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This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional
linear elasticity problem on general polygonal meshes. The new methods approximate
displacement, stress, and rotation variables using two-scale discretizations. The �rst scale
level setting consists of approximating the traction variable (Lagrange multiplier) in
discontinuous polynomial spaces, and of computing rigid-body modes element wisely. In
the second scale level, the methods are made e�ective by solving completely independent
local Newmann elasticity problems written in a mixed form with weak symmetry enforced
via a rotation multiplier. Since the �nite-dimensional space for the traction variable
constrains the discrete space for the local stress tensor, the discrete stress �eld lies
in the H(div) space globally and stays in local equilibrium with external forces. We
propose di�erent choices to approximate local problems based on locally stable pairs of
�nite elements de�ned on a�ne second-level meshes. Those choices generate the family
of multiscale �nite element methods for which stability and convergence are proved in
a uni�ed framework. Notably, we prove that the methods are optimal and high-order
convergent in the natural norms. Also, it emerges that the approximate displacement
and stress divergence are super-convergent in the L2-norm. Numerical veri�cation assess
theoretical results and highlight the high precision of the new methods on coarse meshes
for multilayered heterogeneous material problems.
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1. Introduction

Mixed �nite element (FE) methods for elasticity problems, based on the Hellinger-

Reissner principle, have been used since the very beginning of �nite element history.

They are formulated simultaneously for stress and displacement variables, which are

of primary interest. When correctly designed, mixed methods usually give optimal

stress accuracy, and local momentum conservation, without locking-behavior for

incompressible or nearly incompressible materials.

We focus our study on conforming mixed formulations, meaning that approxima-

tions for the stress tensor σ have continuous normal traces along the inter-element

boundaries (i.e. the stress approximation space S̃ should be H(div)-conforming),

but without requiring stress symmetry. The displacement variable u is searched in a

discontinuous space Ũ . The idea is to impose a weak symmetry condition through

the use of a Lagrange multiplier (rotation) living in an appropriate approximation

space Q̃. We denote this class of methods by the acronym MFEM-WS, and refer to

Ref. 3, 16 for overviews on this matter.

Our purpose is to create a multiscale hybrid approach for the MFEM-WS. It

shall be denoted by the acronym MHM-WS, for its design is in the spirit of the

Multiscale Hybrid Mixed (MHM) methods (e.g, as in the contexts of Ref. 19, 15).

In summary, this means that the MHM-WS scheme can be interpreted as a discrete

version of a characterization of the exact solution in terms of Neumann bound-

ary value problems locally de�ned on each (general polygonal) subregion Ωi of

a (non-conformal) macro-partition T = {Ωi}, which are assembled by using an

inter-element connection. The stress tensor is supposed to have normal components

strongly constrained to a given coarse �nite dimensional trace space Λ̃sk de�ned

over the subregion boundaries (mesh skeleton), making the referred inter-element

connection. This property implies that, in fact, the stress tensor is globally H(div)-

conforming.

The global system to be solved is expressed only in terms of the newly intro-

duced normal trace variable in Λ̃sk, and of a coarse displacement approximation,

piecewise-de�ned by rigid-body modes in each subregion. Small details are resolved

by the local problems in the subregions, using stable MFEM-WS for composite �nite

element spaces {S̃ (Ωi), Ũ (Ωi), Q̃(Ωi)}, based on internal conformal shape-regular

partitions T Ωi . Approximation spaces inside the subdomains can be enriched, with

respect to the boundary trace resolution, using di�erent strategies: re�ning the in-

ternal mesh, increasing the polynomial degree, or both. Element geometry and mesh

resolutions in the subdomains may vary between them. For neighboring subdomains

Ωi and Ωj , T Ωi and T Ωj are allowed to be non-conformal over Γi,j = ∂Ωi ∩ ∂Ωj .

However, some mesh and space consistencies should be satis�ed (see Sec. 3.1).

As shall be proved in Sec. 5.2, an important analysis aspect of the MHM-WS

method is that it may be interpreted as an equivalent stable MFEM-WS formulation

of the model problem in the whole domain, based on H(div)-conforming tensor

spaces with normal traces constrained to Λ̃sk. The required stability conditions,
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namely, divergence-constraint and Stokes-coonstraint with respect to the potential

and rotation local spaces, are verifyied. In fact, we extend the methodology proposed

in Ref. 14 to construct new stable Stokes-compatible pairs: the pair used for stability

analysis at the coarser one-scale space setting (with mesh-width and polynomial

degree determined by Λ̃sk) is incremented with extra re�ned composite bubble terms

for the velocity in order to restore stability when using enlarged pressure spaces

Q̃(Ωi), in the spirit of the methodology suggested in Ref. 6. Classical tools applied

to this equivalent MFEM-WS framework also guides the error analysis of the MHM-

WS solutions. We prove optimal and high-order convergence in the natural norms.

Stress and rotation variables are approximated with the same accuracy order as for

the trace variable. Notably, superconvergence in the L2-norm for the divergence of

the stress and enhanced displacement may be reached.

The original MHM method for elasticity problems, denoted here by MHM-H1,

was proposed in Ref. 19. It is based on a primal hybrid formulation, using H1-

conforming instead of mixed local solvers. Another di�erence between these two

MHMmethods occurs in the way the Neumann boundary conditions are imposed by

their local solvers. For the MHM-WS scheme the tensor normal traces are strongly

imposed at the subdomain boundaries, whilst in the primal formulation they are

weakly imposed. Furthermore, the attractive properties of momentum conservation

at the micro-mesh scale, and locking-free behavior for nearly incompressible ma-

terials, typical for conforming mixed methods, are valid for MHM-WS. To be self

contained, some aspects of the MHM-H1 method are described in Appendix A.

Recently, in Ref. 22, it was pointed out that the resolution of multiscale elas-

ticity problems by mixed stress-displacement formulations, based on domain de-

composition, had not been considered before. They proposed and analyzed a multi-

scale mixed formulation using the mortar domain decomposition with non-matching

grids, and weakly imposed stress symmetry. The mortar spaces use displacement

Lagrange multipliers to (weakly) enforce interface continuity of the normal stress.

Following a similar �divide-and-conquer� principle, but designed in the di�erent

MHM context, the MHM-WS method also helps �lling this gap.

Some other multiscale �nite element methods have been applied to elasticity

problems. The Multiscale Finite Element Method (MsFEM) was applied in Ref. 7,

8. Each level in the MsFEM has its mesh and interpolation spaces that, in gen-

eral, �t inside the interpolations of lower levels. The MsFEMs have no local prob-

lems associated with the source function neither a rigorous mathematical structure

to guide the choice of local boundaries. The Localized Orthogonal Decomposition

(LOD) method of Ref. 24 is a multiscale method that requires low regularity on

the variational problem. To avoid the use of additional regularity, their multiscale

basis functions must be computed on a set (patch) of macro elements. A generalized

�nite element method (GFEMs) using LOD is presented in Ref. 21.
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1.1. Model problem and preliminary notation

Let Ω ⊂ R2 be a polygonal domain occupied by a linearly elastic body. The equa-

tions of static elasticity in Hellinger-Reissner form determine the stress σ and the

displacement u �elds satisfying the following equilibrium and constitutive equations

−∇ · σ = f in Ω, (1.1)

σ = A ε(u) in Ω, (1.2)

u = g on ∂Ω, (1.3)

where ε(u) =
∇u+∇uT

2
is the in�nitesimal strain tensor, f is the body force, and

g is a given Dirichlet boundary data. The material properties are described by the

sti�ness tensor A = A(x, y), which is a self-adjoin, bounded, and uniformly positive

de�nite linear operator acting on symmetric tensors S. We assume that A can be

extended to general second-order tensors M = R2×2 with the same properties. In

particular, in the case of homogeneous and isotropic body, A ε = 2µε + λ tr(ε)I,

λ and µ being the Lamé parameters, and I the 2 × 2 identity matrix. The vari-

ables shall be assumed to be normalized, such that all considered formulations are

dimensionless.

Throughout this paper, for a region D ⊆ Ω, nD denotes the external unitary

normal to ∂D. The scalar Hilbert spaces L2(D,R) and Hs(D,R) have the usual

meaning and norms. Spaces L2(D,E) and Hs(D,E), taking values in �nite dimen-

sional spaces E, shall be considered for E = R2, E = M, or for symmetric tensors

E = S ⊂ M. These spaces inherit the corresponding norms associated to L2(D,R)

and Hs(D,R). The space H(div, D,R2) is composed by square-integrable vector

functions, for which the divergence is also square integrable. Similarly, we shall con-

sider tensor functions in H(div, D,E), taking values in E = M or E = S. We recall

that for tensor �elds, the divergence is the vector �eld obtained by taking the diver-

gence of each row. The notation (·, ·)D is used for the L2-inner products, and 〈·, ·〉∂D
refers to the duality pairing between H1/2(∂D,R2) =

{
µ = u|∂D, u ∈ H1(D,R2)

}
and H−1/2(∂D,R2) =

{
µ = τ nD|∂D, τ ∈ H(div, D,M)

}
. The subscript D is

dropped if D = Ω.

1.2. Mixed formulation with weakly imposed stress symmetry

Problem (1.1) - (1.3) can be equivalently expressed, without a priori assuming stress

symmetry, in the following form

−∇ · σ = f in Ω,

A−1σ = ∇u− γ(u) in Ω,

σ − σT = 0 in Ω,

u = g, on ∂Ω.
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Note that the original constitutive equation σ = A ε(u) has been modi�ed by us-

ing the relation ε(u) = ∇u−γ(u), where γ(u) =
1

2

[
0 ∂2u1 − ∂1u2

∂1u2 − ∂2u1 0

]
. The

new added equation σ−σT = 0 enforces the desired stress symmetry. In addition to

the displacement u, and the stress tensor σ, without symmetry requirement, a new

variable q =
1

2
asym∇u is introduced, where asym τ = τ12 − τ21 is the asymmetry

measure de�ned for tensors τ =

[
τ11 τ12

τ21 τ22

]
.

Under this point of view, given g ∈ H
1
2 (∂Ω,R2), and f ∈ L2(Ω,R2), the

mixed formulation with weakly imposed stress symmetry searches for (σ, u, q) ∈
H(div,Ω,M)× L2(Ω,R2)× L2(Ω,R), satisfying

(A−1 σ, τ) + (u,∇ · τ) + (q, asym τ) = 〈τ nΩ, g〉, ∀τ ∈ H(div,Ω,M), (1.4)

−(∇ · σ, v) = (f, v), ∀v ∈ L2(Ω,R2), (1.5)

(asymσ,w) = 0, ∀w ∈ L2(Ω,R). (1.6)

1.3. MFEM-WS

There exist in the literature a variety of �nite dimensional approximation spaces

to be used in discrete versions of the stress formulation (1.4) - (1.6), here denoted

by Mixed Finite Element Method with Weak Symmetry (MFEM-WS). Classical

stable MFEM-WS stress formulations use FE space con�gurations Ẽ = S̃ × Ũ ×
Q̃ ⊂ H(div,Ω,M) × L2(Ω,R2) × L2(Ω,R). They are de�ned in terms of �nite

dimensional local FE spaces S(K,M), U(K,R2) and Q(K,R) for the elements K ∈
T of usual triangular or quadrilateral geometry, where T is a regular partition of Ω.

