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NEW H(div)-CONFORMING MULTISCALE HYBRID-MIXED METHODS FOR

THE ELASTICITY PROBLEM ON POLYGONAL MESHES

Philippe R. B. Devloo1, Agnaldo M. Farias2, Sônia M. Gomes3, Weslley
Pereira4, Antonio J. B. dos Santos5 and Frédéric Valentin6

Abstract. This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional
linear elasticity problem on general polygonal meshes. The new methods approximate displacement,
stress, and rotation using two-scale discretizations. The first scale level setting consists of approximat-
ing the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing
rigid body modes element wisely. In the second level, the methods are made effective by solving com-
pletely independent local boundary Neumann elasticity problems written in a mixed form with weak
symmetry enforced via the rotation multiplier. Since the finite-dimensional space for the traction vari-
able constraints the local stress approximations, the discrete stress field lies in the H(div) space globally
and stays in local equilibrium with external forces. We propose different choices to approximate local
problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices
generate the family of multiscale finite element methods for which stability and convergence are proved
in a unified framework. Notably, we prove that the methods are optimal and high-order convergent
in the natural norms. Also, it emerges that the approximate displacement and stress divergence are
super-convergent in the L2-norm. Numerical verifications assess theoretical results and highlight the
high precision of the new methods on coarse meshes for multilayered heterogeneous material problems.
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Résumé. On propose une famille de méthodes mixtes hybrides multi-échelles pour le problème
d’élasticité linéaire bidimensionnelle sur des maillages polygonaux généraux. Les nouvelles méthodes
approchent le déplacement, la contrainte et la rotation à l’aide de discrétisations à deux échelles. Le
premier niveau consiste à approcher la traction (multiplicateur de Lagrange) dans des espaces poly-
nomiaux discontinus, et à calculer judicieusement les mouvements de corps rigides. Dans le deuxième
niveau d’échelle, les méthodes sont rendues efficaces en résolvant des problèmes d’élasticité locaux du
type Neumann complètement indépendants écrits sous une forme mixte avec une symétrie faible, im-

posée via un deuxième multiplicateur de Lagrange. Étant donné que l’espace de dimension finie pour la
traction contraint l’espace discret pour le tenseur de contrainte local, le champ de contraintes discrètes
se situe dans l’espace H(div) global et reste en équilibre local avec des forces externes. Nous proposons
différents choix pour approcher les problèmes locaux basés sur des paires d’éléments finis localement
stables définies sur des mailles affines de second niveau. Ces choix génèrent la famille de méthodes
d’éléments finis multi-échelles pour lesquelles la stabilité et la convergence sont prouvées dans un cadre
unifié. Notamment, nous prouvons que les méthodes sont optimales et convergentes dans les normes
naturelles. De plus, on démontre que le déplacement et la divergence des contraintes discrètes sont
super-convergents dans la norme L2. Des essais numériques valident les résultats théoriques et mettent
en évidence la bonne précision des nouvelles méthodes sur des mailles grossières pour des problèmes
de matériaux hétérogènes multicouches.

1. Introduction

Mixed finite element (FE) methods for elasticity problems, based on the Hellinger-Reissner principle, have
been used since the beginning of finite element history. They are formulated simultaneously for stress and
displacement variables, which are of primary interest. Moreover, the importance of using hybridization in
stress mixed formulations for elasticity problems has also been early recognized by the pioneer engineers in
structural mechanics (e.g., see [38] and the citations therein, including the work by T. H. H. Pian). When
correctly designed, stress mixed methods usually give optimal stress accuracy, and local momentum conservation.
Moreover, they do not present locking behavior for incompressible or nearly incompressible materials.

We focus our study on conforming stress mixed formulations, meaning that approximations for the stress
tensor σ must have continuous normal traces (traction) along inter-element boundaries (i.e., the stress FE space

should be H(div)-conforming). The displacement variable u lives in a discontinuous space. These kinds of
methods are formulated as minimization problems constrained by the realization of the divergence equation,
and displacement plays the role of the corresponding Lagrange multiplier. However, as mentioned in [3], the
divergence-consistency, a property required for the method to be well-posed, has proved to be surprisingly hard
to be fulfilled by symmetric tensors and displacement FE pairs. There is another approach that do not assume
symmetry in the tensor space from the beginning. Instead, the idea is to impose a weak symmetry condition,
which requires a stable choice of another FE space for the (multiplier) rotation variable q. We denote this class
of methods by the acronym MFEM-WS, and refer to [5, 22] for overviews on this matter.

Realistic problems in solid mechanics are frequently associated with domains with complex geometries, in
the occurrence of fractures, heterogeneities in the materials, or under intricate types of loads. On the other
side, standard finite element methods need refined meshes to capture small structures in the data, which reflects
in an elevated computational cost. With this motivation, our purpose is to create a flexible multiscale hybrid
approach for the MFEM-WS formulation. Our method is based on a divide-and-conquer strategy combined
with bubble enrichment techniques and static condensation, which are general-purpose tools widely adopted in
multiscale simulations. It shall be denoted by the acronym MHM-WS, for its design is in the spirit of Multiscale
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Hybrid Mixed (MHM) methods (already applied for Darcy problems [20, 27], for displacement-based elasticity
formulations [26,35,36], and other contexts therein cited). In summary, this means that the MHM-WS scheme
shares with these MHM methods the following characteristics:

(1) It can be interpreted as a discrete version of a hybrid formulation characterizing the exact solution in
terms of components given by well-posed local-global systems.

(2) There is a macro-partition T = {Ωi} of Ω, and a set of local problems over each (general polygonal)
subregion Ωi.

(3) A new normal trace variable (multiplier) is introduced over the subregion boundaries (mesh skeleton),
making the referred inter-element connection.

(4) There are two-scale operators (upscaling and downscaling) transferring information between the two
levels of resolution.

(5) There is an orthogonal decomposition of the potential (displacement) variable in terms of a coarse
(piecewise rigid body motions), defined over T , and a fine-scale components.

(6) As in usual static-condensation procedures, the multiplier and the coarse potential component are
computed by a stable global system (upscaling stage).

(7) In the second fine scale, the small details of all variables are computed by a set of problems restricted
to the subregions Ωi ∈ T , taking the multiplier as Neumann boundary data over ∂Ωi, and using the
adopted stable formulations for each one (downscaling stage). The local FE spaces my have richer
internal resolution than the boundary traces. Each local problem is completely independent from the
others, since test functions have support inside a single subregion.

(8) The local downscaling problems favor the use of parallel strategies.

We shall mention that this family of multiscale methods does not assume periodicity on the elastic coefficients
nor separation of scales in its construction. Thereby, it can be used (formally) for general problems with
heterogeneous coefficients.

For the current MHM-WS scheme, the approximate stress σ̃ is obtained in a FE space of tensors with normal
traces strongly constrained to a given FE space over the mesh skeleton, where we search for the new multiplier
variable λ̃. Consequently, σ̃ is H(div)-conforming. Moreover, and to increase accuracy, we can enrich the tensor

bubble functions (with support on a single subregion) using different strategies: refining the internal mesh,
increasing the polynomial degree, or both. For neighboring subregions Ωi and Ωj , their internal partitions T Ωi

and T Ωj are allowed to be non-conformal over Γi,j = ∂Ωi ∩ ∂Ωj . In principle, element geometry, mesh widths,
and polynomial degrees in the subregions may vary. However, some mesh and space consistencies should be
satisfied (see Sec. 3).

The strategy we present requires some stability conditions, namely divergence-constraint and Stokes-constraint,
of the two-scale tensor FE space with respect to displacement and rotation FE spaces. Under these circum-
stances, an important analysis aspect of the MHM-WS method is that it may be interpreted as an equivalent
stable MFEM-WS formulation of the model problem, both based on the same FE space framework. Divergence-
constraint is obtained by forming rows of tensors and displacements with Poisson-compatible FE pairs widely
used for flux and potential approximations in mixed methods. Concerning the enforcement of the Stokes-
constraint, we extend the methodology proposed in [19] to construct new stable Stokes-compatible pairs: the
pair used for stability analysis at the coarsest single-scale space setting is incremented with extra refined com-
posite bubble terms for the velocity in order to restore stability when using enlarged pressure spaces, in the
spirit of the methodology suggested in [10]. Classical tools are applied to the equivalent two-scale MFEM-WS
framework, guiding the error analysis of the MHM-WS solutions. We prove optimal and high-order convergence
for displacement, stress and rotation unknowns in their natural norms under some regularity assumptions.
Stress and rotation variables are approximated with the same accuracy order as for the trace variable. Notably,
super-convergence in the L2-norm for the divergence of the stress and enhanced displacement may be reached.

Recently, the authors in [30] pointed out that the resolution of elasticity problems by multiscale mixed stress-
displacement formulations, based on domain decomposition, had not been considered before. They proposed
and analyzed a multiscale mixed formulation using the mortar domain decomposition with non-matching grids,
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and weakly imposed stress symmetry. The mortar spaces use displacement Lagrange multipliers to (weakly)
enforce interface continuity of the normal stress. Following a similar divide-and-conquer principle but designed
in the different MHM context, the MHM-WS method also fills this gap.

There are some other works that use multiscale FE methods to solve elasticity problems. In [11, 12], the
authors applied the Multiscale Finite Element Method (MsFEM) to solve an elasticity problem in a composite
material. Each level in the MsFEM has its mesh and interpolation spaces that, in general, fit inside the
interpolations of lower levels. The MsFEMs have no local problems associated with the source function neither
a rigorous mathematical structure to guide the choice of local boundaries. The Heterogeneous Multiscale FE
method (HMM) [1] discretizes the elasticity problem by a macroscopic FE method coupled with a microscopic
FE method resolving the micro scales and recovering the macroscopic properties of the material. The Localized
Orthogonal Decomposition (LOD) method of [32] is a multiscale method that requires low regularity on the
variational problem. It avoids the use of additional regularity by computing the multiscale basis functions on a
set (patch) of macro elements. A generalized FE method (GFEMs) using LOD is presented in [29].

Outline of the paper

Section 2 starts with the weak stress mixed formulation with reduced stress symmetry for the model problem,
and a new local-global characterization of the exact solution. In Sec. 3, we construct a hierarchy of partitions
and two-scale FE space settings Eγ to be used in discrete versions of this weak stress formulation, namely, the
method denoted by MFEM-WS(Eγ), and the corresponding local-global MHM-WS(Eγ) formulation, presented in
Sec. 4. There, we analyze the well-posedness of these two-scale discrete formulations and derive an equivalence
result for them. We establish the stability for two specific families of two-scale FE spaces Eγ in Sec. 5, for
triangular and affine quadrilateral partitions. We develop the error analysis of the MHM-WS(Eγ) solutions in
Sec. 6, by extending classical techniques typical of single-scale FE settings to more general two-scale MFEM-
WS(Eγ). We present the results of computational simulations in Sec. 7, confirming the predicted theoretical

convergence results of Sec. 6. In the same section, we compare the results with the ones from the MHM-H1

method and the ones from the classical single-scale MHM-WS methods. The final part of this section dedicates
to numerical tests in heterogeneous media with high-contrast layers. After some concluding remarks in Sec. 8,
Appendix A presents the proofs of some theorems previously stated. We use various symbols for the notation
of variables, data, geometric elements, finite element spaces, and nomenclature. For those wishing to keep them
straight, they are listed in Appendix B.

2. Stress mixed formulation with reduced stress symmetry

Let Ω ⊂ R2 be a polygonal domain occupied by a linear elastic body. Given the body force f and Dirichlet
boundary data g, the equations of the static elasticity in the Hellinger-Reissner form determine that stress σ
and displacement u fields satisfy the following equilibrium and constitutive equations

−∇ · σ = f, σ = A ε(u) in Ω, u = g on ∂Ω, (1)

where ε(u) =
∇u+∇uT

2
is the infinitesimal strain tensor. The material properties are described by the stiffness

tensor A = A(x, y) for all (x, y) ∈ R2, which is a self-adjoint, bounded, and uniformly positive definite linear
operator acting on the set of symmetric tensors S. We assume that A can be extended to general second-order

tensors M = R2×2 with the same properties. In particular, in the case of a isotropic body, A ε = 2µε+λ tr(ε)I,
where λ and µ are the Lamé parameters, and I is the 2 × 2 identity matrix. Both the material properties A
and the given source data f may be heterogeneous and embed various length scales.

Throughout this paper, for a region D ⊆ Ω, nD denotes the external unitary normal to ∂D. The scalar
Hilbert spaces L2(D) and Hs(D) have the usual meaning and norms. We also consider the spaces L2(D,R2),
L2(D,M), Hs(D,R2), and Hs(D,M), which inherit the corresponding norms associated to L2(D) and Hs(D).
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H(div, D) is the usual space composed by square-integrable vector functions, for which the divergence is also
square integrable. Similarly, we consider the space of tensor functions H(div, D,M) and recall that, for tensor
fields, the divergence is the vector field obtained by taking the divergence of each row. For simplicity, we adopt
the notation S = H(div,Ω,M), U = L2(Ω,R2), and Q = L2(Ω). Moreover, we use (·, ·)D for the L2-inner

products, and 〈·, ·〉∂D refers to the duality pairing between H1/2(∂D,R2) =
{
µ = u|∂D, u ∈ H1(D,R2)

}
and

H−1/2(∂D,R2) =
{
µ = τ nD|∂D, τ ∈ H(div, D,M)

}
. We drop the subscript D whenever D = Ω.

