suppose that f : N → R is a smooth function and define the La-
grangian Lf := {(q, ∂qf(q)) : q ∈ N}. Denote by F any compactly
supported Hamiltonian of T ∗N which coincides with π∗f = f ◦ π on
a ball bundle T ∗RN of T ∗N containing Lf . Then, `(a, φ1F ) = cLS(a, f)
for all a ∈ H∗(N) \ {0}.

8. For any other manifold N ′, the spectral invariants on T ∗(N × N ′)
satisfy

`(a⊗ a′, φ× φ′) = `(a, φ) + `(a′, φ′),

for all φ ∈ Hamc(T
∗N,ω), φ′ ∈ Hamc(T

∗N ′, ω), a ∈ H∗(N) \ {0} and
a′ ∈ H∗(N ′) \ {0}.

Note that the sixth property above tells us that spectral invariants `(a, φ)
are essentially invariants of the Lagrangian L := φ(ON ). As a consequence
of this property, the set of spectral invariants of L is well-defined upto a
shift by a constant. In particular, we can make sense of the total number
of spectral invariants of any Lagrangian L which is Hamiltonian isotopic to
the zero section. Similarly, we see that γ : Lag→ R, defined by

γ(φ(ON )) := `([N ], φ)− `([pt], φ) (1)

is well-defined, i.e. it only depends on the Lagrangian φ(ON ) and not on φ.
Viterbo showed in [40] that γ induces a non-degenerate distance on Lag.

Finally, we should mention that Lagrangian spectral invariants have
been constructed in settings more general than what is described above
by Leclercq [22] and Leclercq-Zapolsky [23].

Hamiltonian Spectral Invariants: In order to prove that Lagrangian
spectral invariants can be defined for C0 Lagrangians Hamiltonian home-
omorphic to the zero section, that is to prove Theorem 4.1 below, we will

9



need to use certain results from the theory of Hamiltonian spectral invari-
ants. Here, we will briefly recall the aspects of this theory which will be
needed below. For further details on the construction of these invariants
see [34, 28]. The specific result used here, which compares Lagrangian and
Hamiltonian spectral invariants, was proven in [26].

Given φ ∈ Hamc(T
∗N,ω0) and a ∈ H∗(N) \ {0}, using Hamiltonian

Floer homology, one can define the Hamiltonian spectral invariant c(a, φ);
this is a real number which belongs to the (Hamiltonian) action spectrum
of φ, i.e. there exists a fixed point of φ whose action is the value c(a, φ).
These spectral invariants satisfy a list of properties similar to those listed in
Proposition 3.2. We will be needing the following property which is proven
in [26]: For any φ ∈ Hamc(T

∗N,ω0) and any a ∈ H∗(N) \ {0} we have

c([pt], φ) 6 `(a, φ) 6 c([N ], φ). (2)

See Proposition 2.14 and item iv of Theorem 2.17 in [26].
Similarly to Equation (1), we define γ : Hamc(T

∗N,ω0)→ R via

γ(φ) := c([N ], φ)− c([pt], φ). (3)

Like its Lagrangian cousin, γ induces a non-degenerate distance on Hamc(T
∗

N,ω0). We will need the following properties:

1. Comparison Inequality: As an immediate consequence of Equation
2, the Lagrangian version of γ is smaller than the Hamiltonian version.
More precisely, for any φ ∈ Hamc(T

∗N,ω0) we have

γ(φ(ON )) 6 γ(φ). (4)

2. Conjugacy Invariance: For any φ ∈ Hamc(T
∗N,ω0) and any sym-

plectic diffeomorphism ψ of T ∗N , we have

γ(φ) = γ(ψφψ−1). (5)

3. Triangle Inequality: For any φ, ψ ∈ Hamc(T
∗N,ω0), we have

γ(φψ) 6 γ(φ) + γ(ψ). (6)

4. Energy-Capacity Inequality: Suppose that the support of φ can
be displaced, then

γ(φ) 6 2e(supp(φ)), (7)

where e(supp(φ)) is the displacement energy of supp(φ).
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3.3 Spectral invariants for Legendrians via generating func-
tions

Once again let N be a closed manifold. The standard contact structure
on the 1-jet bundle J1N = T ∗N × R is induced by the contact form α =
dz − λ, where z is the coordinate on R. We will denote by Leg the space
of Legendrian submanifolds of J1N which are contact isotopic to the zero
section. It was proven by Chaperon [4] and Chekanov [5] that for every
L ∈ Leg there exists a generating function quadratic at infinity (gfqi) S :
N × E → R, where E is some auxiliary vector space, such that

L =

{(
q,
∂S

∂q
(q, e), S(q, e)

)
:
∂S

∂e
(q, e) = 0

}
.