The functions τ ∈ S̃ must have continuous normal traces over element interfaces,

but for v ∈ Ũ and ϕ ∈ Q̃ no interface continuity is required.

The applications of higher order schemes can lead to complications for the en-

forcement of the H(div)-conformity, and of the stability divergence-constraint

∇ · S̃ ⊂ Ũ . (1.7)

One natural way to cope with that is to form S̃ and Ũ using Poisson-compatible

pair of spaces Ṽ ⊂ H(div,Ω,R2) and P̃ ⊂ L2(Ω,R). Having stress and displace-

ment approximation spaces verifying the above requirements, the �nite dimensional

rotation approximation space Q̃ may be taken from a Stokes-compatible pair of

spaces {W̃ , Q̃} such that the following stability Stokes-constraint is satis�ed:

∇× W̃ ⊂ S̃ (1.8)

Based on the FE space con�guration Ẽ , the MFEM-WS scheme searches for

(σ̃, ũ, q̃) ∈ S̃ × Ũ × Q̃ such that
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(A−1 σ̃, τ) + (ũ,∇ · τ) + (q̃, asym τ) = 〈τ nΩ, g〉, ∀τ ∈ S̃ , (1.9)

−(∇ · σ̃, v) = (f, v), ∀v ∈ Ũ , (1.10)

(asym σ̃, w) = 0, ∀ϕ ∈ Q̃. (1.11)

Under the aforementioned stability conditions (divergence-constraint (1.7) and

Stokes-constraint (1.8)), the resulting MFEM-WS stress formulation is well-posed,

as originally proposed in Ref. 17 (see also Ref. 4, and 1). Some aspects of the

required Poisson-consistent and Stokes-consistent FE pairs are included in Appendix

B. Based on them, suitable mixed elasticity elements with reduced stress symmetry

are easier to analyze and implement.

1.4. Outline of the paper

The new characterization of the exact solution by a local-global hybrid variational

formulation is presented in Sec. 2. Next, Sec. 3 is dedicated to �nite element dis-

cretizations for this formulation, namely, the new MHM-WS method. In Section

4 the MHM-WS method is proved to be equivalent to a MFEM-WS formulation

using FE spaces with constrained tensor traces. Examples of three families of two-

scale FE space con�gurations for the MHM-WS are included in Sec. 5. Stability for

them is proved in Sec. 6 using the equivalence with two-scale MFEM-WS schemes.

Error analysis of the resulting MHM-WS solutions is developed in Sec. 7, also via

the two-scale MFEM-WS with constrained tensor traces. The paper concludes with

some computational simulations in Sec. 8, which con�rm the predicted theoretical

convergence results of Sec. 7, and includes comparative results with the ones given

by the MHM-H1 version. We also show the application of the MHM-WS method

for a heterogeneous media with high-contrast layers. Concluding remarks, empha-

sizing the main aspects of the obtained results, are listed in Sec. 9, followed by two

appendix sections containing some auxiliary results.

2. Hybridization and characterization of the exact solution

The main focus and results of the current research are on a new equivalent hy-

brid version at the continuous level of the formulation (1.4) - (1.6), and of its

discretization. It is a modi�cation of the MHM-H1 formulation by replacing the

local downscaling problems (A.4) - (A.5) by stress mixed versions, with weakly im-

posed stress symmetry, and using the corresponding solutions to adapt the upscaling

system. Namely, the hybridization requires a partition T = {Ωi} of the computa-

tional domain, and associated to T a mesh skeleton Γ is formed by the union of the

boundaries ∂Ωi. The following trace space plays an important role

Λ := Λ(Γ,R2) = {µ;µ = τ n|∂Ωi , τ ∈ H(div,Ω,M),Ωi ∈ T },
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where n is a given vector �eld de�ned over Γ and normal to ∂Ωi, such that n|Ωi =

δi n
Ωi , where δi(e) = n · nΩi |e for all edges e ⊂ ∂Ωi. Notice that δi(e) = −δj(e) for

interface edges e ⊂ Ωi ∩ Ωj .

Similarly to the local-global hybrid primal formulation initially proposed in

Ref. 19, the displacement variable u is decomposed in the form u = urm + u⊥,

where urm is searched in the �nite dimensional space Urm, de�ned over T by piece-

wise rigid-body modes

Urm = {u ∈ L2(Ω,R2); ui = u|Ωi ∈ Urm(Ωi), Ωi ∈ T },

where each ui veri�es ε(ui) = 0, i. e., ui = (αi, βi) + ρi(−y, x) with αi, βi, ρi ∈ R.
The term u⊥ = u − urm is a function in U ⊥rm ⊂ L2(Ω,R2), the L2-orthogonal

complement of Urm in L2(Ω,R2). Consider also

S̊ = {τ ∈ H(div,Ω,M); τ n|∂Ωi = 0, Ωi ∈ T }.

Based on the above functional framework, consider the local (downscaling) and

global (upscaling) stages:

• Downscaling stage: For λ ∈ Λ, λ 6= 0, and f ∈ L2(Ω,R2), let operators

{Tσ(λ), T̂σ(f)} ∈ H(div,Ω,M) × H(div,Ω,M), {Tu(λ), T̂u(f)} ∈ U ⊥rm × U ⊥rm,

and {T q(λ), T̂ q(f)} ∈ L2(Ω,R)×L2(Ω,R) be de�ned by the local mixed formula-

tions with weakly imposed stress symmetry and Neumann boundary conditions:

(∇ · Tσ(λ), v)Ωi = 0, ∀v ∈ U ⊥rm, (2.1)

(A−1 Tσ(λ), τ)Ωi + (Tu(λ),∇ · τ)Ωi + (T q(λ), asym τ)Ωi = 0, ∀τ ∈ S̊ , (2.2)

(asymTσ(λ), ϕ)Ωi = 0, ∀ϕ ∈ L2(Ω,R), (2.3)

Tσ(λ) n|∂Ωi = λ|∂Ωi . (2.4)

−(∇ · T̂σ(f), v)Ωi = (f, v)Ωi , ∀v ∈ U ⊥rm, (2.5)

(A−1 T̂σ(f), τ)Ωi + (T̂u(f),∇ · τ)Ωi + (T̂ q(f), asym τ)Ωi = 0, ∀τ ∈ S̊ , (2.6)

(asym T̂σ(f), ϕ)Ωi = 0, ∀ϕ ∈ L2(Ω,R), (2.7)

T̂σ(f) n|∂Ωi = 0. (2.8)

• Upscaling stage: Given f ∈ L2(Ω,R2), and g ∈ H 1
2 (∂Ω,R2), �nd urm ∈ Urm and

λ ∈ Λ that solve

(A−1Tσ(λ), Tσ(µ)) + (urm,∇ · T
σ(µ)) =− (f, Tu(µ)) + 〈µ, g〉, ∀µ ∈ Λ, (2.9)

−(∇ · Tσ(λ), v) =(f, v), ∀v ∈ Urm. (2.10)

Neumann boundary value problems of linear elasticity are singular, with ker-

nel formed by the rigid motions of the body. This ambiguity can be removed by

enforcing that the solution is free of rigid-body modes, and by requiring balanced
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force and Newmann boundary terms (see Ref. 23 for a discussion of this topic in

the context of algebraic multigrid).

De�ne Rrm : Λ→ Urm by (Rrm(λ), v)Ωi = 〈δi λ, v〉∂Ωi ,∀v ∈ Urm. The variables

Tσ(λ) ∈ H(div,Ω,M), Tu(λ) ∈ U ⊥rm, and T
q(λ) ∈ L2(Ω,R), provided by the local

mixed solvers (2.1) - (2.4), can be interpreted as solution, in the distributional sense,

of the boundary value problems

−∇ · σ = Rrm(λ) in Ωi,

A−1 σ = ∇u− γ(u) in Ωi,

σ − σT = 0 in Ωi,

σ n|∂Ωi = λ,

for u free of rigid-body modes, with balanced force Rrm(λ) and Newmann bound-

ary condition λ. Consequently, the solution is unique. Analogously, T̂σ(f) ∈
H(div,Ω,M), T̂u(f) ∈ U ⊥rm, and T̂

q(f) ∈ L2(Ω,R), correspond to the unique weak

solution of the problem

−∇ · σ = f −Πrm(f), in Ωi,

A−1σ = ∇u− γ(u) in Ωi,

σ − σT = 0 in Ωi,

σ n|∂Ωi = 0,

where Πrm(f) is the L2-orthogonal projection of f ∈ L2(Ω,R2) onto Urm.

Remarks

(1) If (urm, λ) solve the upscaling equations (2.9)-(2.10), then −∇ · Tσ(λ) =

Rrm(λ) = Πrm(f), for (2.1) and (2.10).

(2) Rrm is a surjective operator. In fact, given v∗ ∈ Urm, let λ
∗|∂Ωi = σ∗ n|∂Ωi ∈

Λ, where σ∗ ∈ H1(Ω,S) satisfy ∇ · σ∗ = v∗. Thereby, ||v∗||2L2(Ω,R2) =∑
Ωi

(v∗, v∗)Ωi =
∑
Ωi

〈σ∗ nΩi , v∗〉∂Ωi =
∑
Ωi

〈δi λ∗, v∗〉∂Ωi =
∑
Ωi

〈Rrm(λ∗), v∗〉∂Ωi .

Then, the adjoint application of Rrm is injective with closed range, which im-

plies the result. The surjectivity of Rrm is key to prove the well-posedeness of

(2.9)-(2.10), as shall be addressed next.

Theorem 2.1. The global upscaling system (2.9) - (2.10) has a unique solution

(urm, λ) ∈ Urm × Λ. Moreover, (σ, u, q) is the recovered solution from (urm, λ) by

σ = Tσ(λ)+ T̂σ(f), u = urm+Tu(λ)+ T̂u(f), q =
1

2
asym∇urm+T q(λ)+ T̂ q(f),

if and only (σ, u, q) solves the weak formulation (1.4) - (1.6).
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Proof. To verify the uniqueness of the upscaling system, take zero data f = 0 and

g = 0. Then system (2.9) - (2.10) becomes

(A−1Tσ(λ), Tσ(µ)) + (urm,∇ · T
σ(µ)) = 0, ∀µ ∈ Λ,

(∇ · Tσ(λ), v) = 0, ∀v ∈ Urm.

Taking test functions µ = λ and v = ∇ · Tσ(λ) ∈ Urm, these equations turn into

(A−1Tσ(λ), Tσ(λ)) + (urm,∇ · T
σ(λ)) = 0,

(∇ · Tσ(λ),∇ · Tσ(λ)) = 0,

implying that ∇·Tσ(λ) = 0, from which (A−1Tσ(λ), Tσ(λ)) = 0 holds. The positive

de�niteness of the tensor A implies that Tσ(λ) = 0 (meaning that λ = 0, Tu(λ) = 0,

and T q(λ) = 0 as well). Finally, urm = 0 follows from the remaining relation

(urm,∇ · T
σ(µ)) = 0, ∀µ ∈ Λ, recalling that ∇ · Tσ(µ) = − Rrm(µ), and that

Rrm(µ) is a sujective operator over Urm.

Suppose (urm, λ) ∈ Urm×Λ solves (2.9) - (2.10), and let (σ, u, q) be recovered by

σ = Tσ(λ)+ T̂σ(f), u = urm+Tu(λ)+ T̂u(f), q =
1

2
asym∇urm+T q(λ)+ T̂ q(f).