2.1. The weak formulation

Problem (1) admits an equivalent expression, without assuming stress symmetry a priori, by replacing the
original constitutive equation σ = A ε(u) by A−1σ = ∇u − γ(u), using the relation ε(u) = ∇u − γ(u), where

γ(u) =
1

2

[
0 ∂2u1 − ∂1u2

∂1u2 − ∂2u1 0

]
. A new equation σ − σT = 0 enforces the desired stress symmetry, and

we introduce the rotation variable q =
1

2
asym∇u, where asym τ = τ12 − τ21 is the asymmetry measure defined

for tensors τ =

[
τ11 τ12

τ21 τ22

]
.

Under this point of view, and given g ∈ H 1
2 (∂Ω,R2) and f ∈ L2(Ω,R2), the mixed formulation with weakly

imposed stress symmetry searches for (σ, u, q) ∈ E := S ×U ×Q satisfying

(A−1 σ, τ) + (u,∇ · τ) + (q, asym τ) = 〈τ nΩ, g〉, ∀τ ∈ S , (2)

−(∇ · σ, v) = (f, v), ∀v ∈ U , (3)

(asymσ,w) = 0, ∀w ∈ Q. (4)

This kind of method belongs to a classical methodology. It dates the seventies, in the pioneering period of
mathematical analysis for mixed and hybrid formulations. They typically appear in minimization problems
with constraints (e.g., see [7, 8, 38]). In this formulation, there are two constraints. The first one is for the
realization of the divergence equation (3), and displacement plays the role of the corresponding Lagrange
multiplier. The other multiplier is q, used for the weak enforcement of stress symmetry in (4).

2.2. Hybrid local-global version

The purpose of the hybrid local-global version of the stress mixed formulation (2)-(4) is to naturally derive
stable basis for the two-level discrete method in Sec. 4. For that, we define a partition T = {Ωi} of the
domain Ω. Associated to T , let Γ be the mesh skeleton formed by the union of the boundaries ∂Ωi. To make
inter-element connections, we introduce the multiplier λ which lives in a normal trace space defined over Γ:

Λ := Λ(Γ,R2) = {µ;µ = τ n|∂Ωi , τ ∈ H(div,Ω,M),Ωi ∈ T },

where n is a given vector field defined over Γ and normal to ∂Ωi. Notice that n|Ωi = δi n
Ωi , where δi(e) = n·nΩi |e

for all edges e ⊂ ∂Ωi (i.e., δi(e) = −δj(e) for interface edges e ⊂ Ωi ∩ Ωj). The displacement is decomposed as

u = urm + u⊥, where urm ∈ Urm is a piecewise rigid body mode over T . Precisely,

Urm := {u ∈ U ; ui = u|Ωi ∈ Urm(Ωi), Ωi ∈ T } , Urm(Ωi) := {(α, β) + ρ(−y, x); (x, y) ∈ Ωi, α, β, ρ ∈ R}.

The complementary displacement term u⊥ lives in U ⊥ ⊂ U , the L2-orthogonal complement of Urm. For local

Neumann problems, test tensors should be bubble functions in S̊ (Ωi) = {τ ∈ S ; τ n|∂Ωi = 0}.
The hybrid version is formulated in two stages. There is a global system of equations for the multiplier λ ∈ Λ

and the rigid body motion displacement component urm ∈ Urm. To obtain the solution (σ, u, q) ∈ S ×U ×Q,
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we add local fine scale components to the solution of the global stage as follows

σ = Tσ(λ) + T̂σ(f), u = urm + Tu(λ) + T̂u(f), q =
1

2
asym∇urm + T q(λ) + T̂ q(f), (5)

where

T : Λ→ S ×U ⊥ ×Q, T̂ : U → S ×U ⊥ ×Q, (6)

are linear operators whose images are solutions of local Neumann elasticity problems on each subregion Ωi.
Based on the above functional framework, consider the local-global stages:

• Local stage: For λ ∈ Λ, λ 6= 0, and f ∈ L2(Ω,R2), let the operators T (λ) = {Tσ(λ), Tu(λ), T q(λ)} and

T̂ (f) = {T̂σ(f), T̂u(f), T̂ q(f)} be locally defined in each Ωi by the following mixed formulations with
weakly imposed stress symmetry and Neumann boundary conditions:

(∇ · Tσ(λ), v)Ωi = 0, ∀v ∈ U ⊥(Ωi), (7)

(A−1 Tσ(λ), τ)Ωi + (Tu(λ),∇ · τ)Ωi + (T q(λ), asym τ)Ωi = 0, ∀τ ∈ S̊ (Ωi), (8)

(asymTσ(λ), ϕ)Ωi = 0, ∀ϕ ∈ L2(Ωi), (9)

Tσ(λ) n|∂Ωi = λ|∂Ωi . (10)

−(∇ · T̂σ(f), v)Ωi = (f, v)Ωi , ∀v ∈ U ⊥(Ωi), (11)

(A−1 T̂σ(f), τ)Ωi + (T̂u(f),∇ · τ)Ωi + (T̂ q(f), asym τ)Ωi = 0, ∀τ ∈ S̊ (Ωi), (12)

(asym T̂σ(f), ϕ)Ωi = 0, ∀ϕ ∈ L2(Ωi), (13)

T̂σ(f) n|∂Ωi = 0. (14)

• Global stage: Given f ∈ U , and g ∈ H 1
2 (∂Ω,R2), find urm ∈ Urm and λ ∈ Λ that solve

(A−1Tσ(λ), Tσ(µ)) + (urm,∇ · T
σ(µ)) =− (f, Tu(µ)) + 〈µ, g〉, ∀µ ∈ Λ, (15)

−(∇ · Tσ(λ), v) =(f, v), ∀v ∈ Urm. (16)

Notice that the boundary data for T (λ) is λ, while vanishing Neumann boundary conditions are applied

for T̂ (f). These operators define the stress σ ∈ S , the fine scale rigid-body-motion-free component u⊥ :=

Tu(λ) + T̂u(f) ∈ U ⊥, and the part T q(λ) + T̂ q(f) required to form q. The missing information comes from the
global system to be solved for urm and λ. The following theorem states the well-posedness of the local-global
continuous formulation (7)-(16). This formulation naturally derives multiscale discrete formulations as discussed
in the following sections.

Theorem 2.1. The global system (15)-(16) has a unique solution (urm, λ) ∈ Urm × Λ. Moreover, a function
(σ, u, q) is recovered from (urm, λ) as stated in (5), by solving the local problems T (λ), defined in (7)-(10) and

T̂ (f), defined in (11)-(14), if and only if (σ, u, q) solves the weak formulation (2)-(4).

Proof. It is postponed to Appendix A.1. �
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Remarks

The hybrid local-global characterization given in Theorem 2.1 modifies the one for the MHM-H1 method
proposed in [26]. The MHM-H1 local-global characterization of the exact solution is based on the classical
primal hybrid approach for the displacement formulation of the elasticity problem. The fine scale information
incorporated into the global system in this primal approach comes from a different kind of local solver. Instead
of using local stress mixed formulations with weak symmetry in each subregion Ωi, the second stage of the
primal MHM formulation solves local Neumann elasticity problems on the displacement field only. Differently
from the current work, the stress field in the MHM-H1 methods are not in the desirable H(div,Ω,M) and there
is so far no result that assures the convergence of the divergence of the stress.

3. Two-scale partitions and finite element spaces

In this section we present a unified and flexible procedure for the construction of hierarchies of two-scale
meshes and FE spaces to be used in discretized versions of the weak stress mixed formulation with reduced
symmetry. For that, we define two sets of parameters: γ := (γsk, γin), where γsk = (hsk, ksk) and γin = (hin, kin)
are used to indicate the mesh widths and polynomial degrees of the two scale levels: coarse and fine . The
two-scale mesh and FE space hierarchies are obtained by the following stages.

3.1. Discretization parameters and mesh hierarchy

• Given γsk = (hsk, ksk), let Thsk be a conformal shape regular partition of Ω formed by the union of

sub-meshes T Ωi
hsk

= {K}, all of them with characteristic size hsk.

• Refined internal partitions T Ωi
hin

are obtained by the subdivision of T Ωi
hsk

. We chose the mesh characteristic

size hin such that hin ∼ hsk/2`, for a given integer ` ≥ 0. Define γin = (hin, kin), where kin = ksk + n,
for a given integer n ≥ 0.

• Define the partition T Γ = {F} of Γ by taking the edges F induced by Thsk over Γ \ ∂Ω, and the edges

F induced by T Ωi
hin

over ∂Ω ∩ ∂Ωi. Thus, the characteristic sizes are hsk for internal edges, and hin
otherwise.

Fig. 1. Diagram illustration of some aspects of a hierarchy of partitions and discretization parame-
ters: a macro-partition T (left), coarsest conformal mesh Thsk (center), refined partitions T Ωi

hin
and

polynomial degrees ksk and kin (right).

Figure 1 illustrates some aspects of the two-scale hierarchy of meshes: the macro-partition T , a conformal
partition Thsk , and local refined partitions T Ωi

hin
. Observe that, over an edge e = Γi,j = Ωi ∩ Ωj , the meshes

T Ωi
hin

and T Ωj
hin

do not need to be conformal (e.g. in e = Γ1,2). We also show examples of polynomial degrees
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over the subregions and over edges of the mesh skeleton. Althought γsk and γin do not need to be uniform, as
illustrated in Figure 1, for simplicity we shall only consider uniform distributions for them.

3.2. Two-scale FE space settings

• Let Λγ ⊂ Λ be the trace space piecewisely defined over T Γ by polynomials of degree ≤ ksk over the
internal edges, and of degree kin over the boundary edges .

• Define single-scale FE spaces in the interior of the subregions on top of the internal partitions T Ωi
hin

Sγin(Ωi) =
{
τ ∈ H(div,Ωi,M); τ |K ∈ S(K,M), ∀K ∈ T Ωi

hin

}
, (17)

Uγin(Ωi) =
{
u ∈ L2(Ωi,R2); u|K ∈ U(K,R2), ∀K ∈ T Ωi

hin

}
, (18)

Qγin(Ωi) =
{
q ∈ L2(Ωi); q|K ∈ Q(K), ∀K ∈ T Ωi

hin

}
, (19)

in terms of local FE spaces S(K,M), U(K,R2) and Q(K) for the elements K ∈ T Ωi
hin

. The degree kin
refers to the polynomials associated to the normal traces over ∂K of the tensors τ ∈ S(K,M).

• In this setting, we introduce the two-scale tensor FE spaces Sγ(Ωi), composed by functions in Sγin(Ωi)
whose normal traces are constrained to Λγ , i.e.,

Sγ(Ωi) = {τ ∈ Sγin(Ωi); τ n|∂Ωi\∂Ω ∈ Λγ |∂Ωi\∂Ω}. (20)

Notice that the constrained tensor space (20) is well defined due to the fact the trace functions induced
by Sγin(Ωi) over ∂Ωi are piecewisely defined by polynomials of degree kin ≥ ksk on top of elements

obtained by the refinement of the mesh T Γ ∩ ∂Ωi. Moreover, Sγ(Ωi) can be expressed as a two-scale

direct sum Sγ(Ωi) = S ∂
γ (Ωi) ⊕ S̊γin(Ωi), where S̊γin(Ωi) is the set of bubble tensors, with vanishing

normal traces over ∂Ωi, having refined resolution. The edge tensors in S ∂
γ (Ωi) have normal traces over

∂Ωi \ ∂Ω constrained to Λγ having coarser resolution γsk over internal edges F ∈ T Γ.

• Finally, let Eγ = Sγ×Uγin×Qγin ⊂ H(div,Ω,M)×L2(Ω,R2)×L2(Ω) be the two-scale FE space whose
restriction to each subdomain Ωi ∈ T is the local FE space Eγ(Ωi) = Sγ(Ωi)×Uγin(Ωi)×Qγin(Ωi).

3.3. Stability constraints

As for any constrained minimization problem in Hilbert spaces, the FE spaces used for discrete versions of the
stress mixed formulation with reduced symmetry can not be chosen arbitrarily, i.e., they should be compatible,
meaning that some stability (inf-sup) conditions are mandatory. First, the two-scale FE pair {Sγ ,Uγin} for
stress and displacement approximations should verify the divergence-constraint

∇ · Sγ = Uγin . (21)

Higher order schemes can lead to complications for the enforcement of the H(div)-conformity and of this
stability divergence-constraint. One natural way to cope with that is to define their local FE spaces S(K,M)
and U(K,R2) by taking their rows from local divergence-consistent spaces V (K,R2) and P (K) such that
∇ · V (K,R2) = P (K). They are used to form FE pairs usually applied for flux and potential approximations
in mixed formulations of Poisson problems, and there is a variety them available in the literature [7].

Suppose the stress and displacement FE spaces verify the above divergence-constraint requirement. It then
remains to choose an appropriate rotation FE space Qγin , such that the FE pair {Sγ ,Qγin} is compatible for
the inf-sup condition. For two-dimensional spaces, this compatibility holds if there exists a two-scale Stokes-
compatible pair of spaces {Wγ ,Qγin} such that the following Stokes constraint is satisfied (e.g, see [2,6,13,23]):

∇×Wγ ⊂ Sγ , (22)
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Remarks

• We can interpret the rows of the two-scale pair Sγ ×Uγin as formed by two-scale Poisson-compatible

pair Vγ ×Pγin defined in [20], where Vγ = V ∂
γ ⊕ V̊γin is a constrained two-scale flux space.

• One can derive stable two-scale FE spaces Eγ for stress mixed formulations with reduced symmetry for
other known single-scale FE settings. For instance, we may consider the cases proposed in [40] and [13]
although their stability analyses are not based on a Stokes-constraint property.