Observe that critical points of S correspond to the intersection points
of L with the zero wall ON × R: (q, e) is a critical point of S if and only
if (q, 0, S(q, e)) is a point on L. Note that one can obtain the critical value
of a given critical point of S by simply reading the z–coordinate of the
corresponding intersection point of L with the zero wall.

By applying a min-max construction similar to that of Section 3.1 to the
gfqi S, one can define Legendrian spectral invariants of the Legendrian L:

` : H∗(N) \ {0} × Leg→ R.

The fact that `(a, L) does not depend on the choice of the gfqi S is a con-
sequence of the uniqueness theorem of Théret and Viterbo [39, 40]. For
further details on the construction see [41].

We will now state those properties of Legendrian spectral invariants
which will be used below.

Proposition 3.3. [See [41]] The map ` : H∗(N) \ {0} × Leg→ R, satisfies
the following properties:

1. `(a, L) is a critical value of the corresponding gfqi S,

2. The map `(a, ·) : Leg→ R is continuous with respect to the C∞ topol-
ogy,

3. `(a ∩ b, L + L′) 6 `(a, L) + `(b, L′), for all L,L′ ∈ Leg such that
L+ L′ := {(q, p+ p′, z + z′) : (q, p, z) ∈ L, (q, p′, z′) ∈ L′} is a smooth
Legendrian submanifold contact isotopic to the 0-section.

4. Suppose that f : N → R is a smooth function and define the Legen-
drian Lf := {(q, ∂qf(q), f(q)) : q ∈ N}. Then, `(a, Lf ) = cLS(a, f)
for all a ∈ H∗(N) \ {0}.

Remark 3.4. A proof of item 3 in Proposition 3.3 is based on the following
observation: If S, S′ are gfqi’s for L,L′, respectively, then S ⊕ S′ : N ×
E × E′ → R defined by S ⊕ S′(q, e, e′) := S(q, e) + S′(q, e′) is a gfqi for the
Legendrian L+ L′. J
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4 C0 Lagrangians and proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. We begin by giving a precise
definition of compactly supported Hamiltonian homeomorphisms of T ∗N .

Equip N with a Riemannian metric and denote by T ∗rN := {(q, p) ∈
T ∗N : ‖p‖ < r} the cotangent disc bundle of radius r > 0. We define
Hamc(T

∗
rN,ω0) to be the set of Hamiltonian diffeomorphisms whose support

is contained in T ∗rN . A compactly supported Hamiltonian homeomorphism
is a homeomorphism which belongs to the uniform closure of Hamc(T

∗
rN,ω0)

for some r > 0; we will denote their collection by Hamc(T
∗N,ω0).

4.1 Spectral invariants for C0 Lagrangians

We will now prove that Lagrangian spectral invariants can be defined for
C0 Lagrangians of the form L = φ(ON ) where φ ∈ Hamc(T

∗N,ω0). Below
is the continuity result which allows us to define spectral invariants for such
C0 Lagrangians.

Theorem 4.1. Lagrangian spectral invariants satisfy the following two prop-
erties:

1. For any homology class a ∈ H∗(N) \ {0}, the map

`(a, ·) : Hamc(T
∗N,ω0)→ R

is continuous with respect to the C0 topology on Hamc(T
∗N,ω0) and

extends continuously to the closure Hamc(T
∗N,ω0).

2. If φ(ON ) = ψ(ON ), then ∃ C ∈ R such that `(a, φ) = `(a, ψ) + C for
all a ∈ H∗(N) \ {0} and for any φ, ψ ∈ Hamc(T

∗N,ω0).

Note that as a consequence of the second item, we can define the spec-
tral invariants of a C0 Lagrangian Hamiltonian homeomorphic to the zero
section, upto shift. In particular, it makes sense to speak of the number of
spectral invariants of such a C0 Lagrangian.