On the other side, let (s, w, r) be the solution of (1.4) - (1.6), de�ne ν = s n|Γ and

decompose w = wrm + w⊥.

By testing (1.5) with v ∈ U ⊥rm, and (1.4) with τ ∈ S̊ , both with support in Ωi,

and using the fact that (wrm,∇ · τ)Ωi = −1

2
(asym∇wrm, asym τ)Ωi , we obtain

(A−1 s, τ)Ωi + (w⊥,∇ · τ)Ωi + (r − 1

2
asym∇wrm, asym τ)Ωi = 0, (2.11)

−(∇ · s, v)Ωi = (f, v). (2.12)

For arbitrary µ ∈ Λ, take τ = Tσ(µ) to test (1.4). Noticing that (r, asymTσ(µ)) = 0

(for (2.3)), and (w⊥,∇ · Tσ(µ)) = 0 (for (2.1)), then Eq. (1.4) becomes

(A−1 s, Tσ(µ)) + (wrm,∇ · T
σ(µ)) = 〈µ, g〉, (2.13)

and, from Eq. (1.5), we obtain

−(∇ · s, v) = (f, v), ∀v ∈ Urm. (2.14)

By confronting (2.11)-(2.14) and (1.4) with the set of equations (2.1)-(2.8), the

following identities hold for the di�erences s− σ, w⊥ − u⊥, and r − q:

(∇ · [s− σ], v)Ωi = 0, ∀v ∈ U ⊥rm,

(A−1 [s− σ], τ)Ωi + (w⊥ − u⊥,∇ · τ)Ωi + (r − q, asym τ)Ωi = 0, ∀τ ∈ S̊ ,

(asym[s− σ], ϕ)Ωi = 0, ∀ϕ ∈ L2(Ω,R),

(s− σ) n|∂Ωi = ν − λ.

These equations and (2.16) imply that s − σ = Tσ(ν − λ) having vanishing diver-

gence, w⊥ − u⊥ = Tu(ν − λ), and r − q = T q(ν − λ). Furthermore, since Eq. (2.5),
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(2.2), and (2.7) imply that

(f, Tu(µ))Ωi = −(∇ · T̂σ(f), Tu(µ))Ωi

= (A−1 Tσ(µ), T̂σ(f))Ωi + (T q(µ), asym T̂σ(f))Ωi

= (A−1 Tσ(µ), T̂σ(f))Ωi = (Tσ(µ), A−1T̂σ(f))Ωi ,

and by recalling that (Tσ(f), v) = 0, ∀v ∈ Urm, we conclude from (2.9) - (2.10) and

(2.13) - (2.13) that

(A−1 [s− σ], Tσ(µ)) + (wrm − urm,∇ · T
σ(µ)) = 0, ∀µ ∈ Λ, (2.15)

−(∇ · [s− σ], v) = 0, ∀v ∈ Urm. (2.16)

By setting µ = ν − λ and v = wrm − urm in (2.15) - (2.16), and using the positive

de�niteness property of A−1, we conclude that s = σ (i.e., (ν = λ). Thus w⊥ = u⊥

and r = q as well. Finally, Eq. (2.15) becomes (wrm−urm,∇· T
σ(µ)) = 0, ∀µ ∈ Λ,

implying that wrm = urm, from Remark (2). By uniqueness of the solutions in both

contexts, the equivalence property holds, and then the existence of a solution for

(2.9) - (2.10) follows from the existence of a solution for (1.4) - (1.6).

3. The MHM-WS Method

This section is dedicated to discrete MHM-WS versions for the local-global stress

formulation (2.1) - (2.10) proposed and analyzed in Sec. 2. Firstly, let us present

the assumptions of the partitions and on the FE approximations. Notably, the �rst-

level mesh T is general in the sense that non-convex polygonal elements are accepted

under mild condition, and can form a non-conformal decomposition of Ω.

3.1. Setting the main assumptions

We assue that a family of shape-regular conformal local partitions T Ωi = {K} can
be de�ned in each subdomain Ωi ∈ T . The meshes T Ωi and T Ωj , for neighboring

subdomains Ωi and Ωj , may be non-conformal over ∂Ωi ∩ ∂Ωj . The examples dis-

cussed here are for a�ne triangles or quadrilateral elements K ∈ T Ωi (but general

frameworks with non-a�ne elements could be admitted as well, as in Ref. 1, 14,

27). For each edge e ⊂ Γ there is a partition T e, forming a partition T Γ of the

mesh skeleton. The geometry and mesh resolutions inside the subdomains may vary

between them.

Hypotheses for the internal FE space con�gurations: Concerning the FE spaces

based on the local partitions T Ωi , the basic requirements are:

(i) Finite dimensional composite local spaces S̃ (Ωi) ⊂ H(div,Ωi,M), Ũ (Ωi) ⊂
L2(Ωi,R2), and Q̃(Ωi) ⊂ L2(Ωi,R) should be constructed by piecewise poly-

nomials based on T Ωi . The representations S̃ (Ωi) = S̃ ∂(Ωi)⊕ ˚̃S (Ωi) hold in
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terms of functions of interior type
˚̃S (Ωi), with vanishing normal traces over

∂Ωi, and functions associated to the subdomain edges S̃ ∂(Ωi).

(ii) The local FE space con�gurations E(Ωi) = S̃ (Ωi) × Ũ (Ωi) × Q̃(Ωi) should

be stable for the MFEM-WS formulation for elasticity problems de�ned in Ωi.

For instance, the stability constraints (1.7) and (1.8) are supposed to be valid

locally.

(iii) Uniformly bounded interpolants πΩi : H1(Ωi,M) → S̃ (Ωi) can be de�ned

verifying the divergence-commuting property, i. e.,(
∇ · (τ − πΩiτ), v

)
Ωi

= 0, ∀v ∈ Ũ (Ωi). (3.1)

(iv) Moreover, it is assumed that Urm(Ωi) ⊂ ∇ · S̃ (Ωi) ⊂ Ũ (Ωi), and that

P0(Ωi,R) ⊂ Q̃(Ωi).

Hypotheses for the the normal traces: Assume there is a �nite dimensional subspace

Λ̃sk ⊂ Λ verifying the following properties:

• Λ̃sk ⊂ Λ is piecewise de�ned by polynomials based on T Γ, with degree ksk ≥ 1.

• Λ̃sk should verify

Λ̃sk ⊂ Λ̃ =
{
µ; µ = τ n|∂Ωi , ∀τ ∈ S̃ (Ωi), Ωi ∈ T

}
. (3.2)

This trace space embedding property is valid under the following circumstances.

(1) There is a coarse conformal shape-regular partition Tsk = {K̄} of Ω, formed by

the union of coarse sub-meshes T Ωi
sk satisfying:

(a) T Γ is the partition induced over Γ by Tsk.
(b) T Ωi is obtained by re�nement of the subdomain partition T Ωi

sk .

(2) The polynomial degree ksk used in Λ̃sk should not exceed the one of Λ̃.

Notice that the interpolants πΩi verifying the divergence-commuting property

(3.1) can be obtained component-wise directly from the interpolants of the asso-

ciated Poisson-compatible pair of spaces (see B.1): for τ =
[
ψ1 ψ2

]
∈ S̃ (Ωi) ,

let πΩiτ =
[
πD,Ωiψ1 π

D,Ωiψ2

]
. Accordingly, the representation πΩi

sk τ = πΩi,∂τ +

π̊Ωi [τ − πΩi,∂τ ] holds, where πΩi,∂τ ∈ S̃ ∂(Ωi), and π̊
Ωi [τ − πΩi,∂

sk τ ] ∈ ˚̃S (Ωi).

Some aspects of the partitions and FE space con�gurations for the MHM-WS

method are illustrated in Fig. 1. A macro-partition T and a skeleton mesh T Γ are

shown in the top-left and top-center sides. The local meshes of the top-right side do

not verify the mesh hierarchy. In fact, there is one element induced by the local mesh

T Ω1 over the edge e = Γ1,2 which is not totally included in one of the elements of T e.
To form a proper mesh hierarchy, �rstly consider a conformal partition Tsk inducing
T Γ over Γ, as shown in Fig. 1 (bottom-left side). Then, local re�ned partitions T Ωi

are constructed by subdivisions of the partitions T Ωi
sk = Tsk|Ωi , as shown in the
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bottom-right side of Fig. 1. The kind of polynomial spaces verifying trace space

hierarchy that can be used for the MHM-WS method is also illustrated.

Fig. 1: Diagram illustration of some aspects of MHM-WS partitions and FE space con-
�gurations: a macro-partition T (top-left side), a skeleton mesh T Γ (top-center side),

and example of not allowed re�ned partitions T Ωi (top-right side); conformal partition

Tsk inducing T Γ over Γ (bottom-left side); allowed re�ned partitions T Ωi , and FE space
con�gurations verifying the trace space hierarchy (bottom-right side).

3.2. The method

Let FE spaces S̃ ⊂ H(div,Ω,M), Ũ ⊂ L2(Ω,R2), and Q̃ ⊂ L2(Ω,R) be con-

structed by the assembly of the local FE spaces S̃ (Ωi), Ũ (Ωi), and Q̃(Ωi). Consider

also Ũ ⊥rm, the L
2-orthogonal complement of Urm in Ũ , and de�ne

˚̃S =
{
τ ∈ S̃ ; τ · n|∂Ωi = 0, Ωi ∈ T

}
. (3.3)

Following the principles of the local-global setting for the stress mixed method for

elasticity with weakly imposed symmetry, and based on the aforementioned �nite

dimensional FE spaces, consider the corresponding discrete downscaling-upscaling

stages, which correspond to the MHM-WS method.
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• Downscaling stage: For λ̃ ∈ Λ̃sk, λ̃ 6= 0, and f ∈ L2(Ω,R2), approximations

T̃σ(λ̃),
˜̂
Tσ(f) ∈ S̃ , T̃u(λ̃),

˜̂
Tu(f) ∈ Ũ ⊥rm, and T̃

q(λ),
˜̂
T q(f) ∈ Q̃ are determined

in each subregion Ωi such that

(∇ · T̃σ(λ̃), v)Ωi = 0, ∀v ∈ Ũ ⊥rm, (3.4)

(A−1 T̃σ(λ̃), τ)Ωi + (T̃u(λ̃),∇ · τ)Ωi + (T̃ q(λ̃), asym τ)Ωi = 0, ∀τ ∈ ˚̃S , (3.5)

(asym T̃σ(λ̃), ϕ)Ωi = 0, ∀ϕ ∈ Q̃, (3.6)

T̃σ(λ̃) n|∂Ωi = λ̃|∂Ωi . (3.7)

−(∇ · ˜̂
Tσ(f), v)Ωi = (f, v)Ωi , ∀v ∈ Ũ ⊥rm, (3.8)

(A−1 ˜̂
Tσ(f), τ)Ωi + (

˜̂
Tu(f),∇ · τ)Ωi + (

˜̂
T q(f), asym τ)Ωi = 0, ∀τ ∈ ˚̃S , (3.9)

(asym
˜̂
Tσ(f), ϕ)Ωi = 0, ∀ϕ ∈ Q̃, (3.10)

˜̂
Tσ(f) n|∂Ωi = 0. (3.11)

• Upscaling stage: ũrm ∈ Urm and λ̃ ∈ Λ̃sk are determined by the global system

(A−1T̃σ(λ̃), T̃σ(µ)) + (ũrm,∇ · T̃
σ(µ)) = −(f, T̃u(µ)) + 〈µ, g〉,∀µ ∈ Λ̃sk, (3.12)

−(∇ · T̃σ(λ̃), v) = (f, v), ∀v ∈ Urm. (3.13)

Remarks

(i) By construction, σ̃ = T̃σ(λ̃) +
˜̂
Tσ(f) ∈ S̃ has normal trace over Γ included in

Λ̃sk. In other words, σ̃ ∈ S̃sk, where

S̃sk = {τ ∈ S̃ ; τ · n|Γ ∈ Λ̃sk}.