The next subsections recall some basic aspects of the required Poisson-compatible and Stokes-compatible FE
pairs, including some examples that shall be adopted in the current work.

3.3.1. Examples of FE pairs for Poisson and Stokes Problems

For a triangular or quadrilateral element K, there is a reference element K̂ and a geometric invertible map
FK : K̂ → K transforming K̂ onto K. FK induces mappings FK and Fdiv

K used to map functions defined in K̂
to functions defined in K.

• Scalar functions: p = FK p̂ = p̂ ◦ F−1
K .

• Vector functions: v = FK v̂, where FK is applied component-wisely.

• Vector functions in H(div,K,R2): v = Fdiv
K v̂ = FK

[
1

JK
DFK v̂

]
, where DFK is the Jacobian matrix of

FK , and JK =
∣∣det(DFK)

∣∣ (Piola transformation).

• For tensors: τ = Fdiv
K τ̂ is the Piola transformation applied to each row of τ̂ .

In K̂, scalar polynomials are usually of the form: Pk(K̂), of total degree at most k, for the triangle; Qk,t(K̂),
of maximum degree k in x and t in y, for the square.

Poisson-compatible FE pairs

Usually, the local FE spaces V (K,R2) = Fdiv
K V̂ and P (K) = FK P̂ are constructed by mapping polynomial

spaces V̂ and P̂ defined on a reference element K̂. The stability (inf-sup) condition requires the divergence-

compatibility condition ∇ · V̂ = P̂ . We consider that V̂ is spanned by a hierarchy of vector shape functions of

two classes: functions of interior type in
˚̂
V, with vanishing normal traces over ∂K̂, and functions associated to

the element edges in V̂∂ . Thus, the decomposition V̂ = V̂∂ ⊕ ˚̂
V naturally holds.

Divergence-consistency can be extended to the spaces V (K,R2) and P (K) by means of uniformly bounded
interpolants πDγ : H1(K,R2) → V (K,R2) such that (∇ · (η − πDγ η), ψ) = 0, ∀ψ ∈ P (K). A general form

to define πDγ is by the so called projection-based operators (see [16]). It is firstly defined in K̂ using the

representation πDγ η = πD,∂γ η+ π̊Dγ (η−πD,∂γ η) in terms of edge and internal operators. Let P (∂K̂) be the space

of normal traces of vector functions in V̂. For η ∈ H1(K̂,R2) and η̊ ∈ H1
0 (K̂,R2), the interpolants verify:

〈πD,∂γ η · nK̂ , φ〉∂K̂ = 〈η · nK̂ , φ〉∂K̂ ; ∀φ ∈ P (∂K̂), (23)

(∇ · π̊Dγ η̊, ∇ · w)K̂ = (∇ · η̊, ∇ · w)K̂ , ∀w ∈
˚̂
V, (24)

(π̊Dγ η̊, w)K̂ = (̊η, w)K̂ , ∀w ∈
˚̂
V, ∇ · w = 0. (25)

Then πDγ is extended to the computational elements K, and assembled to the whole domain Ω.
In the current work, we shall deal with the following divergence-consistent FE pairs:

• For triangular elements: (Brezzi-Douglas-Marini FE pair and enriched versions):

– BDMk, k ≥ 1 [9]: V̂BDMk
= Pk(K̂,R2) and PBDMk

= Pk−1(K̂).

– BDM+
k , k ≥ 1 [7]: V̂BDM+

k
= P∂k(K̂,R2)⊕ P̊k+1(K̂,R2), P̂BDM+

k
= Pk(K̂) (known as BDFMk+1).

– BDM++
k , k ≥ 1 [18]: V̂BDM++

k
= P∂k(K̂,R2)⊕ P̊k+2(K̂,R2), P̂BDM++

k
= Pk+1(K̂).

• For quadrilateral elements (Raviart-Thomas FE pair and enriched version)
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– RT [k], k ≥ 1 [37]: V̂RT [k]
= Qk+1,k(K̂)×Qk,k+1(K̂) and P̂RT [k]

= Qk,k(K̂).

– RT +
[k], k ≥ 1 [18]: V̂RT +

[k]
= V̂ ∂RT [k]

(K̂)⊕ ˚̂
VRT [k+1]

(K̂) and P̂RT +
[k]

= Qk+1,k+1(K̂).

Stokes-compatible FE pairs

The FE pairs used for velocity and pressure approximations in mixed Stokes formulations are generally
defined by local finite element pairs W (K,R2), Q(K). For stability, they should be compatible for the inf-sup
condition. The following stable Stokes-compatible FE families shall be used in this paper:

• For triangular elements K (Crouzeix-Raviart FE pair and enriched version):
– CRk, proposed in [14] for k = 2, 3, and extended to higher orders in [33]:
WCRk(K,R2) = Pk(K,R2) + bKPk−2(K,R2), where bK = λ1λ2λ3 are bubble functions defined by
the barycentric coordinates λi of K, and QCRk(K) = Pk−1(K).

– CR+
k , k ≥ 2 [19]: WCR+

k
(K,R2) = WCRk(K,R2) + bK∇Pk(K), where bK = λ1λ2λ3 are the bubble

functions defined by the barycentric coordinates λi of the triangle K, and QCRk(K) = Pk−1(K).
• For quadrilateral elements K (Girault-Raviart FE pair and enriched version):

– GR[k], k ≥ 1 [24]: WGR[k]
(K,R2) = FK(Qk,k(K̂,R2) and QGR[k]

(K) = Pk−1(K).

– GR+
[k], k ≥ 1 [19]: WGR+

[k]
(K,R2) = WGR[k]

(K,R2) + B̊k+1(K,R2), QGR+
[k]
Pk(K). B̊k+1(K,R2) is

mapped from B̊k+1(K̂,R2) = {bK̂ŵ; ŵ ∈ Qk−1,k−1(K̂,R2)}; bK̂ ∈ Q2,2(K̂) is a bubble function.

3.4. Compatible FE spaces for stress mixed formulations with reduced symmetry

Table 1 summarizes some known FE spaces S(K̂,M), U(K̂,R2), and Q(K̂) that shall be used to form stable
FE spaces Eγ for the stress mixed formulation with reduced symmetry. It also shows the corresponding Poisson-
compatible and Stokes-compatible FE spaces used in their construction. The next accuracy properties are valid
for them with k ≥ 1 and t, r ∈ {−1, 0, 1}.

Pk(K̂,M) ⊂ S(K̂,M), Pk+t(K̂,R2) ⊂ U(K̂,R2), Pk+r(K̂) ⊂ Q(K̂). (26)

Table 1. Some known methods for triangular (T) and quadrilateral (Q) reference elements K̂: FE

spaces S(K̂,M), U(K̂,R2), and Q(K̂) for tensor, displacement and rotation, the associated Poisson-
compatible and Stokes-compatible FE pairs used in their construction and stability analyses, and their
accuracy parameters (t, r) verify (26).

K̂ Poisson Stokes S(K̂,M) U(K̂,R2) Q(K̂) (t, r) Ref.

T

BDMk - P∂k(K̂,M)⊕ P̊k(K̂,M) Pk−1(K̂,R2) Pk−1(K̂) (−1,−1) [5]

BDM+
k CRk+1 P∂k(K̂,M)⊕ P̊k+1(K̂,M) Pk(K̂,R2) Pk(K̂) (0, 0) [19]

BDM++
k CR+

k+1 P∂k(K̂,M)⊕ P̊k+2(K̂,M) Pk+1(K̂,R2) Pk+1(K̂) (1, 1) [19]

Q

RT [k] GR[k+1] SRT [k]
(K̂,M) = Qk+1,k(K̂,M)×Qk,k+1(K̂,M) Qk,k(K̂,R2) Pk(K̂) (0, 0) [2]

RT +
[k] GR

+
[k+1] S∂RT [k]

(K̂,M)⊕ S̊RT [k+1]
(K̂,M) Qk+1,k+1(K,R2) Pk+1(K̂) (1, 1) [19]

From now on, ENAMEγ denotes the two-scale elasticity FE space Eγ = Sγ ×Uγin ×Qγin ⊂ H(div,Ω,M)×
L2(Ω,R2) × L2(Ω) based on the reference local FE spaces S(K̂,M) and U(K̂,R2) obtained from a Poisson-

compatible FE pair VNAME(K̂,R2) and PNAME(K̂).

4. Two-scale discrete stress formulations with reduced symmetry

We use the aforementioned two-scale FE spaces Eγ to built two-scale discrete versions of the mixed formulation
with reduced symmetry, and of its hybrid local-global version.
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4.1. The MHM-WS(Eγ) formulation

Following the principles of the local-global hybrid setting described in Sec. 2.2, let us consider a discrete
version of it based on the FE spaces Eγ = Sγ ×Uγin ×Qγin , denoted here by the acronym MHM-WS(Eγ). The
focus is on two-scale settings, but single-scale cases γsk = γin may be treated in the same context as well.

Let U ⊥γin be the L2-orthogonal complement of Urm in Uγin , with local components U ⊥γin(Ωi). We restrict
the analysis to the spaces satisfying Urm ⊂ Uγin . The two discrete local-global building blocks of information-
passing in the MHM-WS(Eγ) scheme shall also be referred as downscaling and upscaling stages, following a

terminology usually used in multiscale contexts (see e.g., [21]). At the coarsest scale level, λ̃ ∈ Λγ and ũrm ∈ Urm

are computed by a global system (upscaling stage). At the fine scale level, ũ⊥ := T̃u(λ̃)+
˜̂
Tu(f) ∈ U ⊥γin , σ̃ ∈ Sγ

and q̃ ∈ Qγin , are solutions of a set of completely independent Neumann boundary local problems restricted to
the subregions Ωi ∈ T (downscaling stage). These local systems may be represented by the action of operators

T̃ : Λγ → Sγ×U ⊥γin ×Qγin and
˜̂
T : U → Sγ×U ⊥γin ×Qγin , as discrete versions of the operators (6) defined in

Sec. 2.2. Using this procedure we characterize the approximate solution of the elasticity problem as a discrete
counterpart of (5)

σ̃ = T̃σ(λ̃) +
˜̂
Tσ(f), ũ = ũrm + T̃u(λ̃) +

˜̂
Tu(f), q̃ =

1

2
asym∇ũrm + T̃ q(λ̃) +

˜̂
T q(f). (27)

Precisely, the local-global discrete systems composing the MHM-WS(Eγ) scheme, transferring information
from the fine to the coarse scale level and vice-versa, are written in the following form.

• Local stage (Downscaling): For λ̃ ∈ Λγ , λ̃ 6= 0, and f ∈ L2(Ω,R2), let the operators T̃ (λ̃) =

{T̃σ(λ̃), T̃u(λ̃), T̃ q (̃λ)} and
˜̂
T (f) = { ˜̂

Tσ(f),
˜̂
Tu(f),

˜̂
T q(f)} be determined in each subregion Ωi by the

following MFEM-WS(Eγ) formulations locally defined in each Ωi with Neumann boundary conditions:

(∇ · T̃σ(λ̃), v)Ωi = 0, ∀v ∈ U ⊥γin(Ωi), (28)

(A−1 T̃σ(λ̃), τ)Ωi + (T̃u(λ̃),∇ · τ)Ωi + (T̃ q(λ̃), asym τ)Ωi = 0, ∀τ ∈ S̊γ(Ωi), (29)

(asym T̃σ(λ̃), ϕ)Ωi = 0, ∀ϕ ∈ Qγin(Ωi), (30)

T̃σ(λ̃) n|∂Ωi = λ̃|∂Ωi . (31)

−(∇ · ˜̂
Tσ(f), v)Ωi = (f, v)Ωi , ∀v ∈ U ⊥γin(Ωi), (32)

(A−1 ˜̂
Tσ(f), τ)Ωi + (

˜̂
Tu(f),∇ · τ)Ωi + (

˜̂
T q(f), asym τ)Ωi = 0, ∀τ ∈ S̊γ(Ωi), (33)

(asym
˜̂
Tσ(f), ϕ)Ωi = 0, ∀ϕ ∈ Qγin(Ωi), (34)

˜̂
Tσ(f) n|∂Ωi = 0. (35)

• Global stage (Upscaling): ũrm ∈ Urm and λ̃ ∈ Λγ are determined by the global system

(A−1T̃σ(λ̃), T̃σ(µ)) + (ũrm,∇ · T̃
σ(µ)) = −(f, T̃u(µ)) + 〈µ, g〉,∀µ ∈ Λγ , (36)

−(∇ · T̃σ(λ̃), v) = (f, v), ∀v ∈ Urm. (37)

4.2. MHM-WS(Eγ) as a MFEM-WS(Eγ) formulation

As for the weak formulations in infinite dimension, a remarkable property of the MHM-WS(γ) method is
that it can be interpreted as a hybrid local-global characterization of a discrete mixed formulation with reduced
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symmetry based on the FE space setting Eγ = Sγ ×Uγin ×Qγin , that is denoted here by the acronym MFEM-
WS(Eγ), which plays a crucial role in the analysis of the MHM-WS(Eγ) method.

The MFEM-WS(Eγ) method searches for approximations (σ̃, ũ, q̃) ∈ Eγ = Sγ ×Uγin ×Qγin such that

(A−1 σ̃, τ) + (ũ,∇ · τ) + (q̃, asym τ) = 〈τ nΩ, g〉, ∀τ ∈ Sγ , (38)

−(∇ · σ̃, v) = (f, v), ∀v ∈ Uγin , (39)

(asym σ̃, w) = 0, ∀ϕ ∈ Qγin . (40)

Recall that, under the stability constraints (21)-(22), the MFEM-WS(Eγ) formulation is well-posed (as originally
proved in [23]; see also [2,6]). Notice also that classical formulations associated to single-scale FE spaces, with
γsk = γin, are particular cases of the MFEM-WS(Eγ) method.