The first part of the above theorem follows from techniques which have
by now become rather standard in C0 symplectic topology and hence, we
will only sketch a proof of this part of the theorem. The second part of the
statement, however, is based on a trick which was recently introduced in our
article [2] in the course of proving C0 continuity of spectral invariants for
Hamiltonian diffeomorphisms; see Theorem 1.1 therein.

Proof of Theorem 4.1. We begin with the proof of the first statement. We
will be needing the following claim.

Claim 4.2. For every r > 0, there exist constants C, δ > 0, depending on
r, such that for any ψ ∈ Hamc(T

∗
rN,ω0), if dC0(Id, ψ) 6 δ, then |`(a, ψ)| 6

CdC0(Id, ψ).
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Proof of Claim 4.2. As a consequence of Inequality (2), it is sufficient to
prove the result for the Hamiltonian spectral invariants. This is proved
in [35] in the case of symplectically aspherical closed manifolds; see see
Theorem 1 therein. The proof given in [35] easily adapts to our settings.

Claim 4.2 proves continuity of our map at the identity. Next, we consider
Id 6= φ ∈ Hamc(T

∗
rN,ω0). We leave it to the reader to check that Properties

3, 4 and 5 in Proposition 3.2 yield the following:

|`(a, φψ)− `(a, φ)| 6 max{|`([N ], ψ)|, |`([pt], ψ)|}.

Combining this with Claim 4.2 we conclude that for any φ, ψ ∈ Hamc(T
∗
rN,ω0)

dC0(Id, ψ) 6 δ =⇒ |`(a, φψ)− `(a, φ)| 6 CdC0(Id, ψ).

This proves that `(a, ·) : Hamc(T
∗
rN,ω0)→ R is locally Lipschitz continuous.

Hence, it extends continuously to the closure Hamc(T
∗
rN,ω0). This finishes

the proof of the first statement of the theorem.

We now turn our attention to the second statement of the theorem. We
begin with the following apriori weaker statement.

Theorem 4.3. Let φ ∈ Hamc(T
∗N,ω0) be a Hamiltonian homeomorphism.

If φ(ON ) = ON , then there exists a constant C such that `(a, φ) = C for all
a ∈ H∗(N) \ {0}.

Note that in the case where φ is a smooth Hamiltonian diffeomorphism,
the above theorem reduces to Property 6 in Proposition 3.2.

Remark 4.4. It can be checked that Theorem 4.3 is a consequence of the
following conjecture of Viterbo: If Li ⊂ T ∗N is a sequence of Lagrangians
Hamiltonian isotopic to the zero section, which Hausdorff converges to the
zero section ON , then γ(Li) → 0. This conjecture has been established in
several case by Shelukhin, e.g. N = Sn,CPn,Tn and others; See [37, 38]. J

Let us prove that the result follows from the above theorem. Suppose
that φ(ON ) = ψ(ON ). First, note that, as a consequence of the third item
in Proposition 3.2, we have the following inequality:

−`([N ], φ−1ψ) 6 `(a, φ)− `(a, ψ) 6 `([N ], ψ−1φ).

Hence, it is sufficient to show that `([N ], ψ−1φ) = −`([N ], φ−1ψ). Now,
by the fifth item of Proposition 3.2, −`([N ], φ−1ψ) = `([pt], ψ−1φ) and by
Theorem 4.3 we have `([pt], ψ−1φ) = `([N ], ψ−1φ).

It remains to prove Theorem 4.3. The proof we present below relies on
an idea similar to what was used in the proof of Theorem 1.1 of [2].
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Proof of Theorem 4.3. Pick a sequence φi in Hamc(T
∗
ρN,ω0) which con-

verges uniformly to φ (for some ρ > 0). By Theorem 4.1, it is enough
to show that there exists a constant C such that `(a, φi) → C for any
a ∈ H∗(N) \ {0}. Denote Li := φi(ON ) and observe that, as a consequence
of the fourth property in Proposition 3.2, it is sufficient to show that γ(Li)
converges to zero.