(ii) The strong interface normal trace constraint imposed in the MHM-WS method

is a process that can be accomplished in a similar manner of conforming con-

strained functions commonly used in hp-adaptive strategies. Neumann bound-

ary conditions in the MHM-H1 method are imposed in a weak multiplier sense.

(iii) The approximate displacement ũ given by the MHM-WS method decomposes

into the form ũ = ũrm + ũ⊥, as in the MHM-H1 version. However, unlike

the approximation given by the MHM-H1 formulation, for ũ⊥ no continuity

constraint is required inside Ωi, over element interfaces of T Ωi . This aspect,

combined with the global H(div)-conformity of the tensor σ̃, is crucial in the

proof of the local conservation property veri�ed by the MHM-WS method at

the micro scale level, over the partitions T Ωi , which is essential for ensuring a

locally equilibrated approximation. Furthermore, for f = 0, the resulting tensor

σ̃ is strongly divergence-free, due to the divergence-compatibility condition (1.7)

valid for tensor and displacement local spaces S̃ (Ωi), and Ũ (Ωi).



14

The next result is paramount for the well-posedeness of (3.12) - (3.13).

Lemma 3.1. The mapping R̃rm : Λ̃sk → Urm, de�ned by R̃rm = Rrm|Λ̃sk , is
surjective.

Proof. Recall that, for µ ∈ Λ̃sk, (R̃rmµ, v)Ωi = 〈δiµ, v〉∂Ωi , ∀v ∈ Urm. As in the

continuous setting analysed in Sec. 2, given v∗ ∈ Urm, let σ
∗ ∈ H1(Ω,S) satisfying

∇ · σ∗ = v∗. Then, de�ne λ̃
∗

= σ̃∗ n|∂Ωi , Ωi ∈ T , where σ̃∗ = Π
σ

1,sk σ
∗ ∈ S̃sk, and

the interpolant Π
σ

1,sk, de�ned for τ ∈ H
1(Ω,M), is such that

(
∇ · (τ −Π

σ

1,skτ), v
)

=

0, ∀v ∈ Ũ . The existence of such mapping is postponed to Theorem 4.2. Thus,

λ̃
∗
∈ Λ̃sk, and the assumption Urm ⊂ Ũ implies that ∇ · σ̃∗ = v∗. Consequently,

(ṽ∗, v)Ωi = 〈σ̃∗ nΩi , v〉∂Ωi = 〈δi λ̃
∗
, v〉∂Ωi , meaning that R̃rm(λ̃

∗
) = v∗, and the

result follows.

Theorem 3.1. Solution uniqueness holds for the MHM-WS de�ned by the local

solvers (3.4) - (3.7) and (3.8) - (3.11), and by the global system (3.12) - (3.13).

Proof. Due to the stability assumptions on the FE spaces S̃ (Ωi)×Ũ (Ωi)×Q̃(Ωi),

the local upscaling solvers (3.4) - (3.7) are well-posed MFEM-WS versions in

Ωi of the local mixed formulations (2.1) - (2.4). Thus, uniqueness holds for

(T̃σ(λ̃), T̃u(λ), T̃ q(λ)) ∈ S̃sk × Ũ × Q̃. Analogously, (
˜̂
Tσ(f),

˜̂
Tu(f),

˜̂
T q(f)) ∈

S̃sk × Ũ × Q̃ are locally de�ned by unique solutions of well-posed MFEM-WS

formulations (3.8) - (3.11) in the subdomains Ωi.

Uniqueness for the solution of the upscaling stage (3.12) - (3.13) follows by

similar proof steps, as observed for the formulations in the continuous level. Take

zero data f = 0 and g = 0. Thus, the well-posedeness of the local problem (3.8) -

(3.11) implies that
˜̂
Tu(f) = 0,

˜̂
Tσ(f) = 0 (and

˜̂
T q(f) = 0). The upscaling system

(3.12) - (3.13) becomes

(A−1T̃σ(λ̃), T̃σ(µ)) + (ũrm,∇ · T̃
σ(µ)) = 0, ∀µ ∈ Λ̃sk,

(∇ · T̃σ(λ̃), v) = 0, ∀v ∈ Urm.

Testing with µ = λ̃ and v = ∇ · T̃σ(λ̃) ∈ Urm (for (3.4)), these equations turn into

(A−1 T̃σ(λ̃), T̃σ(λ̃)) + (ũrm,∇ · T̃
σ(λ̃)) = 0,

(∇ · T̃σ(λ),∇ · T̃σ(λ̃)) = 0,

implying that ∇·T̃σ(λ̃) = 0, from which (A−1T̃σ(λ̃), T̃σ(λ̃)) = 0 holds. The positive

de�niteness of the tensor A implies that T̃σ(λ̃) = 0, meaning that λ̃ = 0 (and

thus T̃u(λ̃) = 0 and T̃ q(λ̃) = 0 as well). Consequently, the remaining relation

is (ũrm,∇ · T̃
σ(µ)) = 0, ∀µ ∈ Λ̃sk. Noting that −∇ · T̃σ(µ) = R̃rm(µ) in Ωi, for

µ ∈ Λ̃sk, and since from Lemma 3.1 there exists µ∗ ∈ Λ̃sk such that R̃rm(µ∗) = ũrm,

we conclude that ũrm = 0, and the result follows.
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4. The MHM-WS method as a MFEM-WS

The purpose of this section is to establish the relation between this MFEM-WS

solution with the approximate variables given by the MFEM-WS scheme based on

the same FE space setting Ẽsk.

Theorem 4.1. Assume the FE space con�guration Ẽsk = S̃sk × Ũ × Q̃ verify

the divergence and Stokes compatibility constraints. Then the well-posed MFEM-

WS based on Ẽsk is equivalent to the MHM-WS method using the same FE space

con�guration.

Proof. Let us follow similar steps as in the proof of Theorem 2.1. Firstly, suppose

(λ̃, ũrm) solves the upscaling system of the MHM-WS method, and consider the

recovered solution of the downscaling stage σ̃ = T̃σ(λ̃)+
˜̂
Tσ(f), ũ⊥ = T̃u(λ̃)+

˜̂
Tu(f),

and q̃ =
1

2
asym ũrm + T̃ q(λ̃) +

˜̂
T q(f). After the combination of the systems (3.4) -

(3.7) and (3.8) - (3.11), we obtain the following set of equations in the subdomains:

−(∇ · σ̃, v)Ωi = (f, v)Ωi , ∀v ∈ Ũ ⊥rm.

(A−1 σ̃, τ)Ωi + (ũ⊥,∇ · τ)Ωi + (q̃ − 1

2
asym∇ũrm, asym τ)Ωi = 0, ∀τ ∈ ˚̃S ,

(asym σ̃, ϕ)Ωi = 0, ∀ϕ ∈ Q̃,

σ̃ n|∂Ωi = λ̃|∂Ωi .

On the other hand side, let (s̃, w̃, r̃) ∈ Ẽsk be the MFEM-WS solution, and set

ν̃ = s̃ n|Γ, and w̃ = w̃rm + w̃⊥. By confronting the above system of equations with

similar one valid for (s̃, w̃, r̃), we conclude that σ̃ − s̃ = T̃σ(λ̃ − ν̃), ũ⊥ − w̃⊥ =

T̃u(λ̃− ν̃), and q̃ − r̃ = T̃ q(λ̃− ν̃).

For arbitrary µ ∈ Λ̃sk, (3.8), (3.5), and (3.10) imply that (f, T̃u(µ))Ωi =

(T̃σ(µ), A−1 ˜̂
Tσ(f))Ωi . Using this relation and the properties µ|∂Ω = T̃σ(µ) nΩ (by

(3.11)), and (∇ · ˜̂
Tσ(f), v) = 0, ∀v ∈ Urm, Eq. (3.12) and (3.13) become

(A−1σ̃, T̃σ(µ)) + (ũrm,∇ · T̃
σ(µ)) = 〈µ, g〉, ∀µ ∈ Λ̃sk

−(∇ · σ̃, v) = (f, v), ∀v ∈ Urm.

Analogously, using in Eq. (1.9) the facts that (r̃, asymTσ(µ)) = 0, and (w̃⊥,∇ ·
Tσ(µ)) = 0, and recalling Eq. (1.10), we obtain

(A−1 s̃, Tσ(µ)) + (w̃rm,∇ · T
σ(µ)) = 〈µ, g〉, ∀µ ∈ Λ̃sk,

−(∇ · s̃, v) = (f, v), ∀v ∈ Urm.

Consequently,

(A−1[σ̃ − s̃], T̃σ(µ)) + (ũrm − w̃rm,∇ · T̃
σ(µ)) = 0, ∀µ ∈ Λ̃sk.

−(∇ · [σ̃ − s̃], v) = 0, ∀v ∈ Urm.
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By setting µ = λ̃−ν̃ and v = ũrm−w̃rm in the above relations, and since we already

know that σ̃− s̃ = T̃σ(λ̃− ν̃), the positive de�niteness property of A−1 implies that

σ̃ = s̃ (i.e., λ̃ = ν̃). Thus ũ⊥ = w⊥ and q̃ = r̃ as well. Finally, the remaining

equation (ũrm − w̃rm,∇ · T
σ(µ)) = 0, ∀µ ∈ Λ̃sk, and Lemma 3.1, concerning the

surjectivity over Urm of ∇ · T̃σ(µ) = −Rrm(µ), µ ∈ Λsk, imply that ũrm = w̃rm.

By uniqueness of MHM-WS and MFEM-WS solutions in Ẽsk, these methods are

equivalent.

As shall be used in further sections, the equivalence result of Theorem 4.1 is an

important tool for stability and error analyses of the MHM-WS method via some

known methodologies for the MFEM-WS, which require the construction appropri-

ate interpolants, as de�ned in Ref. 4. Then error estimates are bounded in terms

of the interpolation errors. The next theorem shows how these operators can be

de�ned for the particular cases of interest in the contex of the MHM-WS method.