Theorem 4.1. Assume the FE spaces Eγ = Sγ ×Uγin ×Qγin verify the stability constraints (21)-(22). Then,
the MHM-WS(Eγ) scheme defined by the downscaling local solvers (28)-(31) and (32)-(35), and by the global
upscaling system (36)-(37), has a unique solution.

Proof. The proof of this uniqueness result is postponed to Appendix A.2, and it makes use of the stability held
by the MFEM-WS(Eγ) formulation for the local Neumann problems. �

The following theorem establishes the relation between the triad (σ̃, ũ, q̃) recovered as in (27) from the ap-

proximate variables given by the MHM-WS(Eγ) scheme and the solution of the MFEM-WS(Eγ) formulation.

Theorem 4.2. Under the stability constraints (21)-(22), let (ũrm, λ̃) be the unique solution of the MHM-WS(Eγ)

upscaling system (36)-(37). Then, (σ̃, ũ, q̃) is the function recovered from (ũrm, λ̃), as stated in (27), by solving

the local problems T̃ (λ̃), defined in (28)-(31), and
˜̂
T (f), defined in (11)-(14), if and only if (σ̃, ũ, q̃) solves the

MFEM-WS(Eγ) formulation (38)-(40).

Proof. The proof of this equivalence result is postponed to Appendix A.3. �

Remarks

(i) By construction, the strong enforcement of the Neumann boundary conditions (31) and (35) is the

reason to assume, from start, that σ̃ = T̃σ(λ̃) +
˜̂
Tσ(f) ∈ Sγ , i. e., that the stress is globally H(div)-

conforming. This is an important property of the MHM-WS(Eγ) solutions that, for instance, distinguish
them from those of the multiscale mortar domain decomposition method [30].

(ii) The strong trace constraint imposed in the MHM-WS(Eγ) scheme is a process that can be accomplished
in a similar manner of conforming constrained functions commonly used in hp-adaptive strategies.
Instead, MHM-H1 method in [26] impose Neumann boundary conditions in a weak multiplier sense.

(iii) The approximate displacement ũ by the MHM-WS(Eγ) method decomposes as ũ = ũrm + ũ⊥, without

continuity constraints for ũ⊥ := T̃u(λ̃) +
˜̂
Tu(f) inside Ωi. This aspect, combined with the global

H(div)-conformity of the tensor σ̃, is crucial in the proof of the local conservation property verified by

the MHM-WS(Eγ) method at the micro scale level. This is essential for ensuring a locally equilibrated
approximation. Furthermore, for f = 0, the resulting tensor σ̃ is strongly divergence-free due to the

divergence-compatibility condition (21) valid for Sγ(Ωi) and Uγin(Ωi).

(iv) The local contribution
˜̂
T (f) of the numerical solution, defined in (32)-(35), is one of the important

properties of the proposed multiscale method. Notably, such a perspective is paramount when f changes

rapidly or embeds multiple scales. In particular, observe that if f belongs to Urm then
˜̂
T (f) = 0. As

a result, if f is a low-degree polynomial function, then
˜̂
T (f) may be disregarded without undermining
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convergence. Importantly, such a contribution is local and then can be computed in parallel in the
off-line stage. Moreover, it does not impact the computational complexity of the method negatively,
for its computation is local and ”embarrassingly parallel” as the local problems are independent of one

another. Finally, the contribution
˜̂
T (f) does not appear in the global system (36)-(37), for

˜̂
Tσ(f) is a

bubble function (with vanishing traction). As such, the solution of (32)-(35) can be entirely computed
in the off-line stage, and then it does not enter in the most demanding computational effort for assembly
and solve the global system (36)-(37).

(v) The relevant question about the robustness of the MHM-WS(Eγ) methods in terms of physical co-
efficients may be handled mathematically by the strategy proposed in [34] for the Poisson equation
with oscillatory coefficients. In the sequel, we show numerical evidence in this regard, and leave the
theoretical investigation of the subject to future works.

5. Unified stability analysis for MHM-WS(Eγ) schemes

This section is dedicated to the stability analysis for general MHM-WS(Eγ) methods based on the two-scale
FE spaces EBDMγ and ERT [γ]

. Recalling the statement of Theorem 4.2, the principle is to prove stability of these

MHM-WS(Eγ) schemes via the equivalent MFEM-WS(Eγ) methods. By construction, the divergence-constraint
∇ · Sγ = Uγin is verified. To complete stability, some two-scale Stokes-compatible FE pairs {Wγ , Qγin} are
required, verifying the constraint ∇× Wγ ⊂ Sγ . This is precisely the plan for the current section.

The stability of some particular scenarios were recently analyzed in [19] for single-scale triangular or quadri-
lateral meshes (i.e. hin = hsk = h), and internal polynomial degrees kin = ksk + 1 or kin = ksk + 2 (see Table
1). We argue that similar methodology may be successfully applied to more general two-scale composite FE
space settings Eγ . These new spaces are summarized in Table 2.

One may build two-scale composite Stokes-compatible FE pairs by adding bubble vector functions to the
velocity spaces WCRksk+1(K̄,R2) of the Crouzeix-Raviart spaces for triangles, or of the Girault-Raviart family

WGR[ksk]+1(K̄,R2) for affine quadrilaterals, defined in the coarsest elements K̄ ∈ T Ωi
hsk

(see [10]). These extra

terms are defined by the multiplication of appropriate vector spaces, containing the gradient of the enlarged
pressure elements, by a fixed scalar bubble function defined for each K̄ ∈ T Ωi

hsk
. The next two sections describe

the construction of these two-scale Stokes-compatible FE pairs. As far as we understand, they are new in the
literature.

Table 2. Two-scale Stokes-compatible FE pairs {Wγ(Ωi),Qγin(Ωi)}: local spaces in K̄ ∈ T Ωi
hsk

for

triangular (T) and affine quadrilateral (Q) elements.

K̄ Spaces Qγin(K̄) Wγ(K̄,R2)

T CRγ Pkin−1(T K̄hin) WCRksk+1
(K̄,R2) + B̊CRkin (T Khin ,R

2)

Q GR[γ] Pkin(T K̄hin) WGR[ksk+1]
(K̄,R2) + B̊GR[kin]

(T K̄hin ,R
2)

5.1. Stokes-constraint for FE spaces EBDMγ
(kin ≥ 2) for triangular meshes

Since kin ≥ 2, the property Urm ⊂ Uγin , required by the MHM-WS(EBDMγ
) scheme, holds. The particular

cases based on the conformal coarse partitions T Ωi
hsk

(hin = hsk), and polynomial increment kin = ksk + n, for

n = 1, 2, correspond to the FE spaces denoted by EBDM+
γsk

and EBDM++
γsk

considered in [19]. For these methods,

the composite rotation space of piecewise polynomials QBDMγin
(Ωi) := Pkin−1(T Ωi

hsk
) is stable. This choice is

guided by considering the Stokes-compatible Crouzeix-Raviart spaces CRγ(Ωi), with FE spaces

WCRγ (Ωi) ⊂ H1(Ωi,R2) and QCRγin (Ωi) ⊂ L2(Ωi)
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and local FE spaces on each coarse element K̄ ∈ T Ωi
hsk

defined as

WCRγ (K̄) = WCRkin (K̄,R2) := Pkin(K̄,R2) + bK̄Pksk−1(K̄,R2) and QCRγin (K̄) := Pkin−1(K̄)

for velocity and pressure, respectively, where bK̄ is the basic bubble function on K̄.
Let us consider now general two-scale scenarios γ = (γsk, γin), using internal polynomial degree increment

kin = ksk + n, n ≥ 1 and internal refined partitions T Ωi
hin

, with hin = hsk/2
`, ` ≥ 0. The stability of the newly

proposed two-scale FE space settings EBDMγ also requires two-scale Stokes-compatible Crouzeix-Raviart spaces

WCRγ (Ωi) ⊂ H1(Ωi,R2) and QCRγin (Ωi) ⊂ L2(Ωi). They are defined on K̄ ∈ T Ωi
hsk

by the composite space

QCRγin (K̄) = Pkin−1(T K̄hin) for pressure, piecewise-defined over the refined partition T K̄hin induced on K̄, and

the velocity space WCRksk+1
(K̄,R2) + B̊CRkin (T K̄hin ,R

2), where the stabilizing bubble spaces are

B̊CRkin (T K̄hin ,R
2) = {w ∈ H1(K̄,R2);w|K = bK∇Pkin−1(K), K ∈ T K̄hin}.

Using these local FE pairs, the requirements of the corollary of Theorem 2 in [10] are fulfilled, and the

Stokes-compatibility of the resulting two-scale space configuration holds. Furthermore, ∇ × B̊CRkin (T K̄hin ,R
2)

are divergence-free bubble functions in K̄ ∈ T Ωj
hsk

, with degree kin and, therefore, the required property holds

∇× WCRγ (Ωi) ⊂ SBDMkγ(Ωi) = S ∂
BDMγ

(Ωi)⊕ S̊BDMγin
(Ωi),

which implies that the composite rotation space QBDMγin
(Ωi) := Pkin−1(T Ωi

hin
) is a stable choice for EBDMγ (Ωi).

5.2. Stokes-constraint for two-scale FE spaces ERT [γ]
for affine quadrilateral meshes

Firstly, let us recall the specific FE space setting for γ = (γsk, γin) based on conformal quadrilteral par-

titions T Ωi
hsk

(hin = hsk) and polynomial increment kin = ksk + 1. It corresponds to the case ERT +
[γsk]

considered in [19]. For them, we obtain stable rotation spaces QRT [γin]
(Ωi) = Pγin(T Ωi

hsk
) by considering

enriched Stokes-compatible Girault-Raviart spaces GR+
[ksk+1](Ωi), with local FE spaces WGR+

[ksk+1]
(K̄,R2) =

Qksk+1,ksk+1(K̄,R2) + B̊GR[ksk+1]
(K̄,R2) for velocity, and Pksk+1(K̄) for pressure, in K̄ ∈ T Ωi

hsk
. Functions w in

the bubble spaces B̊GR[ksk+1]
(K̄,R2) are written as w = bK̄Qksk,ksk(K̄)}, where bK̄ is the basic bubble function

on K̄.
This enrichment methodology can also be extended to prove stability for general local FE spaces ERT [γ]

, for

γ = (γsk, γin), using both non-trivial internal polynomial degree increment kin = ksk + n, n ≥ 0, and partition

refinement hin = hsk/2
`, ` ≥ 0. We obtain stable rotation spaces QRT [γin]

(Ωi) := Pkin(T Ωi
hin

) using the FE Stokes

pair {WGR[γ]
(Ωi),QGR[γin]

(Ωi)} ⊂ H1(Ωi,R2) × L2(Ωi), with local pressure space Q̃GR[γin]
(K̄) = Pkin(T K̄hin),

on all K̄ ∈ T Ωi
hsk

, and local velocity space WGR[ksk+1]
(K̄,R2) + B̊GR[kin]

(T K̄hin ,R
2), where the bubble spaces

B̊GR[kin]
(T K̄hin ,R

2) ⊂ H1(K̄,R2) are composed by functions w such that w|K = bKQkin−1,kin−1(K), K ∈ T K̄hin .

Since Qkin−1,kin−1(K) contains Pkin−1(K,R2) = ∇Pkin(K), and accordingly to the corollary of Theorem 2
in [10], the stability of the resulting enriched Stokes-compatible space configuration holds. Furthermore, the

tensors in ∇ × B̊GR[kin]
(T K̄hin ,R

2) are divergence-free bubble functions piecewise defined in K̄ ∈ T Ωj
hsk

, with
degree kin. The required property ∇× WRT [γ]

⊂ SRT [γ]
holds, concluding that QRT [γin]

is a stable choice for
the rotation space in ERT [γ]

.
We summarize the results of Section 5 in the following theorem.

Theorem 5.1. The MFEM-WS(Eγ) formulation (38)-(40) is well-posed for any of the two-scale FE spaces
EBDMγ

and ERT [γ]
. Moreover, by means of Theorem 4.2, this well-posedeness property is also valid for the

MHM-WS(Eγ) scheme defined by (28)-(37) and based on the respective FE space setting.
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Remarks

• EBDM+
γ

- for ksk ≥ 1, these two-scale FE spaces can also be interpreted as two-scale FE spaces EBDMγ+

for γ+ = (γ+
sk, γ

+
in), with γ+

in = (hin, kin + 1). Thus, the stability proved to be valid for the later case
also holds for the family EBDM+

γ
.

• ERT +
[γ]

- these two-scale FE spaces for affine quadrilateral meshes can also be interpreted as two-scale

FE spaces ERT [γ+]
, for γ+ = (γsk, γ

+
in), with γ+

in = (hin, kin + 1). Thus, the stability property valid for

the later cases also holds for the family ERT +
[γ]

.

6. Unified error analysis for the MHM-WS(Eγ) method

In this section, we present a unified error analysis for MHM-WS(Eγ) schemes based on the general two-scale
FE spaces Eγ described in Section 3. By means of Theorem 4.2, the methodology uses the equivalent MFEM-
WS(Eγ) formulations (38)-(40), which are supposed to be stable. The analysis is general enough to be applied to
the stable families EBDMγ

and ERT [γ]
considered in the previous section, but also to other stable two-scale FE

spaces eventually constructed under similar circumstances, in association to other kinds of Poisson-compatible
FE pairs.