As we will now explain, we may assume without loss of generality that φ
admits a fixed point on the zero section ON . Indeed, fix p ∈ ON and pick a
Hamiltonian G which vanishes on the zero section such that φ ◦ φ1G(p) = p.
For all i, we have γ(φi ◦ φ1G) = γ(φi), by the sixth item of Proposition 3.2.
Thus, we can replace φi by φi ◦ φ1G and φ by φ ◦ φ1G.

Observe that the Lagrangians Li converge in Hausdorff topology to the
zero section, i.e. for any δ > 0 we have Li ⊂ T ∗δN for i sufficiently large. We
will reduce the theorem to the following lemma which was obtained jointly
with R. Leclercq. A variant of this lemma was established in [15]; see Lemma
8 therein.

Given B ⊂ N , we denote T ∗B := {(q, p) ∈ T ∗N : q ∈ B} and OB :=
{(q, 0) : q ∈ B}.

Lemma 4.5. Let Li denote a sequence of Lagrangians in T ∗N which are
Hamiltonian isotopic to ON . Suppose that there exists a ball B ⊂ N such
that Li ∩ T ∗B = OB. If the sequence Li Hausdorff converges to ON , then
γ(Li)→ 0.

Proof. Pick φi ∈ Hamc(T
∗N,ω0) such that φi(ON ) = Li. We begin with

the following observation: Since Li ∩ T ∗B is connected, any two points
(q1, 0), (q2, 0) ∈ Li ∩ T ∗B have the same action. Let Ci denote this value.

For any given ε > 0, pick a smooth function f : N → R whose critical
points are all contained in B and such that max(f) −min(f) < ε. Denote
by π : T ∗N → N the natural projection and define F = β π∗f where
β : T ∗N → [0, 1] is compactly supported and β = 1 on T ∗RN where R� 1.

Note that φtF (q, p) = (q, p + t df(q)) for t ∈ [0, 1] and (q, p) ∈ T ∗1N .
Therefore, φ1Fφi(ON ) = Li+Lf where Li+Lf := {(q, p+df(q)) : (q, p) ∈ Li}.
The Hausdorff convergence of the sequence Li to ON and the fact that
Li ∩ T ∗B = OB combine together to imply that (Li + Lf ) ∩ ON = {(q, 0) :
df(q) = 0} for i large enough.

It is easy to see that the action of (q, 0) ∈ (Li + Lf ) ∩ ON is given by
Ci + f(q) where Ci is the constant introduced above. Therefore,

γ(Li + Lf ) 6 max(f)−min(f) < ε.

On the other hand, by the second property from Proposition 3.2, we have
|γ(Li + Lf )− γ(Li)| 6 2(max(f)−min(f)) < 2ε. Combining this with the
previous inequality we obtain γ(Li) < 3ε for i large enough which proves
the lemma.
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The end of the proof of Theorem 4.3 will consist in reducing to Lemma
4.5. We will assume from now on thatN has even dimension. The case where
N has odd dimension reduces to the even dimensional case by replacing N
with N × S1 and all φi’s by φi × IdS1 .

We introduce for that the auxiliary maps

Φi = φi × φ−1i : T ∗N × T ∗N → T ∗N × T ∗N,
(x, y) 7→ (φi(x), φ−1i (y)),

where we endow T ∗N × T ∗N with the symplectic form ω0 ⊕ ω0; observe
that this is canonically symplectomorphic to T ∗(N ×N) equipped with its
canonical symplectic structure.

Denote Li := φ−1i (ON ) and note that Φi(ON×N ) = Li × Li. The map
Φi is a Hamiltonian diffeomorphism which is not compactly supported. To
obtain a compactly supported Hamiltonian diffeomorphism, we cut off the
generating Hamiltonian of Φi far away from ON×N and obtain a new Hamil-
tonian diffeomorphism which we will continue to denote by Φi. It is not
difficult to see that Φi remains unchanged on a large enough neighborhood
of the zero section and so Φi(ON×N ) continues to be Li × Li.

Properties 8 and 5 of Proposition 3.2 yield

γ(Li × Li) = γ(Li) + γ(Li) = 2γ(Li). (8)

Our proof crucially relies on the following lemma.