Theorem 4.2. Assume the composite FE space con�guration Ẽsk = S̃sk × Ũ × Q̃

verify the divergence and Stokes compatibility stability constraints. Then, a bounded

interpolation operator Π
σ

sk : H1(Ω,M)→ S̃sk can be de�ned satisfying(
∇ · (τ −Π

σ

skτ), v
)

+
(

asym(τ −Π
σ

skτ), ϕ
)

= 0, ∀v ∈ Ũ , ∀ϕ ∈ Q̃,

||Π
σ
γτ ||H(div,Ω,M) ≤ C||τ ||H(div,Ω,M). (4.1)

Proof. The construction of Π
σ

skτ = Π
σ

1,skτ + Π
σ

2,skτ is done in two steps, as sug-

gested in Ref. 4. Firstly, for divergence consistent pairs S̃sk × Ũ , the mapping

Π
σ

1,sk : H1(Ω,M)→ S̃sk is constructed such that(
∇ · (τ −Π

σ

1,skτ), v
)

= 0, ∀v ∈ Ũ . (4.2)

It can be formed by the combination of local versions πΩi
sk : H1(Ωi,M)→ S̃sk(Ωi)

verifying (4.2) in Ωi. As for the one-scale FE settings, a direct sum decomposition

for the constrained tensor space S̃sk(Ωi) = S̃ ∂
sk(Ωi)⊕ ˚̃S (Ωi) also holds, playing a

crucial role in the de�nition of πΩi
sk . Precisely, in the spirit of the projection-based

interpolants πΩi hold by the one-level frameworks S̃ (Ωi), π
Ωi
sk τ can be factorized

in terms of edge and internal terms as πΩi
sk τ = πΩi,∂

sk τ + π̊Ωi [τ − πΩi,∂
sk τ ], πΩi,∂

sk τ ∈
S̃ ∂
sk(Ωi), and π̊

Ωi [τ −πΩi,∂
sk τ ] ∈ ˚̃S (Ωi), where the edge component is modifyied to

be constrained by Λ̃sk (instead of Λ̃ for the uncostrained cases),

〈πΩi,∂τ · n, µ〉∂Ωi = 〈τ · n, µ〉∂Ωi , ∀µ ∈ Λ̃sk.

The uniform boundness of πΩi
sk τ and the required divergence-commuting property

hold as for unconstrained one-scale spaces.

For the divergence-free correction Π
σ

2,sk : H1(Ω,M)→ S̃sk such that

(asym Π
σ

2,skτ , ϕ) = (asym (Π
σ

1,skτ − τ), ϕ), ∀ϕ ∈ Q̃, (4.3)
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consider the Stokes-compatible pair {W̃sk, Q̃}, which is assumed to exist so that

the stability constraint ∇× W̃sk ⊂ S̃sk is satisfyied. To construct Π
σ

2,skτ , let φ =

[φ1 φ2] ∈ W̃sk solving the Stokes problem such that −(∇ · φ, ϕ) = (asym(Π
σ

1,skτ −

τ), ϕ), ∀ϕ ∈ Q̃, and de�ne Π
σ

2,γτ = ∇ × φ =

[
∂2φ1 −∂1φ1

∂2φ2 −∂1φ2

]
∈ S̃sk. It can be

veri�ed that Π
σ

2,skτ is divergence free and

‖Π
σ

2,skτ‖H(div,Ω,M) = ‖Π
σ

2,γτ‖L2(Ω,M) ≤ C‖Π
σ

1,γτ − τ‖L2(Ω,M). (4.4)

Since asym Π
σ

2,skτ = −∂1φ1 − ∂2φ2 = −∇ · φ, the required property (4.3) holds.

5. Examples of FE Spaces for the MHM-WS

We know from Theorem 4.1 that, under divergence and Stokes compatibility con-

straints of a FE space setting Ẽsk = S̃sk × Ũ × Q̃, the MHM-WS method and the

MFEM-WS formulation based on it are equivalent. Some stable two-scale examples

shall be derived and analyzed in this section. Their constructions start from basic

stable one-scale composite frameworks.

5.1. The one-scale FE space cases

Suppose partitions T eh of e ⊂ Γ are given, with characteristic size h > 0. Internal

partitions T Ωi
h of the subdomains Ωi are de�ned with the same characteristic mesh-

size h, and verifying the geometric properties stated in Sec. 3.1, excepting that they

are supposed to be compatible with the edge partitions T eh for each e in ∂Ωi, so

that Th = ∪T Ωi
h is a conformal shape-regular partition of Ω. Let us also assume

that aspect ratios of Th are independent of h.

Consider one-scale FE spaces Ẽh,k = S̃h,k × Ũh,k × Q̃h,k composed by stable

discrete local settings S̃h,k(Ωi) × Ũh,k(Ωi) × Q̃h,k(Ωi) for the MFEM-WS in Ωi,

based on T Ωi
h , for which the assumptions made in Sec: 3.1 hold. For them, de�ne

the trace space Λ̃h,k, k ≥ 1, of piecewise scalar polynomials of degree k based on

T eh , e ⊂ ∂Ωi, so that τ n|e ∈ Λ̃h,k|e, for τ ∈ S̃h,k(Ωi).

For k ≥ 1, let parameters t, r ∈ {−1, 0, 1} be such that the local approximation

spaces S(K,M), U(K,R2), and Q(K,R), K ∈ T Ωi
h , used in the construction of

the one-sale space settings S̃h,k(Ωi) × Ũh,k(Ωi) × Q̃h,k(Ωi), satisfy the following

properties:

Pk(K,M) ⊂ S(K,M), (5.1)

Pk+t(K,M) ⊂ U(K,R2), (5.2)

Pk+r(K,M) ⊂ Q(K,R). (5.3)

Table 1 summarizes some examples of stable one-scale FE space settings veri-

fying these properties. Notice that ẼBDM+
k
and ẼBDM++

k
, and ẼRT +

[k]
are recently

constructed stable enhanced versions of ẼBDMk
and ẼRT [k]

methods, respectively.
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They are obtained by an enrichment procedure enforced by incrementing the ten-

sor space with extra bubble terms to restore divergence-constraint and/or Stokes-

constraint for stability condition when higher order displacement and/or rotation

spaces are applied. The parameters (t, r) characterize their optimal conditions (5.2)

and (5.3). Condition (5.1), with k ≥ 1, is valid in all the cases. Eventually, their

stability analyses require two new auxiliary types of Stokes-compatible space con-

�gurations, namely, the enriched versions of Crouzier-Raviat CR+
k+1 for triangles or

Girault-Raviart GR+
[k+1] for quadrilaterals. More details shall be given in Sec. 6 for

these and for general two-scale FE space con�gurations.

Table 1: One-scale stable FE methods Ẽh,k, k ≥ 1 for the MFEM-WS for triangular (T)

and a�ne quadrilateral (Q) elements K: Stokes pairs, FE spaces S(K,M), U(K,R2), and

Q(K,R), for K ∈ T Ωi
h ; the accuracy parameters (t, r) verify (5.2) and (5.3).

K Ẽh,k Stokes S(K,M) U(K,R2) Q(K,R) (t, r) Ref.

T

BDMk - P∂k(K,M)⊕ P̊k(K,M) Pk−1(K,R2) Pk−1(K) (−1,−1) [3]

BDM+
k CRk+1 P∂k(K,M)⊕ P̊k+1(K,M) Pk(K,R2) Pk(K,R) (0, 0) [14]

BDM++
k CR+

k+1 P∂k(K,M)⊕ P̊k+2(K,M) Pk+1(K,R2) Pk+1(K,R) (1, 1) [14]

Q

RT [k] GR[k+1] SRT [k]
(K,M) Qk,k(K,R2) Pk(K,R) (0, 0) [1]

RT +
[k] GR

+
[k+1] S

∂
RT [k]

(K,M)⊕ S̊RT [k+1]
(K,M) URT [k+1]

(K,R2) Pk+1(K,R) (1, 1); [14]

5.2. The two-scale space cases

The family of two-scale MHM-WS methods are parametrized by γ = (γsk, γin),

where γsk and γin represent the pair of mesh widths and polynomial degrees asso-

ciated to the trace and local FE spaces. Speci�cally,

• γsk = (hsk, ksk), ksk ≥ 1, are parametrers for a �xed coarse one-scale stable set-

ting Ẽγsk for the MFEM-WS. Namely, the trace space Λ̃γsk is piecewise de�ned

by polynomials of degree ksk based on a skeleton partition T Γ
hsk

of characteristic

mesh-size hsk, and the FE spaces Ẽγsk are based on a conformal shape regular

partition Thsk of Ω formed by the union of local meshes T Ωi
hsk

.

• γin = (hin, kin) are the parameters for re�nded local FE spaces inside the

subregions, Ẽγin(Ωi) = S̃γin(Ωi)×Ũγin(Ωi)×Q̃γin(Ωi), based on the partitions

T Ωi
hin

.

• It is assumed that hin = hsk/2
`, ` ≥ 0, and kin = ksk + n, n ≥ 0. Thus,

Ẽγsk(Ωi) ⊂ Ẽγin(Ωi). For the particular case ẼBDMγin
(Ωi), with ksk = 1, we

assume n ≥ 1 (such that Urm(Ωi) ⊂ Ũγin(Ωi) holds).

Owing to the previous assumptions, observe that the requirements stated in Sec.

3.1 concerning the well-de�nition of the MHM-WS method hold. Precisely, we get
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(1) The local FE spaces Ẽγin(Ωi) = S̃γin(Ωi) × Ũγin(Ωi) × Q̃γin(Ωi) verify the

stability constraints for the MFEM-WS scheme for elasticity problems in Ωi.

(2) Urm(Ωi) ⊂ Ũγin(Ωi) and P0(Ωi,R) ⊂ Q̃γin(Ωi).

(3) Trace hierarchy naturally holds: Λ̃γsk ⊂ Λ̃γin .

Let us de�ne the following two-scale local FE spaces:

S̃γ(Ωi) := S̃ ∂
hsk,ksk

(Ωi)⊕ ˚̃Shin,kin(Ωi), (5.4)

Ũγin(Ωi) := Ũhin,kin(Ωi). (5.5)

Q̃γin(Ωi) := Q̃hin,kin(Ωi). (5.6)

Recall that the internal tensors
˚̃Shin,kin(Ωi), with vanishing normal traces over

∂Ωi, are enriched versions of
˚̃Shsk,ksk(Ωi) ⊂ ˚̃Shin,kin(Ωi) by uniformly re�ning the

local meshes T Ωi
hsk

to get T Ωi
hin

, and/or by adding internal tensors of higher degree

ksk +n. However, the edge tensors S̃ ∂
hsk,ksk

(Ωi) are maintained at the coarser level,

their normal traces over ∂Ωi being constrained to the coarse space Λ̃γsk ⊂ Λ̃γin .

This means that if

S̃γ = {τ ∈ H(div,Ω,M); τ |Ωi ∈ S̃γ(Ωi)},

then the interface normal trace constraint τ · n|Γ ∈ Λ̃γsk holds for all τ ∈ S̃γ .

Following the general construction described in Sec 3.2, here the focus is on the

analysis of MHM-WS methods relying on the two-scale FE space con�gurations

Ẽγ = S̃γ × Ũγin × Q̃γin .

Remarks

• The two-scale pairs S̃γ(Ωi)× Ũγin(Ωi) can be interpreted as being constructed

from two-scale Poisson-compatible pairs Ṽγ(Ωi)× P̃γin(Ωi) de�ned in Ref. 15,

where Ṽγ(Ωi) = Ṽ ∂
hsk,ksk

(Ωi)⊕ ˚̃Vhin,kin(Ωi) and P̃γin(Ωi) = P̃hin,kin(Ωi).

• It should be mentioned that more generic stable one-scale FE space con�gura-

tions can be used to form two-scale FE spaces Ẽγ for the MHM-WS method. For

instance, the cases proposed in Ref. 30 and 9 could be considered. They are con-

structed by the inclusion of some extra divergence-free bubble tensor functions

to an approximation space formed with rows taken from standard Poisson-

compatible FE spaces. Their stability are not based on a Stokes-constraint, as

for the cases considered in Table 1 and analysed in the following section.