A well known methodology for error analysis of MFEM-WS(Eγ) formulations requires the construction of
appropriate interpolants, as proposed in [6]. The error estimates are then bounded in terms of the interpolation
errors. The particular two-scale interpolants of interest are discussed in the next theorem.

Theorem 6.1. Let Eγ = Sγ ×Uγin ×Qγin be FE spaces verifying the stability constraints (21)-(22).

(1) There exists an interpolant Π
σ
γ : H1(Ω,M)→ Sγ , satisfying(

∇ · (τ −Π
σ
γτ), v

)
+
(

asym(τ −Π
σ
γτ), ϕ

)
= 0, ∀v ∈ Uγin , ∀ϕ ∈ Qγin , (41)

||Π
σ
γτ ||H(div,Ω,M) . ||τ ||H(div,Ω,M). (42)

(2) For a sufficiently smooth tensor τ , the interpolation error estimate reads

||τ −Π
σ
γτ ||L2(Ω,M) . hksk+1

sk ||τ ||Hksk+1(Ω,M). (43)

The leading constants appearing on the right sides of estimates (42) and (43) are independent of γ.

Proof. The idea proposed in [6] is to express the interpolant in the form Π
σ
γτ = Π

σ

1,γτ + Π
σ

2,γτ . The first

component Π
σ

1,γτ verifies the divergence commutative property expressed by (41) when taking ϕ = 0. It is

defined rowisely in the spirit of standard projection-based interpolants πDγ : Hs(Ω,R2)→ Vγ adopted for two-
scale Poisson-compatible pairs {Vγ ,Pγin}, with enhanced bubble flux components (see [19, 20]). Recalling the

definition of πDγ for the single-scale case (23)-(25), the two-scale version becomes πDγ η = πD,∂γ η+π̊Dγin(η−πD,∂γ η),

where only the internal interpolant π̊Dγin has to be updated. A uniform bound for ||Π
σ

1,γτ ||H(div,Ω,M), independent

of γ, follows from the same property valid for ||πDγ ||H(div,Ω,R2).

We suppose the second interpolant Π
σ

2,γτ verifies the commutative property (42) when v = 0. It is defined

following similar arguments applied in [6] for the single-scale case. Namely, consider the Stokes-compatible
pair {Wγ , Qγin}. This pair exists since the stability Stokes-constraint is satisfied. Let φ = [φ1 φ2] ∈ Wγ be the

solution of the Stokes problem with divergence constraint −(∇ · φ, ϕ) = (asym(Π
σ

1,γτ − τ), ϕ), ∀ϕ ∈ Qγin , and
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define Π
σ

2,γτ = ∇× φ =

[
∂2φ1 −∂1φ1

∂2φ2 −∂1φ2

]
∈ Sγ . Therefore, Π

σ

2,γτ is divergence free and

‖Π
σ

2,γτ‖H(div,Ω,M) = ‖Π
σ

2,γτ‖L2(Ω,M) . ‖Π
σ

1,γτ − τ‖L2(Ω,M). (44)

Since asym Π
σ

2,γτ = −∂1φ1 − ∂2φ2 = −∇ · φ, so that the required commutative property holds.

Concerning the error estimate (42), we first observe that it holds for Π
σ

1,γ . In fact, this is a consequence of

similar error estimate valid for πDγ of the associated two-scale FE Poisson-compatible space, proved in [20],
the leading constant appearing on the right side only depends on the shape-regularity factors of the meshes
T Ωi
hin

, which are supposed to be independent of the mesh-widths, and on the bound for the projection π̂D on

the corresponding reference element K̂ (see also Theorem 4.1 in [4]). We conclude the proof after using the
triangular inequality and the estimate (44). �

Error estimates for the MHM-WS(Eγ) method use both discretization parameters γsk and γin defined in
Section 3. Moreover, the elliptic regularity property, which is known to hold in a variety of circumstances of
planar elasticity on convex domains Ω [13], is used for the error estimate in u. Namely, if v = A−1ε(w) ∈
H(div,Ω,S) is the solution of the elasticity problem ∇ · v = θ, with boundary condition w = 0 on ∂Ω, we
assume that

‖v‖H1(Ω,M) + ‖w‖H2(Ω,R2) . ‖θ‖L2(Ω,R2). (45)

Theorem 6.2. Suppose Eγ = Sγ×Uγin×Qγin is a two-scale FE space setting verifying the stability constraints
(21)-(22) and the accuracy properties (26), and let (σ̃, ũ, q̃) ∈ Sγ ×Uγin× ∈ Qγin be the approximate solution

recovered from the output of the MHM-WS(Eγ) method, as in (27). Assume the regularity property (45) holds.

(1) Then, the next estimates are valid:

‖σ − σ̃‖L2(Ω,M) + ‖q − q̃‖L2(Ω . h
ksk+1
sk ‖σ‖Hksk+1(Ω,M) + hkin+r+1

in ‖q‖Hkin+r+1(Ω), (46)

‖∇ · (σ − σ̃)‖L2(Ω,R2) . h
kin+t+1
in ‖∇ · σ‖Hkin+t+1(Ω,R2), (47)

‖u− ũ‖L2(Ω,R2) . h
ksk+2
sk ‖σ‖Hkin+t+1(Ω,M) + hkin+t+1

in ‖u‖Hkin+t+1(Ω,R2)

+ hskh
kin+r+1
in ‖q‖Hkin+r+1(Ω). (48)

where the exact fields σ, u and q are regular enough for the norms to make sense.

(2) The above estimates hold for the MHM-WS(Eγ) formulations using ERT [γ]
and EBDM+

γ
FE spaces, with

t = r = 0, and using EBDMγ FE spaces for kin > 1, with t = r = −1.

Proof. By means of Theorem 4.2, we derive the error estimates for the equivalent MFEM-WS(Eγ) formulation,
for which the following estimates in terms of interpolation errors hold (see [19] or the references therein):

‖σ − σ̃‖L2(Ω,M) + ‖q − q̃‖L2(Ω) . ‖σ −Π
σ
γσ‖L2(Ω,M) + ‖q −Πq

γinq‖L2(Ω), (49)

‖∇ · (σ − σ̃)‖L2(Ω,R2) . ‖∇ · (σ −Π
σ
γσ)‖L2(Ω,R2), (50)

‖Πu
γinu− ũ‖

2
L2(Ω,R2) = (A(σ − σ̃), v −Π

σ
γv) + (Πq

γinq − q, asym(v −Π
σ
γv)), (51)

where Π
σ
γ : H1(Ω,M) → Sγ is the interpolant defined in Section 6.1, Πu

γin
: L2(Ω,R2) → Uγin and Πq

γin
:

L2(Ω,R2) → Qγin are L2-orthogonal-projections, and v = A−1ε(w) ∈ H(div,Ω,S) is the solution of the
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elasticity problem ∇ · A−1ε(w) = Πu
γinu − ũ with homogeneous boundary condition w = 0 on ∂Ω. Being a

L2-projections, Πu
γin and Πq

γin have unitary norm, and the following error estimates hold

||v −Πu
γinv||L2(Ω,R2) . hkin+t+1

in ||v||Hkin+t+1(Ω,R2), (52)

||ϕ−Πq
γinϕ||L2(Ω) . hkin+r+1

in ||ϕ||Hkin+r+1(Ω). (53)

Due to the divergence-consistency property, meaning that ∇ ·Π
σ
γτ is the L2-projection of ∇ · τ over Uγin , then

||∇ · (τ −Π
σ
γτ)||L2(Ω,R2) . hkin+t+1

in ||∇ · τ ||Hkin+t+1(Ω,R2). (54)

Consequently, estimates (46) and (47) follow directly by inserting the interpolation errors (43), (53), and (54)
in (49) and (50). Using Cauchy-Schwartz inequality in (51), we obtain

‖Πu
γinu− ũ‖

2
L2(Ω,R2) ≤ ‖A(σ − σ̃)‖L2(Ω,M)‖v −Π

σ
γv‖L2(Ω,M) + ‖Πq

γinq − q‖L2(Ω)‖ asym(v −Π
σ
γv)‖L2(Ω).

Therefore, we use ‖v−Π
σ
γv‖L2(Ω,M) . hsk‖v‖H1(Ω,M), ‖ asym(v−Π

σ
γv)‖L2(Ω) . hsk‖v‖H1(Ω,M), and the estimate

‖v‖H1(Ω,M) . ‖Πu
γinu− ũ‖L2(Ω,R2), given by elliptic regularity property (45), to obtain

‖Πu
γinu− ũ‖L2(Ω,R2) . hsk

(
‖σ − σ̃‖L2(Ω,M) + ‖Πq

γinq − q‖L2(Ω)

)
.

Then, we insert the estimate above in the triangle inequality to obtain ‖u− ũ‖L2(Ω,R2) ≤ ‖u−Πu
γinu‖L2(Ω,R2) +

‖Πu
γinu− ũ‖L2(Ω,R2), The estimate (48) follows from this last inequality and using the interpolation errors (52)

and (53), and the estimate (46). Finally, the second statement follows from the first one, for all hypotheses are
satisfied. �

Remarks

(i) The stress error is limited to the order O(hksk+1
sk ), independently of internal enrichment, because the edge

terms live in the coarsest scale level γsk = (hsk, ksk) of the normal traces over the skeleton interfaces.
(ii) Divergence of the stress can reach arbitrary high accuracy orders, profiting from finer meshes and higher

polynomial degrees used for the approximations in Uγin .
(iii) Despite the fact that finer meshes and higher polynomial degrees are also used for the approximations

in Qγin , the accuracy of the rotation is limited by the stress accuracy order O(hksk+1
sk ).

(iv) The constants in the above error estimates are independent of the Poisson ratio, a fact allowing to work
with materials near the incompressible limit, avoiding the locking phenomena, which is one of main
advantages of using stress mixed methods to solve linear elasticity.

(v) Since ||τ · n||
H− 1

2 (Γ)
≤ ||τ ||

H(div,Ω,M)
, for τ ∈ S , convergence rate for ||λ− λ̃||

H− 1
2 (Γ)

can be obtained

directly from the estimations (46), and (47) as

||λ− λ̃||
H− 1

2 (Γ)
. hksk+1

sk ‖σ‖Hksk+1(Ω,M) + hkin+t+1
in ‖∇ · σ‖Hkin+t+1(Ω,R2) + hkin+r+1

in ‖q‖Hkin+r+1(Ω)

(vi) Due to the L2-orthogonality of Urm and U ⊥ , the convergence rate (48) valid for ||u− ũ||L2(Ω,R2) also

holds for ||urm − ũ0||2L2(Ω,R2) and ||u⊥ − ũ⊥||2L2(Ω,R2), for

||u− ũ||2L2(Ω,R2) = ||(urm − ũrm) + (u⊥ − ũ⊥)||2L2(Ω,R2) = ||urm − ũrm||2L2(Ω,R2) + ||u⊥ − ũ⊥||2L2(Ω,R2).
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7. Numerical Verification Tests

In this, we present and discuss about some verification tests for the MHM-WS(Eγ) formulation analyzed in the
previous sections. The results are compared with the ones given by the single-scale MFEM-WS(Eγsk) formulation

at the coarsest scale, and by the MHM-H1 formulation [26, 36], that use H1-conforming FE displacement
spaces of corresponding two-scale resolution, using the hierarchical shape functions described in [17]. We refer
to [18,39] for the implementation of H(div)-conforming shape functions of edge and internal types, required in
the construction of tensor FE spaces.

For the current simulations, we implemented the methods in the computational framework NeoPZ 1, where
tools for the construction of the required constrained H(div)-conforming spaces are available (e.g., hierarchy of
shape functions of high degree for a variety of element geometry, data structure allowing the identification of
face and internal shape functions of different degrees, and procedures for shape function restraints, as the ones
usually adopted in adaptive hp-strategies). The upscaling-downscaling stages are crucial for the construction
of efficient computational algorithms, mainly because they decompose the resolution of the problem in terms
of local expensive (but independent local solvers) and cheaper coupled global systems. We refer to [20, 36] for
a discussion of different ways to implement MHM methods.

7.1. Problem 1: An oscillatory Young’s modulus case

Let Ω = (0, 1)×(0, 1) be a isotropic elastic body with Lamé parameters λ =
E(x, y) ν

(1 + ν)(1− 2ν)
and µ =

E(x, y)

2(1 + ν)
expressed in terms of the oscillatory Young’s modulus E(x, y) = 100(1 + 0.3 sin(10π(x − 0.5)) cos(10πy) and
Poisson ratio ν = 0.3. The exact displacement u, vanishing on ∂Ω, and is given by the expression

u(x, y) =

 1

3
(
x

3
)2y2 cos(6πx) sin(7πy)

1

5
ey sin(4πx)

 ,

from which the body force f is derived. Plots for E, components ui, and σ
i,j

are shown in Fig. 2.

Fig. 2. Oscillatory Young’s modulus E, the components of the analytic displacement u and stress tensor σ.