Lemma 4.6. Fix ε > 0. We can find a ball B ⊂ N , and Ψi ∈ Hamc(T
∗N ×

T ∗N,ω0 ⊕ ω0) such that the following properties hold :

(i) γ(Ψi(ON×N )) < ε for i sufficiently large,

(ii) ΨiΦi(ON×N ) converges in Hausdorff topology to ON×N ,

(iii) ΨiΦi(ON×N ) ∩ T ∗(B ×B) = OB×B for i sufficiently large.

We now explain why this lemma implies that γ(Li) → 0. Fix ε > 0
and let B and Ψi be as provided by Lemma 4.6. Using (8), the triangle
inequality and the fifth property in Proposition 3.2, we get

γ(Li) = 1
2γ(Li × Li) = 1

2γ(Φi(ON×N ))

6 1
2γ(Φi ◦Ψi(ON×N )) + 1

2γ(Ψ−1i (ON×N ))

< 1
2γ(Φi ◦Ψi(ON×N )) + ε

2 .

The second and the third items of Lemma 4.6 allow us to apply Lemma
4.5 and conclude that γ(Φi ◦Ψi(ON×N ))→ 0. This implies that γ(Li)→ 0.
This concludes the proof of Theorem 4.3 assuming Lemma 4.6.
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Proof of Lemma 4.6. Fix ε > 0. Pick a non-empty open ball B1 in N ' ON
containing a fixed point p of φ and such that the displacement energy of
U1 := T ∗1B1 in T ∗N is less than ε

4 . Note that the displacement energy of
U1 × U1 inside T ∗(N ×N) is also less than ε

4 .
The following claim asserts the existence of a convenient Hamiltonian

diffeomorphism which switches coordinates on a small open set.

Claim 4.7. There exist an open ball B2 ⊂ B1 containing the fixed point p,
0 < r2 < 1 and a Hamiltonian diffeomorphism f of T ∗N × T ∗N such that:

• f(ON×N ) = ON×N ,

• f is the time-1 map of a Hamiltonian supported in U1 × U1,

• for all (x, y) ∈ U2 × U2, we have f(x, y) = (y, x), where U2 := T ∗r2B2.

Proof. Since N is assumed even dimensional, there is an identity isotopy,
say ϕt, of N ×N which is supported in B1×B1 with the following property:
there exists a ball B2 ⊂ B1 containing p such that ϕ1(q1, q2) = (q2, q1) on
B2 ×B2.

Let ϕ̃t denote the canonical lift of this isotopy to T ∗N × T ∗N . The
isotopy ϕ̃t is symplectic, it preserves ON×N , it is supported in T ∗B1×T ∗B1,
and it can be checked that ϕ̃1(x, y) = (y, x) on T ∗B2× T ∗B2. Furthermore,
the isotopy is Hamiltonian. Let H denote a generating Hamiltonian of the
isotopy which is supported in T ∗B1 × T ∗B1.

To construct our desired Hamiltonian diffeomorphism f , we simply re-
place H by βH where β is a smooth cut-off function on T ∗(N × N) such
that β = 1 on T ∗1−δ(N ×N), where δ is a small positive number, and β = 0
outside T ∗1 (N ×N). We set f to be the time-1 map of the Hamiltonian flow
of βH and leave it to the reader to check that it satisfies the requirements
of the claim.

We can now complete the proof of Lemma 4.6. Since p ∈ B2, there
exists a ball B3 ⊂ B2 and 0 < r3 < r2 such that φ(U3) b U2 (i.e., φ(U3) is
compactly contained in U2), where U3 := T ∗r3B3.

Let Υi = φi × IdT ∗N and let

Ψi = Υ−1i ◦ f
−1 ◦Υi ◦ f.

We will first show that γ(Ψi(ON×N )) < ε. Note that by Equation (2),
we have γ(Ψi(ON×N )) 6 γ(Ψi), where γ(Ψi) is the Hamiltonian γ which
was introduced above in Equation (3). Hence, it is sufficient to show that
γ(Ψi) < ε. The triangle inequality for γ (Equation (6)) and its conjugacy
invariance (Equation (5)) yield γ(Ψi) 6 2γ(f). Lastly, γ(f) < ε

2 because
the displacement energy of its support is smaller than ε

4 ; see Equation (7).
This implies Property (i) in Lemma 4.6.
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Next, we will verify the second property in Lemma 4.6. Define Ψ :=
Υ−1 ◦ f−1 ◦ Υ ◦ f , where Υ := φ × IdT ∗N , and let Φ := φ × φ−1. Since
f,Υ and Φ preserve ON×N , we conclude that Φ ◦ Ψ also preserves ON×N .
Now, there exists a neighborhood of ON×N where the sequences Ψi and Φi

converge uniformly to Ψ and Φ, respectively. It follows that Φi ◦Ψi(ON×N )
converges in Hausdorff topology to ON×N .