6. Uni�ed Stability Analysis for the Two-Scale MHM-WS Methods

This section is dedicated to the stability analysis for the MHM-WS methods based

on the two-scale FE space con�gurations ẼBDMγ
, ẼBDM+

γ
, and ẼRT [γ]

, derived from

the one-scale settings Ẽh,BDMk
, Ẽh,BDM+

k
, and Ẽh,RT [k]

, for k ≥ 1, displayed in

Table 1.
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Recalling the statement of Theorem 4.1, the principle is to prove stability of these

MHM-WS methods via the equivalent MFEM-WS methods (generally denoted by

MFEM-WS(γ)) that search for two-scale approximations (σ̃, ũ, q̃) ∈ Ẽγ = S̃γ ×
Ũγin × Q̃γin satisfying

(A−1 σ̃, τ) + (ũ,∇ · τ) + (q̃, asym τ) = 〈τ nΩ, g〉, ∀τ ∈ S̃γ , (6.1)

−(∇ · σ̃, v) = (f, v), ∀v ∈ Ũγin , (6.2)

(asym σ̃, ϕ) = 0, ∀ϕ ∈ Q̃γin . (6.3)

By construction, the divergence-constraint ∇ · S̃γ ⊂ Ũγin is veri�ed by the

FE pairs S̃γ(Ωi) × Ũγin(Ωi). To complete stability of the MFEM-WS(γ) scheme,

enriched pairs {W̃γ , Q̃γin} of Stokes-compatible spaces verifying the constraint

∇× W̃γ ⊂ S̃γ are required, which shall be constructed in this section.

As already mentioned, the stability of some particular scenarios were analyzed in

Ref. 14 for one-scale triangular or quadrilateral meshes (i.e. hin = hsk), when only

internal polynomial degree enrichments kin = ksk+1 or kin = ksk+2 were adopted

(see Table 1). A similar methodology can be successfully applied to the more gen-

eral two-scale composite FE space settings Ẽγ , as shall be detailed in Sec. 6.1 and

Sec. 6.2, and summarized in Table 2. The construction of these two-scale Stokes-

compatible FE pairs is guided by incrementing the velocity spacesWCRksk+1(K̄,R2)

or WGR[ksk]+1(K̄,R2)) for K̄ ∈ T Ωi
hsk

with some bubble vector functions to recover

stability when pressure spaces are enlarged (see Ref. 6). These extra terms are de-

�ned by the multiplication of appropriate vector spaces, containing the gradient of

the enlarged rotation elements, by a �xed scalar bubble function de�ned for each

K̄ ∈ T Ωi
hsk

. As far as we understand, these two-scale Stokes-compatible FE pairs, for

the Girault-Raviart family for a�ne quadrilaterals, and for the Crouzeix-Raviart

spaces for triangles, are new in the literature.

Table 2: Two-scale Stokes-compatible FE pairs {W̃γ(Ωi), Q̃γin(Ωi)}: local spaces in K̄ ∈
T Ωi
hsk

for triangular (T) and a�ne quadrilateral (Q) elements.

K̄ Spaces Q̃kin(T K̄hin ,R) Wγ(K̄,R2)

T CRγ Pksk+n−1(T K̄hin ,R) WCRksk+1
(K̄,R2) + B̊CRkin (T Khin ,R

2)

Q GR[γ] Pksk+n(T K̄hin ,R) WGR[ksk+1]
(K̄,R2) + B̊GR[kin]

(T K̄hin ,R
2)

The next two sections describe the construction of two-scale Stokes-compatible

FE pairs to be applied in the stability analysis of the MFEM-WS(γ) schemes.
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6.1. Stokes-constraint for local triangular meshes

Let us consider two families of FE space settings Ẽγ for triangular local meshes T Ωi
hin

.

Family ẼBDMγ
: Consider �rst the FE space settings based on the conformal coarse

partitions T Ωi
hsk

(without internal mesh re�nement) and polynomial increment kin =

ksk + 1, for which the local spaces are de�ned by

{S̃ ∂
hsk,BDMksk

(Ωi)⊕ ˚̃Shsk,BDMksk+1
(Ωi), Ũhsk,BDMksk+1

(Ωi), Q̃hsk,BDMksk+1
(Ωi)}.

They correspond to the BDM+
hsk,ksk

(Ωi) cases considered in Ref. 14. For them, a

stable choice Q̃hsk,BDMksk+1
(Ωi) := Pksk(T Ωi

hsk
,R) for the rotation space is guided

by considering the Stokes-compatible Crouzeix-Raviart spaces CRksk+1(Ωi), with

local FE spaces WCRksk+1
(K̄,R2) = Pksk+1(K,R2) + bKPksk−1(K̄,R2) for velocity,

and Pksk(K̄,R) for pressure, in K̄ ∈ T Ωi
hsk

.

For a general two-scale scenario, using internal polynomial degree increment

kin = ksk + n, and internal re�ned partitions T Ωi
hin

, with hin = hsk/2
`, stability of

the new proposed two-scale FE space settings

{S̃ ∂
hsk,BDMksk

(Ωi)⊕ ˚̃Shin,BDMksk+n
(Ωi), Ũhin,BDMksk+n

(Ωi), Q̃hin,BDMksk+n
(Ωi)}

requires two-scale Stokes-compatible Crouzeix-Raviart spaces W̃CRγ (Ωi) ⊂
H1(Ωi,R2), Q̃CRγin (Ωi) ⊂ L2(Ωi,R). They are de�ned for K̄ ∈ T Ωi

hsk
by the

composite pressure space Q̃CRγin (K̄) = Pksk+n−1(T K̄hin ,R) = Q̃hin,BDMksk+n
(K̄),

piecewise-de�ned over the re�ned partition T K̄hin induced on K̄, and the velocity

space WCRksk+1
(K̄,R2) + B̊CRkin (T K̄hin ,R

2), where the stabilizing bubble spaces are

B̊CRkin (T K̄hin ,R
2) = {w ∈ H1(K̄,R2);w|K = bK∇Pksk+n−1

(K,R), K ∈ T K̄hin}.

Using these local FE pairs, the requirements of Corollary of Theorem 2 in Ref. 6

are ful�lled, and the Stokes-compatibility of the resulting two-scale space con-

�guration holds. Furthermore, ∇ × B̊CRkin (T K̄hin ,R
2) are divergence-free bubble

functions in K̄ ∈ T Ωj
hsk

, with degree ksk + n. Therefore, the required property

∇× W̃CRγ (Ωi) ⊂ S̃γ(Ωi) = S̃ ∂
hsk,BDMksk

(Ωi)⊕ ˚̃Shin,BDMksk+n
(Ωi) holds. Conse-

quently, Q̃γin(Ωi) = Pksk+n−1(T Ωi
hin
,R) is a stable rotation choice for ẼBDMγ

(Ωi).

Family ẼBDM+
γ
: As for its original one-scale setting, it is clear that the local FE

spaces {S̃BDM+
γ

(Ωi), ŨBDM+
γin

(Ωi), Q̃BDM+
γin

(Ωi)} of this two-scale family verify

S̃ ∂
BDM+

γ
(Ωi) = S̃ ∂

hsk,BDMksk
(Ωi),

˚̃SBDM+
γ

(Ωi) =
˚̃Shin,BDMkin+1

(Ωi),

ŨBDM+
γin

(Ωi) = Ũhin,BDMkin+1
(Ωi), Q̃BDM+

γin
(Ωi) = Q̃hin,BDMkin+1

(Ωi).

In other words, ẼBDM+
γ

= ẼBDMγ+
, where γ+ = (γsk, γ

+
in), and γ+

in = (hin, kin+1).

Thus, the stability analysis valid for ẼBDMγ+
ensures that ẼBDM+

γ
is also stable.
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6.2. Stokes-constraint for local a�ne quadrilateral meshes

Firstly, let us recall the FE space settings based on the conformal quadrilteral

partitions T Ωi
hsk

(without internal mesh re�nement) and polynomial increment kin =

ksk + 1, for which the local spaces are de�ned by

{S̃ ∂
hsk,RT [ksk]

(Ωi)⊕ ˚̃Shsk,RT [ksk+1]
(Ωi), Ũhsk,BDMksk+1

(Ωi), Q̃hsk,RT [ksk+1]
(Ωi)}.

They correspond to the RT +
[hsk,ksk](Ωi) cases considered in Ref. 14. For them, a

stable choice Q̃hsk,RT [ksk+1]
(Ωi) = Pksk+1(T Ωi

hsk
,R) for the rotation space is guided

by considering enriched Stokes-compatible Girault-Raviart spaces GR+
[ksk+1](Ωi),

with local FE spaces WGR+
[ksk+1]

(K̄,R2) = Qksk+1,ksk+1(K̄,R2)+ B̊GR[ksk+1]
(K̄,R2)

for velocity, and Pksk+1(K̄,R) for pressure, in K̄ ∈ T Ωi
hsk

. Functions w in the bubble

spaces B̊GR[ksk+1]
(K̄,R2) are of the form w = bK̄Qksk,ksk(K̄,R)}, bK̄ being the basic

bubble function on K̄.

This enrichment methodology can also be extended to prove stability for general

local FE space scenarios ERT [γ]
, with local spaces

{S̃ ∂
hsk,RT [ksk]

(Ωi)⊕ ˚̃Shin,ksk+n(Ωi), Ũhin,RT [ksk+n]
(Ωi), Q̃hin,RT [ksk+n]

(Ωi)},

where both internal polynomial degree increment and partition re�nement are ap-

plied. The stability of the rotation space Q̃hin,RT [ksk+n]
(Ωi) = Pksk+n(T Ωi

hin
,R)

is guided by the FE Stokes pair {W̃GR[γ]
(Ωi), Q̃GR[γin]

(Ωi)} ⊂ H1(Ωi,R2) ×
L2(Ωi,R), with local pressure space Q̃GR[γin]

(K̄) = Pksk+n(T K̄hin ,R), K̄ ∈ T Ωi
hsk

,

piecewise de�ned over the partition T K̄hin induced in K̄, and the local ve-

locity space WGR[ksk+1]
(K̄,R2) + B̊GR[kin]

(T K̄hin ,R
2), where the bubble spaces

B̊GR[kin]
(T K̄hin ,R

2) ⊂ H1(K̄,R2) is composed by the functions w such that w|K =

bKQksk+n−1,ksk+n−1(K,R), K ∈ T K̄hin . Since Qksk+n−1,ksk+n−1(K,R) contains

Pksk+n−1(K,R2) = ∇Pksk+n(K,R), and according to Corollary of Theorem 2 in

Ref. 6, the stability of the resulting enriched Stokes-compatible space con�guration

holds. Furthermore, the tensors in ∇× B̊GR[kin]
(T K̄hin ,R

2) are divergence-free bub-

ble functions with degree ksk +n de�ned in K̄ ∈ T Ωj
hsk

. Therefore, as in the previous

cases, the required property ∇× W̃RT [γ]
⊂ S̃RT [γ]

holds, concluding that Q̃RT [γin]

is a stable choice for the rotation space in ẼRT [γ]
.

The conclusions of this section are summarized in the following theorem.

Theorem 6.1. The MFEM-WS(γ) formulation (6.1) - (6.3) is well-posed for any

of the two-scale FE spaces ẼBDMγ
, ẼBDM+

γ
, or ẼRT [γ]

. Moreover, it is equivalent to

the respective MHM-WS method de�ned by (3.4) - (3.13) by means of Theorem 4.1.