The results shown in this section are for two-scale FE spaces ERT [γ]
, for square meshes, EBDMγ , and EBDM+

γ
,

for triangular elements. Two types of curves are shown: mesh-based and space-based convergence histories. In

1NeoPZ open source platform: http://github.com/labmec/neopz
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Fig. 3. Effects of h
ksk+2
sk in Term 1 (T1), and ht+1

in in Term 2 (T2) in the displacement error estimate:

ksk = 1, 2, kin = ksk + n, n = 0, 1, 2, and hin = hsk/2
`, ` = 1, 2, 3.

the mesh-based scenario, convergence rate is based on the usual H-refinement of the macro-partition, and use
hsk = H (no mesh-skeleton refinement). The goal is to verify the error estimates predicted in Theorem 6.2.
Concerning displacement errors, the three terms in the right hand side of (48) may have different influence on
the results. For instance, Fig. 3 shows that for the two-scale families of FE spaces ERT [γ]

and EBDM+
γ

the last

term hskh
kin+1
in is always dominated by hksk+2

sk (Term 1) and hksk+n+1
in (Term 2) appearing in the first and second

terms. Different regimes may be observed for Term 1 and Term 2, depending on parameter configurations. For
instance, when internal polynomial degree increment kin = ksk +n is applied, with n ≥ 1, the influence of Term
1 dominates Term 2 in the range for hsk illustrated in Fig. 3 (top side), independently of the internal mesh
refinement hin = hsk/2

`, ` ≥ 1. For the two-scale FE spaces EBDMγ , Term 1 dominates Term 2 when n ≥ 2, as
shown in Fig. 3 (bottom side). These effects shall be verified in the simulations of this section.

Note also that the macro mesh-size H does not appear explicitly in the error estimates of Theorem 6.2.
This means that convergence is achieved by making hsk → 0, even if TH stays unchanged. This second type
of convergence history is called space-based convergence, based on the refinement of the skeleton partitions (as
well the internal ones) while keeping fixed the macro-partition. The purpose is to verify if an extra convergence

rate of order h
1/2
sk occurs, as observed in the numerical tests of [28,36] using the MHM-H1 method.

7.1.1. Mesh-based convergence with square elements

In this part, all verification tests for the oscillatory Young’s modulus case are for FE spaces ERT [γ]
based

on square local partitions. The results for the stress component σ11 obtained by the application of the MHM-
WS(ERT [γ]

) scheme are displayed in Fig. 4, for different configurations of γ. Precisely, we show plots for: (a)

8 × 8 subregions, H = 2−3, hsk = H, ksk = 2; (b) 8 × 8 subregions, hsk = H/4, ksk = 0; and (c) 32 × 32
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subregions, H = 2−5, hsk = H, ksk = 2. In all these cases, hin = 2−7, and kin = ksk + 1. It is clear that the
FE space of the case (a) is not sufficiently refined to capture the essential features of the solution. The other
two FE spaces, which are equivalent in terms of element sizes on the edges, show similar approximations, but
the errors for the FE space of case (c) are the smallest ones.

Fig. 4. Problem 1- Tensor component σ11 solved by the MHM-WS(ERT [γ]
) scheme for different square

partitions: 8×8 subregions, hsk = H, ksk = 2 (left side); 8×8 subregions, hsk = H/4, ksk = 0 (middle);

and 32×32 subregions, hsk = H, and ksk = 2 (right side). In all the cases kin = ksk+1, and hin = 2−7.

Fig. 5 - 6 show L2-error curves for u, σ, ∇·σ, q, and energy norm
(
A ε(u), ε(u)

) 1
2

, in terms of the macro mesh

size H = 2−j , j = 1, 2, · · · , 6, for the MHM-WS(ERT [γ]
) scheme, using hsk = H, ksk = 1, 2, and different fine

scale parameters γin. We compare the results with the respective single-scale MFEM-WS(ERT [γsk]
) methods,

and show that the two-scale FE settings overcome the single-scale one in all scenarios.

Assessing the effect of polynomial degree increment on errors

Fig. 5 shows the cases for ksk = 1 and ksk = 1, both with hin = hsk/2. The purpose is to analyze the
effect of increasing kin = ksk + n, n = 0, 1, 2. As predicted in (46), the errors in σ and q are of order ksk + 1,
independently of n, and these errors are about the same magnitude, in all the cases. The stress symmetry errors,
which are proportional to the stress errors, also have convergence rates of order ksk+1, but the increment of the
polynomial degrees inside the subregions reduces significantly their magnitudes. As expected, the divergence of
the stress systematically improves accuracy to order ksk + n+ 1 (recall that t = 0 for ERT [γ]

). For these space

configurations, we verify the dominant effect of the first term in the displacement error estimate (48) of order
ksk + 2 when n = 1, 2. For n = 0, i.e., when kin = ksk, the second term of (48) takes place, and convergence
rate of order ksk + 1 occurs, in accordance with the illustration of Fig. 3 (top-left figure).

Assessing the effect of internal mesh refinement on errors

Now we take kin = ksk = 1, 2, and analyze the effect of refining the internal meshes, for hin = hsk/2
`,

` = 1, 2, 3, comparing the cases in Fig. 6. Again, for coarser levels (` = 1, 2) the second term in the displacement
error is the most significant, of order ksk + 1, in accordance with the plots of Fig. 3 (top-left image). By further
refining the internal grids (` = 3), the convergence rate tends to the order ksk + 2 related to the first term
in (48). We highlight the different regime for the divergence of the stress, which is now always of fixed order
ksk + 1, but with reducing magnitude as ` increases. The behavior of the other variables are not significantly
affected by using these FE space settings.

Comparison between MHM-WS(Eγ) and MHM-H1 methods

We compare the convergence histories of the MHM-WS(ERT [γ]
) and MHM-H1 methods in the plots of Fig.

7. The FE spaces have polynomial degree ksk = 1, 2, without skeleton subdivision (hsk = H) and no internal
polynomial degree enrichment (n = 0), but use ` = 1, 2, 3 to form the micro meshes inside the macro-elements

(hin = H/2`). For the MHM-H1 method, using scalar polynomials obtained from Qk,k(K̂), L2-stress and energy
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Fig. 5. Problem 1 - Effect of increasing kin: MHM-WS(ERT [γ]
) scheme with hsk = H = 2−j , j =

1, 2, · · · 6, hin = hsk/2, ksk = 1, 2, and kin = ksk + n, n = 0, 1, 2; single-scale MFEM-WS(ERT [γsk]
).

errors maintain of order ksk, but as the internal mesh refinement increases, the magnitude of the errors decrease.
The error decays faster for ksk = 2, starting with a convergence rate of order 2 for ` = 1, the error curves for the
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Fig. 6. Problem 1 - Effect of decreasing hin: MHM-WS(ERT [γ]
) scheme with ksk = kin = 1, 2,

hsk = H = 2−j , j = 1, 2, · · · 5, hin = hsk/2
`, ` = 1, 2, 3; single-scale MFEM-WS(ERT [γsk]

).

MHM-H1 method approach the ones of the MHM-WS(ERT [γ]
) scheme, having rate of order ksk + 1, until they

almost coincide at ` = 3. Concerning the displacement variable, both methods show similar behavior, starting
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with rates of order ksk + 1 at low internal refinement levels, typical of one-level schemes, as predicted by the
error estimate in (48) for this kind of space configuration (n = 0, t = 0, and hin ∼ h), whose first term on the
right side of (48) is dominating. However, as ` increases, with hin � hsk, the error magnitudes decrease, with
fast decay for the higher degree ksk = 2. The enhanced rate of order ksk + 2 is observed at ` = 3, illustrating
the domination of the first term on the right side of (48). Notice that the observed rates of convergence for
the MHM-H1 method are in accordance with the predicted ones in [26,36] the errors from the local level solver

pollute the global convergence when kin = ksk. One can recover the higher convergence order O(hksk+1
sk ) for

L2-stress and energy norms by using kin = ksk + 1 and, provided some smoothing properties hold, recover the
super-convergence order O(hksk+2

sk ) by using kin = ksk + 2 in the MHM-H1 method [36].

Fig. 7. Problem 1 - Comparison of MHM-WS(ERT [γ]
) and MHM-H1 methods: kin = ksk = 1, 2,

hsk = H = 2−j , j = 1, 2, · · · , hin = hsk/2
`, ` = 1, 2, 3.

7.1.2. A space-based convergence study

Consider now a fixed macro-partition with mesh-size H = 2−2, and skeleton partitions taking hsk = 2−jH,
j = 0, 1, 2, · · · . Inside the subregions, we take uniform partitions T Ωi

hin
with hin = hsk/2. The polynomial degrees

used for the trace spaces are ksk = 1, 2, and for the local FE spaces are kin = ksk + 1.
The space-based error curves in Fig. 8 use the ERT [γ]

spaces. Instead of the mesh size, we use the number

of degrees of freedom (DoF) in the condensed systems of the upscaling stage. We include mesh-based results
for comparison, using the same grid size H = hsk for the macro-and the skeleton partitions while keeping the
other parameters unchanged. These plots show that a desired accuracy can be obtained with about two orders
of magnitude less degrees of freedom when the space-based strategy is adopted instead of refining the global
partition.

Table 3 contains the errors and convergence rates for square and triangular mesh scenarios, with fixed macro-
partitions with 16 uniform squares or 32 triangles, respectively. Except for the divergence of the stress, all other
variables experiment and enhanced accuracy, which is more evident for ksk = 2. Since ∇· σ̃ is the L2-orthogonal

projection of f over Uγin , its accuracy is kept in the superconvergence rate of order hksk+t+n+1
in , as predicted in
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Fig. 8. Problem 1 - Space-based convergence (s-b) for the MHM-WS(ERT [γ]
) scheme: fixed macro-

partition with 16 uniform square subregions, hsk = 2−j , j = 2, · · · , 6, for ksk = 1, 2, hin = hsk/2, and
kin = ksk + 1; mesh-based convergence (m-b) is for macro-partitions with H = hsk.

(47). As for the MHM-H1 simulations shown in [28,36], the ERT [γ]
and EBDM+

γ
space families present the same

tendency to extrapolate the predicted values by an exponent ≈ 1/2 in the space-based convergence rates. Once

stress convergence rate reaches the order h
ksk+3/2
sk , this enhanced accuracy is translated to the displacement

error estimate (48), improving the Term 1 to order h
ksk+5/2
sk . When this term is dominant, the extra h

1/2
sk

accuracy order appears, as for the cases of ERT [γ]
and EBDM+

γ
families using the mesh sizes and polynomial

degree scenario of this test problem. However, this tendency is not confirmed by the displacement errors given
by the simulations with EBDMγ , a fact that can be justified by a closer look in the bottom-side of Fig. 3: using
n = 1 and ` = 1 the Term 2 dominates the Term 1 as hsk diminishes.

7.2. Problem 2: a heterogeneous media case

In this example, we use the data from the HPC4e Test Suite [15], which defines an elastic domain with 16
layers with constant physical properties, covering an area of 10 × 10 × 5 km. As suggested in [36], we replace
the original layers 4 and 12 by the data of saturated clay ρ = 1760 kg/m3, ν = 0.49, E = 15 MPa, and
which adds more interesting behavior for the numerical experiments. We consider a three-dimensional grid
with ∆x = ∆y = 19.53125 m (10000/512) and ∆z = 4500/256 = 17.578125 m, to sample the compressional

velocity Vp, shear velocity Vs, and density ρ, and use the expressions ν =
V 2
p − 2V 2

s

2(V 2
p − V 2

s )
and E = 2ρV 2

s (1 + ν) to

obtain the Poisson coefficient and Young’s modulus, respectively. Fig. 9 shows the plots of these parameters
defined at the central cross line at y = 5000 m, which corresponds to the domain Ω used in the simulations of
the heterogeneous media case. The top, left and right sides of the domain are stress-free, and the bottom side
has zero displacement. The domain is loaded by gravity (9.81 m/s2). We choose the evolution of σ

11
at the

horizontal center line of the domain z = 2250.25 m as a reference value.
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Table 3. Problem 1 - Space-based convergence for the MHM-WS(Eγ) scheme: L2-errors and con-
vergence rates using fixed macro-partition of 16 uniform squares for two-scale FE spaces ERT [γ]

, of

32 triangles for two-scale FE spaces EBDMγ and EBDM+
γ

; hsk = 2−j , ksk = 1, 2, hin = hsk/2, and

kin = ksk + 1.