It remains to verify the third property from the lemma. We leave it
to the reader to check that Φi ◦ Ψi(x, y) = (x, y) for all (x, y) ∈ U3 × U3,
when i is large enough. This relies crucially on the following observations:
f(x, y) = (y, x) on U2 × U2 and Υi(U3 × U3) ⊂ U2 × U2 for i large enough.
The last statement is a consequence of the fact that φ(U3) b U2.

Let B = B3 ×B3 and r = r3, so that T ∗rB = U3 × U3. As we have seen,
for i large, Φi ◦ Ψi coincides with the identity on T ∗rB. We claim that this
implies the third property. Indeed, it clearly implies OB ⊂ Φi ◦Ψi(ON×N )∩
T ∗B. Furthermore, it also implies that if Φi ◦ Ψi(ON×N ) ∩ T ∗B contains
a point which is not in OB, then such a point is in T ∗B \ T ∗rB. But of
course this cannot happen for i large because of the Hausdorff convergence
of Φi ◦Ψi(ON×N ) to ON×N . This establishes the third property in Lemma
4.6.

4.2 Proof of Theorem 1.1

By the assumptions of the theorem, one can find some r > 0 and a sequence
φi ∈ Hamc(T

∗
rN,ω0) such that φi converges uniformly to φ. Since the num-

ber of Lagrangian spectral invariants of φ is assumed to be less than cl(N),
there exist some α, β ∈ H∗(N) with degα,deg β < dimN and α∩β 6= 0, such
that `(α, φ) = `(α∩β, φ) =: λ. By the continuity of spectral invariants (i.e.
the first item of Theorem 4.1), we have lim `(α, φi) = lim `(α ∩ β, φi) = λ,
when i→∞.

Let U ⊂ ON be any neighbourhood of L ∩ ON in ON . It is enough to
show that the closure U is homologically non-trivial in ON . For doing this,
pick a smooth function f : N → R such that f = 0 on U and f < 0 on
N \U . Denote by π : T ∗N → N the natural projection and define F = βπ∗f
where β : T ∗N → R is compactly supported and β = 1 on T ∗RN where R is
taken to be large in comparison to r.

Claim 4.8. There exists an integer i0 such that for any i > i0, and for
sufficiently small values of ε > 0,

`(α ∩ β, φεF φi) = `(α ∩ β, φi).

Proof. Let Li = φi(ON ) and Lεf = φεF (ON ). Note that φtF (q, p) = (q, p +
t df(q)) for t ∈ [0, 1] and (q, p) ∈ T ∗rN . Therefore, we have Lεf = {(q, εdf(q)) :
q ∈ N} and φεFφi(ON ) = φεF (Li) = Li + Lεf where Li + Lεf := {(q, p +
εdf(q)) : (q, p) ∈ Li}.

17



Since L∩ π−1(ON \U) is compact and does not intersect ON , and since
the sequence φi converges uniformly to φ, we conclude that for small enough
ε and large enough i, (Li+Lεf )∩π−1(ON \U) does not intersect ON as well.
On the other hand, since f = 0 on U , we get that (Li + Lεf ) ∩ π−1(U) =
Li ∩ π−1(U). Therefore, for small enough ε > 0 and large enough i, the
Lagrangians Li and Li+Lεf have the same intersection points with the zero
section ON . Moreover, it is easy to see that for each such intersection point,
the two action values corresponding to φi and φεFφi coincide. Therefore,
by fixing i and ε > 0, and considering the family of Lagrangians Li + Lsεf
when s ∈ [0, 1], we see that the action spectra Spec(Li +Lsεf , φ

sε
F φi) do not

depend on s. Also, recall that the action spectrum has an empty interior
in R. As a result, since the value `(α ∩ β, φεFφi) depends continuously on
s, we conclude that it in fact does not depend on s ∈ [0, 1]. In particular,
`(α ∩ β, φi) = `(α ∩ β, φεFφi).