.
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7. Uni�ed Error Analysis

An uni�ed error analysis is presented for stable MHM-WS schemes derived via an

equivalent MFEM-WS(γ) formulation (6.1) - (6.3). Namely, we shall consider stable

two-scale FE spaces Ẽγ de�ned in Sec 5.2, which are composed by local approxima-

tions S̃γ(Ωi)×Ũγin(Ωi)×Q̃γin(Ωi) proposed in (5.4) - (5.6), the tensors being con-

strained to the trace vector space Λ̃γsk . The analysis is general enough to be applied

to the three stable families ẼBDMγ , ẼBDM+
γ
, or ẼRT [γ]

considered in the previous

section, but also to other stable two-scale FE settings eventually constructed from

other examples of Poisson-compatible FE pairs under similar circumstances.

7.1. Interpolation error estimates

For stable two-scale FE space con�gurations Ẽγ = S̃γ × Ũγin × Q̃γin , veri-

fying the divergence and Stokes compatibility constraints, consider interpolants

Π
σ
γ : Hs(Ω,M) → S̃γ , as presented in Theorem 4.2, satisfyind (4.1). In order

to derive interpolation error estimates, recall the three mesh parameters involved in

the discretizations: H (size of subregions), hsk ≤ H (mesh size of the elements in the

skeleton partition), and hin ≤ hsk referring to the mesh spacing of the shape-regular

re�ned partitions T Ωi
hin

, which are obtained from T Ωi
hsk

by uniform subdivisions. There

are also two polynomial degrees used in the contruction of the FE spaces: ksk re-

ferring to the trace approximations over the mesh skeleton, and kin of the internal

local FE aproximations.

Theorem 7.1. For a stable two-scale FE space con�guration Ẽγ = S̃γ × Ũγin ×
Q̃γin , consider the interpolant Π

σ
γ : Hs(Ω,M) → S̃γ being de�ned for su�ciently

smooth tensors, and let Πu
γin

: L2(Ω,R2) → Ũγin , and Πq
γin

: L2(Ω,R2) → Q̃γin be

L2-orthogonal-projections. If the properties (5.1) - (5.3) are veri�ed, then:

||τ −Π
σ
γτ ||L2(Ω,M) . hksk+1

sk ||τ ||Hksk+1(Ω,M), (7.1)

||∇ · (τ −Π
σ
γτ)||L2(Ω,R2) . hkin+t+1

in ||∇ · τ ||Hkin+t+1(Ω,R2), (7.2)

||v −Πu
γinv||L2(Ω,R2) . hkin+t+1

in ||v||Hkin+t+1(Ω,R2), (7.3)

||ϕ−Πq
γinϕ||L2(Ω,R) . hkin+r+1

in ||ϕ||Hkin+r+1(Ω,R), (7.4)

where t and r are the optimal parameters de�ned in (5.2) and (5.3). The leading

constants appearing on the right hand sides are independent of γ.

Proof. Being a L2-projection over Ũγin(Ω), Πu
γin is bounded in L2(Ω,R2), with

unitary norm. Then, the estimation (7.3) follows from usual L2-projection conver-

gence errors valid in the one-level FE space con�guration with mesh size hin and

containing polynomial spaces with degree kin + t.

For the same reason, (7.2) holds due to the divergence-compatibility property

derived in (4.2), meaning that ∇ ·Π
σ
γτ is the L2-projection over Ũγin of ∇ · τ .
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Similarly, the estimation (7.4) follows from usual L2-projection convergence er-

rors by recalling that Q̃γin(Ωi) are composite spaces over the local meshes T Ωi
hin

piecewise de�ned by scalar local spaces containing polynomials of degree kin + t.

Concerning the error estimation (7.1), �rstly observe that it holds for Π
σ

1,γ .

In fact, this is a consequence of the corresponding interpolation error for πDγ :

Hs(Ω,R2) → Ṽγ associated to two-scale Poisson-compatible space con�gurations,

proved in Ref. 15. It is valid as a consequence of classic arguments, where the

leading constant appearing on the right hand side only depends on the shape-

regularity factors of the meshes T Ωj
h , which are supposed to be independent of the

the mesh-widths, and on the bound for the projection π̂D on the corresponding

master element K̂, K ∈ T Ωj
hin

(see Theorem 4.1 in Ref.2). Recalling (4.4), we ob-

tain ‖Π
σ

2,γτ‖L2(Ω,M) ≤ C‖Π
σ

1,γτ − τ‖L2(Ω,M), completing the proof of (7.1), as a

consequence of the error estimation hold for Π
σ

1,γ .

We should observe that:

(i) Interpolation errors for tensors are limited to order O(hksk+1
sk ), independently

of internal enrichment, because the edge terms live in the coarser discretization

level of the normal traces over the skeleton interfaces.

(ii) Divergence of the tensor, displacement and rotation projection errors can reach

arbitrary high accuracy orders, pro�ting from �ner meshes and higher polyno-

mial degrees used for the approximations in Ũγin and in Q̃γin .

7.2. Convergence error estimates

As a consequence of the interpolation errors given in Theorem 7.1, the following

convergence error estimates hold for the two-scale MFEM-WS(γ) formulation.

Theorem 7.2. For a convex region Ω, let Ẽγ = S̃γ × Ũγin × Q̃γin be a two-

scale composite FE space setting for the MFEM-WS(γ) formulation verifying the

divergence and Stokes compatibility constraints. If σ̃ ∈ Sγ , ũ ∈ Ũγin , and q̃ ∈ Q̃γin

are the solutions of (6.1) - (6.3), and the exact �elds σ, u and q verifying (1.4) -

(1.6) are regular enough, then the next estimates hold:

‖σ − σ̃‖L2(Ω,M) + ‖q − q̃‖L2(Ω,R) . hksk+1
sk ‖σ‖Hksk+1(Ω,M)

+ hkin+r+1
in ‖q‖Hkin+r+1(Ω,R), (7.5)

‖∇ · (σ − σ̃)‖L2(Ω,R2) . hkin+t+1
in ‖∇ · σ‖Hkin+t+1(Ω,R2), (7.6)

‖u− ũ‖L2(Ω,R2) . hksk+2
sk ‖σ‖Hkin+t+1(Ω,M) + hkin+t+1

in ‖u‖Hkin+t+1(Ω,R2)

+ hskh
kin+r+1
in ‖q‖Hkin+r+1(Ω,R), (7.7)

where t and r are the optimal parameters de�ned in (5.2) and (5.3).

Proof. The following error estimates hold for the approximate variables in terms
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of interpolation errors (see Ref. 14 or the references therein)

‖σ − σ̃‖L2(Ω,M) + ‖q − q̃‖L2(Ω,R) . ‖σ −Π
σ
γσ‖L2(Ω,M) + ‖q −Πq

γinq‖L2(Ω,R), (7.8)

‖∇ · (σ − σ̃)‖L2(Ω,R2) . ‖∇ · (σ −Π
σ
γσ)‖L2(Ω,R2), (7.9)

‖Πu
γinu− ũ‖

2
L2(Ω,R2) = (A(σ − σ̃), v −Π

σ
γv) + (Πq

γinq − q, asym(v −Π
σ
γv)), (7.10)

where v ∈ H(div,Ω,S) is the solution of the elasticity problem ∇ · v = Πu
γinu − ũ,

and v = A−1ε(w) in Ω, with w = 0 on ∂Ω. Consequently, estimates (7.5) and (7.6)

follow directly by inserting the interpolation errors (7.1), (7.2), and (7.4) in (7.8)

and (7.9). Using Cauchy-Schwartz inequality in (7.10), we obtain

‖Πu
γinu− ũ‖

2
L2(Ω,R2) ≤ ‖A(σ − σ̃)‖L2(Ω,M)‖v −Π

σ
γv‖L2(Ω,M)

+‖Πq
γinq − q‖L2(Ω,R)‖ asym(v −Π

σ
γv)‖L2(Ω,R).

Since ‖v‖H1(Ω,M) ≈ ‖w‖H2(Ω,M) is bounded by ‖Πu
γinu − ũ‖L2(Ω,R2), due to the

elliptic regularity property, valid for convex Ω, and recalling that ‖v−Π
σ
γv‖L2(Ω,M) .

hsk‖v‖H1(Ω,M), and ‖ asym(v −Π
σ
γv)‖L2(Ω,R) . hsk‖v‖H1(Ω,M), we obtain

‖Πu
γinu− ũ‖L2(Ω,R2) . hsk

(
‖σ − σ̃‖L2(Ω,M) + ‖Πq

γinq − q‖L2(Ω,R)

)
.

Finally, (7.7) follows by inserting the above estimate in the triangular inequality

‖u− ũ‖L2(Ω,R2) ≤ ‖u−Πu
γinu‖L2(Ω,R2) + ‖Πu

γinu− ũ‖L2(Ω,R2),

and by recalling the interpolation errors (7.3) and (7.4), and using (7.5).

Remark : Theorem 7.2 holds for the stable methods ẼRT [γ]
and ẼBDM+

γ
with t =

r = 0, and ẼBDMγ
for ksk > 1, or ksk = 1 with kin > ksk, with t = r = −1.

8. Numerical Veri�cation Tests

This section is dedicated to the presentation and discussion of some veri�cation tests

for the MHM-WS formulation analyzed in the previous sections, based on two-scale

space con�gurations Ẽγ corresponding to FE local spaces S̃γ(Ωi) × Ũγin(Ωi) ×
Q̃γin(Ωi), as de�ned in (5.4) - (5.5) - (5.6). The results are compared with the ones

given by the corresponding one-scale MFEM-WS versions and by the MHM-H1 for-

mulation described in Section A.2. For these implementations, H(div)-conforming

shape functions of edge and internal types, required in the construction of stress

approximations, are the ones presented in Ref. 29, 13. The MHM-H1 simulations

adopt spaces spanned by the hierarchical shape functions described in Ref. 12. Both

types of shape functions are available in the computational frameworka.

aNeoPZ open source platform: http://github.com/labmec/neopz
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Problem 1: Oscillatory Young's modulus

Consider the elasticity problem de�ned in the square region (0, 1) × (0, 1), hav-

ing Poisson ratio ν = 0.3, and oscillatory Young's modulus E(x, y) = 100(1 +

0.3 sin(10π(x− 0.5)) cos(10πy), with exact displacement solution

u(x, y) =

 1

3
(
x

3
)2y2 cos(6πx) sin(7πy)

1

5
ey sin(4πx)

 .

The plots for E(x, y), the components of the displacement and the corresponding

stress tension �eld σ are shown in Fig. 2.

Fig. 2: Problem 1: Young's modulus, analytic displacement and stress tensor components.

The results shown in this section are for enhanced FE approximations ẼRT [γ]

based on square meshes, for ẼBDMγ
, and ẼBDM+

γ
based on triangular elements. Two

types of convergence curves are considered: mesh-based and space-based conver-

gence rates. In the �rst scenario, convergence rate is based on the usualH-re�nement

of the macro-partition, and taking hsk = H (no mesh-skeleton re�nement). The goal

is to verify the error estimates predicted in Theorem 7.2.

Note also that the macro mesh-size H does not appear explicitly in the error

estimates of Theorem 7.2. Thus, convergence is achieved by making hsk → 0, even

if TH stays unchanged. Thus, the second case is for a �xed macro-partition, and the

skeleton partitions are re�ned (as well the internal ones). The purpose is to verify

if an extra convergence rate of order h
1/2
sk occurs, as observed in the numerical tests

of Ref. 20, 26 using the MHM-H1 method.
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8.1. Problem 1: mesh-based convergence with square elements

In this part, all the veri�cation tests for Problem 1 are for FE spaces ẼRT [γ]
based

on square local partitions.