Square local partitions
ERT [γ]

ksk = 1

j
stress displacement divergence rotation asymmetry energy

error rate error rate error rate error rate error rate error rate
2 9.4146e+0 −− 1.7854e−3 −− 4.7550e+1 −− 8.8385e−2 −− 3.3533e+0 −− 9.2503e−1 −−
3 1.9264e+0 2.29 1.7689e−4 3.34 6.3514e+0 2.90 1.7487e−2 2.34 6.4913e−1 2.37 1.8732e−1 2.30
4 3.7643e−1 2.36 1.7954e−5 3.30 8.0654e−1 2.98 3.1986e−3 2.45 9.9418e−2 2.71 3.6507e−2 2.36
5 7.0104e−2 2.42 1.7949e−6 3.32 1.0121e−1 2.99 5.8776e−4 2.44 1.5477e−2 2.68 6.7932e−3 2.43

ksk = 2

j
stress displacement divergence rotation asymmetry energy

error rate error rate error rate error rate error rate error rate
2 2.5818e+0 −− 3.0900e−4 −− 8.0800e+0 −− 2.1208e−2 −− 6.8336e−1 −− 2.5349e−1 −−
3 2.9517e+1 3.13 1.8120e−5 4.09 5.3177e+1 3.93 2.3865e−3 3.15 7.6440e−2 3.16 2.9117e−2 3.12
4 2.5628e−2 3.53 7.7721e−7 4.54 3.3700e−2 3.98 2.2522e−4 3.41 9.7628e−3 2.97 2.5336e−3 3.52
5 2.1734e−3 3.56 3.1703e−8 4.62 2.1136e−3 3.99 1.9062e−5 3.56 9.2792e−4 3.40 2.1600e−4 3.55

Triangular local partitions
EBDMγ

ksk = 1

j
stress displacement divergence rotation asymmetry energy

error rate error rate error rate error rate error rate error rate
2 1.5298e+1 −− 6.1570e−3 −− 2.3282e+2 −− 1.5827e+0 −− 5.0094e+0 −− 1.5277e+0 −−
3 3.8547e+0 1.99 1.2550e−3 2.29 6.6334e+1 1.81 3.8729e−2 2.03 1.3566e+0 1.88 3.7603e−1 2.02
4 7.9571e−1 2.28 2.8845e−4 2.12 1.7167e+1 1.95 7.245e−3 2.42 2.6268e−1 2.37 7.6726e−2 2.29
5 1.6220e−1 2.30 7.1211e−5 2.02 4.3292e+0 1.99 1.4674e−3 2.30 4.8063e−2 2.45 1.5543e−2 2.30

ksk = 2

j
stress displacement divergence rotation asymmetry energy

error rate error rate error rate error rate error rate error rate
2 6.5982e+0 −− 1.4763e−3 −− 1.0815e+1 −− 6.8016e−2 −− 1.4044e+0 −− 6.4350e−1 −−
3 1.1056e−1 2.58 1.2802e−4 3.53 1.0815e+1 2.79 1.0762e−2 2.66 1.9111e−1 2.88 1.0699e−1 2.59
4 1.1581e−1 3.25 8.1727e−6 3.97 1.4003e+0 2.95 1.1113e−3 3.28 2.3519e−2 3.02 1.1212e−2 3.20
5 9.4750e−3 3.61 6.4039e−7 3.67 1.7659e−1 2.99 8.5089e−5 3.71 2.6922e−3 3.13 9.2499e−4 3.60

EBDM+
γ

ksk = 1

j
stress displacement divergence rotation asymmetry energy

error rate error rate error rate error rate error rate error rate
2 1.5909e+1 −− 4.7291e−3 −− 7.4825e+1 −− 1.9752e−1 −− 2.6632e+0 −− 1.5436e+0 −−
3 4.0471e+0 1.97 6.1283e−4 2.95 1.0815e+1 2.79 4.8076e−2 2.04 7.1458e−1 1.90 3.8563e−1 2.00
4 8.2132e−1 2.30 5.8335e−5 3.39 1.4003e+0 2.95 8.4784e−3 2.50 1.2752e−1 2.49 7.7762e−2 2.31
5 1.6348e−1 2.33 6.3446e−6 3.20 1.7659e+1 2.99 1.5663e−3 2.44 1.9175e−2 2.73 1.5442e−2 2.33

ksk = 2

j
stress displacement divergence rotation asymmetry energy

error rate error rate error rate error rate error rate error rate
2 6.6848e+0 −− 1.4911e−3 −− 2.0206e+1 −− 7.3370e−2 −− 9.1499e+1 −− 6.4407e+1 −−
3 1.1190e+0 2.58 1.2639e−4 3.56 1.4320e+0 3.82 1.1316e−2 2.70 1.1343e−1 3.01 1.0775e−1 2.58
4 1.1724e−1 3.25 6.8611e−6 4.20 9.2555e−2 3.95 1.1689e−3 3.28 1.5131e−2 2.91 1.1291e−2 3.25
5 9.6566e−3 3.60 2.5853e−7 4.73 5.8340e−3 3.99 9.3046e−5 3.65 1.7545e−3 3.11 9.3336e−4 3.60

We ran single-scale MFEM-WS(ERT [γref ]
) simulations for γref = (h, k), k = 1, 2 and conclude that k = 2 can

be used as a reference solution. The plots in Fig. 10 show the reference values of σ
11

along the horizontal center

line of the domain z = 2250.25 m for four two-level configurations of the MHM-WS(ERT [γ]
) using fixed 16× 8

subregions as documented in the right-hand side of Fig. 11. The interior meshes in each subregion are obtained
after five uniform subdivisions. The approximations are obtained using FE spaces ERT [γ]

for ksk = kin = 1,

and hsk = H/2`, ` = 0, 1, 2 and 3 divisions of the skeleton mesh. It can be observed that by refining the
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Fig. 9. Problem 2 - Young’s modulus and Poisson’s ratio at the cross line y = 5000 m.

Fig. 10. Problem 2 - Plots of σ
11

at the height z = 2250.25 m. The reference approximations (black),

and the MHM-WS(Eγ) solutions (red), are for two-scale FE spaces ERT [γ]
based on 16 × 8 macro

subregions, ksk = kin = 1, hin = 10000/512 ≈ 19.53m, hsk = H/2` with ` = 0, 1, 2, 3.

Fig. 11. Problem 2 - Component σ
11

obtained with single-scale reference FE space ERT [γref ]
(left),

and MHM-WS(Eγ) scheme (right) with two-scale FE space ERT [γ]
based on 16 × 8 macro-elements,

ksk = kin = 1, hsk = H/8, and hin = 10000/512 ≈ 19.53 m.

skeleton mesh, the MHM-WS(ERT [γ]
) approximations become closer to the reference solution, with quite well

matching for ` = 3. Fig. 11 shows contour plots of σ
11

comparing the reference results (left side) with the finest

MHM-WS(ERT [γ]
) approximate result (right side) using ` = 3.
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8. Conclusions

We proposed a family of stable H(div)-conforming multiscale mixed methods for elasticity problems that
impose weakly stress symmetry on general polygonal meshes. Such a feature makes the methodology flexible
to represent complex geometries while it yields a systematic way to build multiscale FE spaces with upscaling-
downscaling stages. The multiscale nature of the methods provides a detailed representation of the solution
(stress, displacement, and rotation multiplier). Such discrete solutions combine fine-scale computations within
macro elements, which are entirely independent of one another and prompt to be parallelized, with coarse scales
represented by constrained traction (Lagrange multiplier) on mesh skeleton. As a result, the methods achieve
optimal and high-order convergence by refining the meshes’ frame and local sub-meshes only. As an upshot,
the convergence also holds with edge refinement only, i.e., keeping the first-level mesh fixed. Interestingly,
we observed numerically super-convergence in this case. Also, local stress fields are in local equilibrium with
external forces. Those properties are theoretically demonstrated and validated through numerical tests, which
verified the robustness of the methods on a highly complex multilayer problem using meshes non-aligned with
interface layers.

We conclude with the highlight on the following topics deserving future research:

• The MHM methodology can provide an underlying algorithm with two levels of parallelism. The first
one has a mathematical origin, based on the local global splitting in (28)-(35) and (36)-(37), respectively.
The second one is computational, based on the choice of parallel algorithms to solve each problem (global
and local ones), and the management of computational resources to deliver efficient code. A study on
this direction demands expertise on the implementation of parallel algorithms, which is out of the scope
of the present manuscript. We refer to [25, 36] as some seminal works considering the performance of
the MHM-H1 method for elasticity.

• The construction of a two-scale MHM-WS characterization for three-dimension MFEM-WS methods is
feasible using a similar methodology, as in the 2D case presented in Theorem 4.2. Recall that, stable
single-scale FE spaces for the MFEM-WS formulation are available in 3D only for tetrahedral geometry
(e.g., in [5,6,13,21,40])). However, stability analyses for them should use different methodology, for the
application of Stokes-compatibility constraint is less effective in 3D.

Acknowledgments

The authors P. R. B. Devloo and S. M. Gomes thankfully acknowledges financial support from CNPq -
Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (grants 305823-2017-5, and 306167/2017-4).
P. R. B. Devloo also acknowledges financial support from ANP-Brazilian National Agency of Petroleum, Natural
Gas and Biofuels (grant 2014/00090-2). F. Valentin received funding from the European Union’s Horizon 2020
Programme (2014-2020) and from the Brazilian Ministry of Science, Technology and Innovation through Rede
Nacional de Pesquisa (RNP) under the HPC4E Project (www.hpc4e.eu), grant agreement N◦ 689772, and from
CAPES/Brazil under the PHOTOM project, and CNPq/Brazil. S. M. Gomes is grateful for the support and
hospitality during her visit to Universidade Federal da Paráıba, PB, Brazil, whilst this manuscript was prepared.
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Appendix A. Proof of theorems

A.1. Proof of Theorem 2.1

Theorem 2.1 gives the characterization of the weak stress mixed formulation with reduced symmetry (2)-(4)
in terms of the local-global hybrid systems (7)-(10), (11)-(14), and (15)-(16). Before going throughout its proof,
let the mapping Rrm : Λ → Urm be defined by (Rrm(λ), v)Ωi = 〈δi λ, v〉∂Ωi ,∀v ∈ Urm. If (urm, λ) solves the
global system (15)-(16), then for (7) and (16) we obtain −∇· Tσ(λ) = Rrm(λ) = Πrm(f), Πrm(f) denoting the

L2-orthogonal projection of f ∈ U onto Urm, .

Lemma A.1. The mapping Rrm is a surjective operator.

Proof. In fact, given v∗ ∈ Urm, let λ∗|∂Ωi = σ∗ n|∂Ωi ∈ Λ, where σ∗ ∈ H1(Ω,S) satisfy ∇ · σ∗ = v∗. Thereby,

||v∗||2L2(Ω,R2) =
∑
Ωi

(v∗, v∗)Ωi =
∑
Ωi

〈σ∗ nΩi , v∗〉∂Ωi =
∑
Ωi

〈δi λ∗, v∗〉∂Ωi =
∑
Ωi

〈Rrm(λ∗), v∗〉∂Ωi . Then, the adjoint

application of Rrm is injective with closed range, which implies the result. �

The results of Theorem 2.1 shall be proved by parts.

Part 1 : Notice that the variables Tσ(λ) ∈ H(div,Ω,M), Tu(λ) ∈ U ⊥, and T q(λ) ∈ L2(Ωi), provided by the
local mixed solvers (7)-(10), can be interpreted as solution, in the distributional sense, of the independent local
boundary value problems for u|Ωi free of rigid body modes:

−∇ · σ = Rrm(λ), A−1 σ = ∇u, −γ(u), σ − σT = 0 in Ωi, σ n|∂Ωi = λ,

with balanced force Rrm(λ) and Neumann boundary condition λ. Thus, their corresponding solutions are
unique. In fact, Neumann boundary value problems of linear elasticity are singular, with kernel formed by the
rigid motions of the body. However, this ambiguity can be removed by enforcing the solution to be free of
rigid body modes, and by requiring balanced force and Neumann boundary terms (e.g. see [31]). Analogously,

T̂σ(f) ∈ S , T̂u(f) ∈ U ⊥, and T̂ q(f) ∈ Q, are obtained from the unique weak solutions of the local problems

−∇ · σ = f −Πrm(f), A−1σ = ∇u− γ(u), σ − σT = 0 in Ωi, σ n|∂Ωi = 0.

To verify the uniqueness of the global system (15)-(16), take zero data f = 0 and g = 0. Then it becomes

(A−1Tσ(λ), Tσ(µ)) + (urm,∇ · T
σ(µ)) = 0, ∀µ ∈ Λ,

(∇ · Tσ(λ), v) = 0, ∀v ∈ Urm.

Taking test functions µ = λ and v = ∇ · Tσ(λ) ∈ Urm, these equations turn into

(A−1Tσ(λ), Tσ(λ)) + (urm,∇ · T
σ(λ)) = 0,

(∇ · Tσ(λ),∇ · Tσ(λ)) = 0,
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implying that ∇ · Tσ(λ) = 0, from which (A−1Tσ(λ), Tσ(λ)) = 0 holds. The positive definiteness of the tensor

A implies that Tσ(λ) = 0 (meaning that λ = 0, Tu(λ) = 0, and T q(λ) = 0 as well). Finally, urm = 0 follows

from the remaining relation (urm,∇ · T
σ(µ)) = 0, ∀µ ∈ Λ, recalling that ∇ · Tσ(µ) = − Rrm(µ), and that

Rrm(µ) is a sujective operator over Urm.