The triangle inequality of Proposition 3.2 implies that, for all i, `(α ∩
β, φεFφi)−`(α, φi) 6 `(β, φεF ). Using the above claim, for i large and ε small
enough, we have `(α ∩ β, φi) − `(α, φi) 6 `(β, φεF ). Taking limit as i → ∞,
and recalling that lim `(α, φi) = lim `(α∩β, φi) = λ, we obtain 0 6 `(β, φεF ).

We can now conclude our proof as follows. On the one hand, by Proposi-
tion 3.2.7, we have `(β, φεF ) = cLS(β, εf) = cLS([M ]∩ β, εf). On the other
hand, Propostion 3.1.2 gives cLS([M ], εf) = 0. Thus, using Proposition
3.1.3, we obtain the equality cLS([M ] ∩ β, εf) = cLS([M ], εf). By Proposi-
tion 3.1.4 it follows that the zero level set of f , that is U , is homologically
non-trivial.

5 Hausdorff limits of Legendrians and proof of
Theorem 1.4

This section is dedicated to the proof of Theorem 1.4. Recall that we con-
sider a sequence Li of Legendrian submanifolds, contact isotopic to the zero
section in J1N = T ∗N × R, which has a Hausdorff limit L. Denote by
πR : J1N = T ∗N × R→ R the natural projection.

We have not been able to verify whether it is possible to define Leg-
endrian spectral invariants for the Hausdorff limit L. However, as we will
now explain, it is still possible to view Theorem 1.4 as an incarnation of
Principle 1: Let K be a (smooth) Legendrian submanifold of J1N which is
contact isotopic to the zero section. Then, as was explained in Section 3.3,
the set spec(K) = πR(K ∩ (ON × R)) is the set of critical values of the gfqi
associated to K. Hence, if the cardinality of spec(K) is smaller than cl(N),
then so is the total number of spectral invariants of K. Therefore, despite
the fact that we cannot define spectral invariants for the Hausdorff limit L,
we can interpret the cardinality of the set spec(L) = πR(L∩ (ON ×R)) being
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smaller than cl(N) to mean that L has fewer spectral invariants than cl(N).

Proof of Theorem 1.4. Observe that the Hausdorff convergence of Li’s to
L implies that the set Li ∩ (ON × R) is contained in an arbitrarily small
neighbourhood of L∩ (ON ×R) for large i. Because `(a, Li) corresponds to
an intersection point of Li with the zero wall, we conclude that the set of
limit points of {`(a, Li) : a ∈ H∗(N) \ {0}, i ∈ N} is contained in spec(L).

Assume that spec(L) has less than cl(N) points. It follows from the
above discussion that there exist α, β ∈ H∗(N) \ {0} and λ ∈ spec(L) such
that for a subsequence (ik) of indices we have `(α,Lik) → λ and `(α ∩
β, Lik) → λ as k → ∞. By passing to this subsequence, we may further
assume that `(α,Li)→ λ and `(α ∩ β, Li)→ λ as i→∞. Let us show that
L ∩ (ON × {λ}) is homologically non-trivial in ON × {λ}.

Pick any neighbourhood V of L ∩ (ON × {λ}) in J1N . Denote U :=
πN (V ), where πN : J1N → N is the natural projection, and pick a smooth
function f : N → R such that f = 0 on U and f < 0 on N \ U .

Claim 5.1. There exists an integer i0 such that for any i > i0, and for
sufficiently small values of ε > 0,

`(α ∩ β, Li + Lεf ) = `(α ∩ β, Li).

Proof. By the Hausdorff convergence of Li to L, there exists some δ > 0
such that for i large enough and ε > 0 small enough, we have

(Li + Lεf ) ∩ (ON × (λ− δ, λ+ δ)) ⊂ V.

Furthermore, for any (q, p, z) ∈ V , we have that q ∈ U and thus f(q) = 0 and
df(q) = 0. This implies that (Li+Lεf )∩(ON×(λ−δ, λ+δ)) = Li∩(ON×(λ−
δ, λ+δ)), in particular spec(Li+Lεf )∩(λ−δ, λ+δ) = spec(Li)∩(λ−δ, λ+δ).

The continuity and spectrality properties of spectral invariants, together
with the fact that the spectrum of Li has an empty interior in R and that
`(α ∩ β, Li) ∈ (λ − δ, λ + δ) for i large enough, imply that the spectral
invariant `(α ∩ β, Li + Lεf ) is independent of ε.

Now the triangle inequality of Proposition 3.3 implies that, for all i,
`(α ∩ β, Li + Lεf )− `(α,Li) 6 `(β, Lεf ). Using the above claim, for i large
and ε small enough, we have `(α ∩ β, Li) − `(α,Li) 6 `(β, Lεf ). Taking
limit as i → ∞, and recalling that `(α ∩ β, Li), `(α,Li) → λ, we obtain
0 6 `(β, Lεf ).

We can now conclude our proof as follows. On the one hand, by Proposi-
tion 3.3.4, we have `(β, Lεf ) = cLS(β, εf). Note that cLS(β, εf) = cLS([N ]∩
β, εf) and by the above paragraph this number is non-negative. On the
other hand, Propostion 3.1.2 gives cLS([N ], εf) = 0. Thus, using Propo-
sition 3.1.3, we obtain the equality cLS([N ] ∩ β, εf) = cLS([N ], εf). By
Proposition 3.1.4 it follows that the zero level set of f , that is the closure of
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U = πN (V ), is homologically non-trivial in N . Since our choice of a neigh-
bourhood V of L∩(ON×{λ}) was arbitrary, we conclude that L∩(ON×{λ})
is homologically non-trivial in ON × {λ}.
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problèmes variationnels. Moskau: Issledowatelskij Institut Mathematiki
i Mechaniki pri J. M. G. U (1930)., 1930.

[25] S. Matsumoto. Arnold conjecture for surface homeomorphisms. In
Proceedings of the French-Japanese Conference “Hyperspace Topologies
and Applications” (La Bussière, 1997), volume 104, pages 191–214,
2000.

[26] A. Monzner, N. Vichery, and F. Zapolsky. Partial quasimorphisms and
quasistates on cotangent bundles, and symplectic homogenization. J.
Mod. Dyn., 6(2):205–249, 2012.

21



[27] Y.-G. Oh. Symplectic topology as the geometry of action functional.
II. Pants product and cohomological invariants. Comm. Anal. Geom.,
7(1):1–54, 1999.

[28] Y.-G. Oh. Construction of spectral invariants of hamiltonian paths on
closed symplectic manifolds. The breadth of symplectic and Poisson
geometry. Progr. Math. 232, Birkhauser, Boston, pages 525–570, 2005.

[29] Y.-G. Oh and S. Müller. The group of Hamiltonian homeomorphisms
and C0–symplectic topology. J. Symplectic Geom., 5(2):167–219, 2007.

[30] L. Polterovich. Symplectic displacement energy for Lagrangian sub-
manifolds. Ergodic Theory and Dynamical Systems, 13:357–367, 1993.

[31] Y. B. Rudyak and J. Oprea. On the Lusternik-Schnirelmann category of
symplectic manifolds and the Arnold conjecture. Math. Z., 230(4):673–
678, 1999.

[32] S. Sandon. On iterated translated points for contactomorphisms of
R2n+1 and R2n × S1. Internat. J. Math., 23(2):1250042, 14, 2012.

[33] S. Sandon. A Morse estimate for translated points of contactomor-
phisms of spheres and projective spaces. Geom. Dedicata, 165:95–110,
2013.

[34] M. Schwarz. On the action spectrum for closed symplectically aspherical
manifolds. Pacific J. Math., 193(2):419–461, 2000.

[35] S. Seyfaddini. Descent and C0-rigidity of spectral invariants on mono-
tone symplectic manifolds. J. Topol. Anal., 4(4):481–498, 2012.

[36] S. Seyfaddini. A note on C0 rigidity of Hamiltonian isotopies. J. Sym-
plectic Geom., 11(3):489–496, 2013.

[37] E. Shelukhin. Viterbo conjecture for Zoll symmetric spaces.
arXiv:1811.05552, Nov 2018.

[38] E. Shelukhin. String topology and a conjecture of Viterbo.
arXiv:1904.06798, Apr 2019.
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