Part 2 : Suppose (urm, λ) ∈ Urm × Λ solves (15)-(16), and let (σ, u, q) be recovered as in (5). If (s, w, r) is the

solution of (2)-(4), define ν = s n|Γ and set w = wrm + w⊥. By testing (3) with v ∈ U ⊥, and (2) with τ ∈ S̊ ,

both with support in Ωi, and recalling that (wrm,∇ · τ)Ωi = −1

2
(asym∇wrm, asym τ)Ωi , we obtain

(A−1 s, τ)Ωi + (w⊥,∇ · τ)Ωi + (r − 1

2
asym∇wrm, asym τ)Ωi = 0, (55)

−(∇ · s, v)Ωi = (f, v). (56)

For arbitrary µ ∈ Λ, take τ = Tσ(µ) to test (2). Notice that (r, asymTσ(µ)) = 0 (for (9)), and (w⊥,∇· Tσ(µ)) =

0 (for (7)). Then Eq. (2) and Eq. (3) become

(A−1 s, Tσ(µ)) + (wrm,∇ · T
σ(µ)) = 〈µ, g〉, (57)

−(∇ · s, v) = (f, v), ∀v ∈ Urm. (58)

By confronting (55)-(58) and (2) with equations (7)-(14), the differences s− σ, w⊥ − u⊥, and r − q verify:

(∇ · [s− σ], v)Ωi = 0, ∀v ∈ U ⊥(Ωi), (59)

(A−1 [s− σ], τ)Ωi + (w⊥ − u⊥,∇ · τ)Ωi + (r − q, asym τ)Ωi = 0, ∀τ ∈ S̊ (Ωi) (60)

(asym[s− σ], ϕ)Ωi = 0, ∀ϕ ∈ L2(Ωi), (61)

(s− σ) n|∂Ωi = ν − λ. (62)

These equations and (64) imply that s − σ = Tσ(ν − λ), having vanishing divergence, w⊥ − u⊥ = Tu(ν − λ),

and r − q = T q(ν − λ). Furthermore, since Eq. (11), (8), and (13) imply that

(f, Tu(µ))Ωi = −(∇ · T̂σ(f), Tu(µ))Ωi

= (A−1 Tσ(µ), T̂σ(f))Ωi + (T q(µ), asym T̂σ(f))Ωi

= (A−1 Tσ(µ), T̂σ(f))Ωi = (Tσ(µ), A−1T̂σ(f))Ωi ,

and by recalling that (Tσ(f), v) = 0, ∀v ∈ Urm, we conclude from (15)-(16) and (57)-(58) that

(A−1 [s− σ], Tσ(µ)) + (wrm − urm,∇ · T
σ(µ)) = 0, ∀µ ∈ Λ, (63)

−(∇ · [s− σ], v) = 0, ∀v ∈ Urm. (64)

By setting µ = ν − λ and v = wrm − urm in (63)-(64), and using the positive definiteness property of

A−1, we conclude that s = σ (i.e., (ν = λ). Thus w⊥ = u⊥ and r = q as well. Finally, Eq. (63) becomes

(wrm − urm,∇ · T
σ(µ)) = 0, ∀µ ∈ Λ, implying that wrm = urm, from Remark (2). By uniqueness of the

solutions in both contexts, the equivalence property holds, and then the existence of a solution for (15)-(16)
follows from the existence of a solution for (2)-(4).

A.2. Proof of Theorem 4.1

The goal is to proof uniqueness of solution by the MHM-WS(Eγ) scheme. The next result is paramount for
its proof.
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Lemma A.2. The mapping R̃rm : Λγ → Urm, defined by R̃rm = Rrm|Λγ , is surjective.

Proof. Recall that, for µ ∈ Λγ , (R̃rm(µ), v)Ωi = 〈δiµ, v〉∂Ωi , ∀v ∈ Urm. As in the proof of Lemma A.1, given

v∗ ∈ Urm, let σ∗ ∈ H1(Ω,S) satisfying ∇ · σ∗ = v∗. Then, define λ̃
∗

= σ̃∗ n|∂Ωi , Ωi ∈ T , where σ̃∗ = Π
σ

1,γ σ
∗ ∈

Sγ , and the interpolant Π
σ

1,γ , defined for τ ∈ H1(Ω,M), is such that
(
∇ · (τ −Π

σ

1,γτ), v
)

= 0, ∀v ∈ Uγin . The

existence of such mapping is stated in Theorem 6.1. Thus, λ̃
∗
∈ Λγ , and the assumption Urm ⊂ Uγin implies

that ∇ · σ̃∗ = v∗. Consequently, (ṽ∗, v)Ωi = 〈σ̃∗ nΩi , v〉∂Ωi = 〈δi λ̃
∗
, v〉∂Ωi , meaning that R̃rm(λ̃

∗
) = v∗, and

the result follows. �

By hypothesis, the downscaling solvers (28)-(31) are well-posed MFEM-WS(Eγ) versions in Ωi. Thus, unique-

ness holds for (T̃σ(λ̃), T̃u(λ), T̃ q(λ)) ∈ Sγ×Uγin×Qγin . Analogously, (
˜̂
Tσ(f),

˜̂
Tu(f),

˜̂
T q(f)) ∈ Sγ×Uγin×Qγin

is the unique solution piecewise defined by well-posed MFEM-WS(Eγ) formulations (32)-(35) in Ωi.
Uniqueness for the solution of the upscaling stage follows by similar proof steps as observed for the weak

formulations at the continuous level. Taking zero data f = 0 and g = 0, the well-posedeness of the local

problems (32)-(35) implies that
˜̂
Tu(f) = 0,

˜̂
Tσ(f) = 0 (and

˜̂
T q(f) = 0). Then, the upscaling system becomes

(A−1T̃σ(λ̃), T̃σ(µ)) + (ũrm,∇ · T̃
σ(µ)) = 0, ∀µ ∈ Λγ ,

(∇ · T̃σ(λ̃), v) = 0, ∀v ∈ Urm.

Testing with µ = λ̃ and v = ∇ · T̃σ(λ̃) ∈ Urm (for (28)), these equations turn into

(A−1 T̃σ(λ̃), T̃σ(λ̃)) + (ũrm,∇ · T̃
σ(λ̃)) = 0,

(∇ · T̃σ(λ),∇ · T̃σ(λ̃)) = 0,

implying that ∇· T̃σ(λ̃) = 0, from which (A−1T̃σ(λ̃), T̃σ(λ̃)) = 0 holds. The positive definiteness of the tensor A

implies that T̃σ(λ̃) = 0, meaning that λ̃ = 0 (and thus T̃u(λ̃) = 0 and T̃ q(λ̃) = 0 as well). Thus, the remaining

relation is (ũrm,∇ · T̃
σ(µ)) = 0, ∀µ ∈ Λ̃γ . Noting that −∇ · T̃σ(µ) = R̃rm(µ) in Ωi, for µ ∈ Λ̃γ , and by Lemma

A.2 there exists µ∗ ∈ Λγ such that R̃rm(µ∗) = ũrm, we conclude that ũrm = 0, and the result follows.

A.3. Proof of Theorem 4.2

This is a discrete version of the equivalence result in Theorem 2.1 and the proof follows similar steps. Firstly,
suppose (λ̃, ũrm) solves the upscaling system of the MHM-WS(Eγ) method, and consider the recovered solution

of the downscaling stage σ̃ = T̃σ(λ̃) +
˜̂
Tσ(f), ũ⊥ = T̃u(λ̃) +

˜̂
Tu(f), and q̃ =

1

2
asym ũrm + T̃ q(λ̃) +

˜̂
T q(f).

After the combination of the systems (28)-(31) and (32)-(35), we obtain the following set of equations in the
subregions:

−(∇ · σ̃, v)Ωi = (f, v)Ωi , ∀v ∈ Ũ ⊥γin(Ωi).

(A−1 σ̃, τ)Ωi + (ũ⊥,∇ · τ)Ωi + (q̃ − 1

2
asym∇ũrm, asym τ)Ωi = 0, ∀τ ∈ S̊γ(Ωi),

(asym σ̃, ϕ)Ωi = 0, ∀ϕ ∈ Qγin(Ωi),

σ̃ n|∂Ωi = λ̃|∂Ωi .

On the other hand side, let (s̃, w̃, r̃) ∈ Eγ be the MFEM-WS(Eγ) solution, and set ν̃ = s̃ n|Γ, and w̃ =

w̃rm + w̃⊥. By confronting the above system of equations with similar one valid for (s̃, w̃, r̃), we conclude that

σ̃ − s̃ = T̃σ(λ̃ − ν̃), ũ⊥ − w̃⊥ = T̃u(λ̃ − ν̃), and q̃ − r̃ = T̃ q(λ̃ − ν̃). For arbitrary µ ∈ Λγ , (32), (29), and (34)
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imply that (f, T̃u(µ))Ωi = (T̃σ(µ), A−1 ˜̂
Tσ(f))Ωi . Using this relation and the properties µ|∂Ω = T̃σ(µ) nΩ (by

(35)), and (∇ · ˜̂
Tσ(f), v) = 0, ∀v ∈ Urm, Eq. (36) and (37) become

(A−1σ̃, T̃σ(µ)) + (ũrm,∇ · T̃
σ(µ)) = 〈µ, g〉, ∀µ ∈ Λγ ,

−(∇ · σ̃, v) = (f, v), ∀v ∈ Urm.

Inserting in Eq. (38) the facts (r̃, asymTσ(µ)) = 0, and (w̃⊥,∇ · Tσ(µ)) = 0, and recalling Eq. (39), we obtain

(A−1 s̃, Tσ(µ)) + (w̃rm,∇ · T
σ(µ)) = 〈µ, g〉, ∀µ ∈ Λγ ,

−(∇ · s̃, v) = (f, v), ∀v ∈ Urm.

Consequently,

(A−1[σ̃ − s̃], T̃σ(µ)) + (ũrm − w̃rm,∇ · T̃
σ(µ)) = 0, ∀µ ∈ Λγ .

−(∇ · [σ̃ − s̃], v) = 0, ∀v ∈ Urm.

By setting µ = λ̃−ν̃ and v = ũrm−w̃rm in the above relations, and since we already know that σ̃−s̃ = T̃σ(λ̃−ν̃),

the positive definiteness property of A−1 implies that σ̃ = s̃ (i.e., λ̃ = ν̃). Thus ũ⊥ = w⊥ and q̃ = r̃ as well.

Finally, the remaining equation (ũrm − w̃rm,∇ · Tσ(µ)) = 0, ∀µ ∈ Λγ , and Lemma A.2, concerning the

surjectivity over Urm of ∇ · T̃σ(µ) = −Rrm(µ), µ ∈ Λγ , imply that ũrm = w̃rm. By uniqueness of MHM-
WS(Eγ) and MFEM-WS(Eγ) solutions, these methods are equivalent.

Appendix B. List of Symbols

Acronyms for FE Methods

NAME Poisson FE pairs NAME Stokes FE pairs

BDM Brezzi-Douglas-Marini for triangles CR Crouzeix-Raviart for triangles

RT Raviart-Thomas for quadrilaterals GR Girault-Raviart for quadrilaterals

Elasticity Methods

MFEM-WS mixed FE method weakly imposing tensor symmetry

MHM-WS multiscale hybrid mixed FE method weakly imposing tensor symmetry

MHM-H1 primal multiscale hybrid mixed FE method

ENAMEγ tensor and displacement rows come from Poisson FE pair NAME

Scalars, Vectors and Tensors

A stiffness tensor σ stress tensor σ̃ approximate σ

I identity matrix u displacement ũ approximate u

M second-order tensors urm rigid body mode ũrm approximate urm
S symmetric tensors u⊥ L2-complement of urm ũ⊥ approximate u⊥

ε strain tensor λ multiplier (traction) λ̃ approximate λ

q rotation q̃ approximate q

Data

f body force µ Lamé’s second parameter E Young’s modulus

g boundary data λ Lamé’s first parameter ν Poisson’s ratio
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Geometry

Ω ⊂ R2 polygonal domain T = {Ωi} macro-partition of Ω

∂Ω boundary of Ω Thsk coarse conformal partition of Ω

Ωi subregions of Ω T Ωi
hsk

coarse partition of Ωi

∂Ωi boundary of Ωi T Ωi
hin

refined partition of Ωi

Γ = {∂Ωi} mesh skeleton T Γ coarse partition of Γ

D ⊂ Ω dubdomain K̂ master element

n normal vector field K element in T Ωi
hin

nD outward unit normal K̄ element in T Ωi
hsk

Functional Spaces

L2(D) scalar L2-space S = H(div,Ω,M) tensor H(div)-space for σ

L2(D,E) L2-space E ∈ {R2,M} S̊ ⊂ S bubble tensors

(, )D L2 inner product U = L2(Ω,R2) space for displacement u

Hs(D) scalar Sobolev space Urm ⊂ U rigid body modes

Hs(D,E) Sobolev space E ∈ {R2,M} U ⊥ ⊂ U L2-orthogonal complement of Urm

H(div, D) vector H(div)-space Q = L2(Ω) space for rotation q

H(div, D,M) tensor H(div)-space Λ = Λ(Γ,R2) normal trace space for λ

H1/2(∂D,R2) trace of H(div, D,M) 〈, 〉 duality pairing of traces

H−1/2(∂D,R2) trace of H1(Ω,R2)

Downscaling Operators

T (λ) : Λ→ S ×U ⊥ ×Q T̃ (λ̃) discrete version of T (λ)

T (f) : Λ→ S ×U ⊥ ×Q
˜̂
T (f) discrete version of T̂ (f)

Finite Element Spaces

Mesh and Space Parameters Polynomials: scalar or for E ∈ {R2,M}
H macro mesh size Pk(K̂),Pk(K̂,E) of total degree ≤ k
hsk coarse mesh width Qk,t(K̂),Qk,t(K̂,E) degree ≤ k in x and ≤ t in y

h refined mesh width Local FE spaces in K

ksk coarse polynomial degree S(K,M) tensor FE space

kin refined polynomial degree U(K,R2) displacement FE space

γ := (γsk, γin) two-scale parameters Q(K) rotation FE space

γin = (hin, kin) refined scale parameters V (K,R2), P (K) flux and pressure FE pair

γsk = (hsk, ksk) coarse scale parameters W (K,R2), Q(K) velocity and pressure FE pair

Local FE Spaces in Ωi Global Trace FE Space

Sγ(Ωi) = S ∂
γ (Ωi)⊕ S̊γin(Ωi): constrained tensor spaces Λγ : based on T Γ

S ∂
γ (Ωi), S̊γin(Ωi) coarse edge and refined bubble tensor spaces

Uγin(Ωi) = Urm(Ωi)⊕U ⊥γin(Ωi): displacement spaces Two-scale FE setting in Ω

Urm(Ωi) rigid body modes Eγ = Sγ ×Uγin ×Qγin

U ⊥γin(Ωi) orthogonal complements Local FE settings

Qγin(Ωi) rotation spaces Eγ(Ωi) = Sγ(Ωi)×Uγin(Ωi)×Qγin(Ωi)