The results for the tensor component σ11 obtained by the application of the

MHM-WS method are displayed in Fig. 3, for di�erent FE space con�gurations.

Precisely, the plots are shown for: (a) 8×8 subregions, H = 2−3, hsk = H, ksk = 2;

(b) 8 × 8 subregions, hsk = H/4, ksk = 0; and (c) 32 × 32 subregions, H = 2−5,

hsk = H, ksk = 2. In all the cases, hin = 2−7, and kin = ksk + 1. It is clear that the

space con�guration (a) is not su�ciently re�ned to capture the essential features

of the solution. The other two space con�gurations, which are equivalent in terms

of element sizes on the edges, show similar approximations, but the errors for the

con�guration in (c) are the smallest ones.

Fig. 3: Problem 1 - tensor component σ11 solved with MHM-WS using approximation
space con�gurations ẼRT [γ]

for di�erent square partitions: 8 × 8 subregions, hsk = H,

ksk = 2 (left side); 8 × 8 subregions, hsk = H/4, ksk = 0 (middle side); and 32 × 32

subregions, hsk = H, and ksk = 2. In all the cases kin = ksk + 1, and hin = 2−7.

Concerning the errors for displacement, the three terms in the right hand side of

the displacement error estimate (7.10) may have di�erent in�uence on the results,

as shall be illustrated in the simulations of the next section. Fig. 4. For instance, for

ẼRT [γ]
and ẼBDM+

γ
cases, the last term hskh

kin+1
in is always dominated by hksk+2

sk

(Term 1) and hksk+n+1
in (Term 2) appearing in the �rst and second terms. Di�erent

regimes may be observed for Term 1 and Term 2, depending on the con�guration

parameters. For instance, when internal polynomial degree increment is applied with

n ≥ 1, the in�uence of Term 1 dominates Term 2 in the range of hsk illustrated

in Fig. 4 (top side), independently of the internal mesh re�nement hin = hsk/2
`,

` ≥ 1. These e�ects shall be veri�ed in the simulations of this section.

Fig. 5 - 8 show L2-error curves for u, σ,∇·σ, q, and energy norm
(
A ε(u), ε(u)

) 1
2

,

in terms of the macro mesh size H = 2−j , j = 1, 2, · · · , 6, for the MHM-WS method

based on FE spaces ẼRT [γ]
, using hsk = H, ksk = 1, 2. For comparison, results are

shown for MFEM-WS, using uniform mesh-size H, and polynomial degrees k = 1, 2.
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Fig. 4: E�ects of hksk+2
sk in Term 1 (T1), and ht+1

in in Term 2 (T2) in the displacement

error estimate: ksk = 1, 2, kin = ksk + n, n = 0, 1, 2, and hin = hsk/2
`, ` = 1, 2, 3.

8.1.1. E�ect of polynomial degree increment

Fig. 5 is for ksk = 1, and Fig. 6 is for ksk = 2, both with hin = hsk/2. The purpose

is to analyze the e�ect of increasing kin = ksk + n, n = 0, 1, 2.

As predicted in (7.5), the errors in σ and q are of order ksk + 1, independently

of n, and these errors are about the same magnitude, in all the cases. The stress

symmetry errors, which are proportional to the stress errors, also have convergence

rates of order ksk + 1, but the increment of the polynomial degrees inside the

subregions reduces signi�cantly their magnitudes. As expected, the divergence of

the stress systematically improves accuracy to order ksk + n + 1 (recall that t = 0

for ẼRT [γ]
). For these space con�gurations, the dominant e�ect of the �rst term in

the displacement error estimate (7.7), of order ksk+2, is also veri�ed when n = 1, 2.

For n = 0, i.e. kin = ksk, the second term takes place, and convergence rate of order

ksk + 1 occurs, in accordance with the illustration of Fig. 4 (top-left-side).
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Fig. 5: Problem 1 - Mesh-based convergence for MHM-WS using FE spaces ẼRT [γ]
, in

terms of the macro-element size H = 2−j , j = 1, 2, · · · 6: hsk = H, hin = hsk/2, ksk = 1,
and kin = ksk + n, n = 0, 1, 2; MFEM-WS for mesh-size H, and k = 1.

Fig. 6: Problem 1 - Mesh-based convergence for MHM-WS using FE spaces ẼRT [γ]
, in

terms of the macro-element size H = 2−j , j = 1, 2, · · · 6: hsk = H, hin = hsk/2, ksk = 1,
and kin = ksk + n, n = 0, 1, 2; MFEM-WS for mesh-size H, and k = 2.

8.1.2. E�ect of internal mesh re�nement

The purpose in Fig. 7, for ksk = 1, and Fig. 8, for ksk = 2, taking kin = ksk,

is to analyze the e�ect of re�ning the internal meshes, comparing the cases for
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hin = hsk/2
`, ` = 1, 2, 3. Again, for coarser levels (` = 1, 2) the second term in the

displacement error is the most signi�cant, of order ksk + 1, in accordance with the

plots of Fig. 4 (top-left-side). However, by further re�ning the internal grids (` > 2),

the convergence rate tends to order ksk + 2 of the �rst term in (7.7). It should also

be pointed out the di�erent regime for the divergence of the stress, which is now

always of �xed order ksk + 1, but with magnitude reducing as ` increases. The

behavior of the other variables are not signi�cantly a�ected by using these space

con�gurations.

Fig. 7: Problem 1 - Mesh-based convergence for MHM-WS using FE spaces ẼRT [γ]
, in terms

of the macro-element size H = 2−j , j = 1, 2, · · · 6: hsk = H, hin = hsk/2
`, ` = 1, 2, 3 ,

ksk = 1, and kin = ksk; MFEM-WS for mesh-size H, and k = 1.

8.1.3. Comparison of MHM-WS and MHM-H1 methods

Convergence histories for MHM-WS and MHM-H1 methods, are compared in the

plots in Fig. 9. The space con�gurations are for polynomial degree ksk = 1, 2,

without skeleton subdivision (hsk = H) and internal polynomial degree enrichment

(n = 0), but ` subdivisions are used to form the micro meshes inside the macro-

elements (hin = H/2`), 1 ≤ ` ≤ 3. For the MHM-H1 method, using scalar polyno-

mials in Qksk,ksk(K,R), L2-stress and energy errors maintain of order ksk, but as

the internal mesh re�nement increases, the error magnitudes decrease. This error

decay is faster for ksk = 2, starting with a convergence rate of order 2 for ` = 1, the

error curves for the MHM-H1 method approach the ones of the MHM-WS method,

having rate of order ksk + 1, until they almost coincide at ` = 3. Concerning the
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Fig. 8: Problem 1 - Mesh-based convergence for MHM-WS using FE spaces ẼRT [γ]
, in terms

of the macro-element size H = 2−j , j = 1, 2, · · · 5: hsk = H, hin = hsk/2
`, ` = 1, 2, 3,

ksk = 2, and kin = ksk; MFEM-WS for mesh-size H, and k = 2.

Fig. 9: Problem 1 - Mesh-based convergence for MHM-WS using FE spaces ẼRT [γ]
, and

MHM-H1 formulations, in terms of the macro-element size H = 2−j , j = 1, 2, · · · , hsk =
H, ksk = 1, 2, hin = hsk/2

`, ` = 1, 2, 3 and kin = ksk.
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displacement variable, both methods show similar behavior, starting with rates of

order ksk + 1 at low internal re�nement levels, typical of one-level schemes, as pre-

dicted by the error estimate in (7.7) for this kind of space con�guration (n = 0,

t = 0, and hin ∼ h), whose �rst term on the right hand side is dominating. However,

as ` increases, with hin � hsk, the error magnitudes decrease, with fast decay for

the higher degree ksk = 2. The enhanced rate of order ksk + 2 is observed at ` = 3,

illustrating the domination of the �rst term on the right hand side of (7.7).

8.2. Problem 1: Space-based convergence

Consider now a �xed macro-partition with mesh-size H = 2−2, and skeleton subdi-

vision, taking hsk = 2−jH, j = 0, 1, 2, · · · . Inside the subregions, uniform partitions

T Ωi
hin

are taken with hin = hsk/2. The polynomial degrees used for the trace spaces

are ksk = 1, 2, and kin = ksk + 1 is applied for the local FE spaces inside Ωi.

Space-based error curves in Fig. 10 are for ẼRT [γ]
versus the number of equations

(DoF) in the condensed systems of the upscaling stage. Mesh-based results are also

included, where the macro-partitions and the skeleton discretization use the same

grid size H = hsk, and the other parameters are maintained. These plots show that

a desired accuracy can be obtained with about two orders of magnitude less degrees

of freedom when the space-based strategy is adopted.

Fig. 10: Problem 1 - Space-based convergence (s-b) for MHM-WS using ẼRT [γ]
versus

DoF in the condensed upscaling systems: �xed macro-partition with 16 uniform square
subregions, hsk = 2−j , j = 2, · · · , 6, for ksk = 1, 2, hin = hsk/2, and kin = ksk + 1;
mesh-based convergence (m-b) is for macro-partitions with H = hsk.
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Table 3: Problem 1 - Space-based convergence for MHM-WS: L2-errors and convergence
rates using �xed macro-partition of 16 uniform squares for ẼRT [γ]

, or 32 uniform triangles

for ẼBDMγ
and ẼBDM+

γ
; hsk = 2−j , ksk = 1, 2, hin = hsk/2, and kin = ksk + 1.

Square local partitions

ẼRT [γ]

ksk = 1

j
stress displacement divergence rotation asymmetry energy

error rate error rate error rate error rate error rate error rate
2 9.4146e+0 −− 1.7854e−3 −− 4.7550e+1 −− 8.8385e−2 −− 3.3533e+0 −− 9.2503e−1 −−
3 1.9264e+0 2.29 1.7689e−4 3.34 6.3514e+0 2.90 1.7487e−2 2.34 6.4913e−1 2.37 1.8732e−1 2.30

4 3.7643e−1 2.36 1.7954e−5 3.30 8.0654e−1 2.98 3.1986e−3 2.45 9.9418e−2 2.71 3.6507e−2 2.36

5 7.0104e−2 2.42 1.7949e−6 3.32 1.0121e−1 2.99 5.8776e−4 2.44 1.5477e−2 2.68 6.7932e−3 2.43

ksk = 2

j
stress displacement divergence rotation asymmetry energy

error rate error rate error rate error rate error rate error rate
2 2.5818e+0 −− 3.0900e−4 −− 8.0800e+0 −− 2.1208e−2 −− 6.8336e−1 −− 2.5349e−1 −−
3 2.9517e+1 3.13 1.8120e−5 4.09 5.3177e+1 3.93 2.3865e−3 3.15 7.6440e−2 3.16 2.9117e−2 3.12

4 2.5628e−2 3.53 7.7721e−7 4.54 3.3700e−2 3.98 2.2522e−4 3.41 9.7628e−3 2.97 2.5336e−3 3.52

5 2.1734e−3 3.56 3.1703e−8 4.62 2.1136e−3 3.99 1.9062e−5 3.56 9.2792e−4 3.40 2.1600e−4 3.55

Triangular local partitions

ẼBDMγ

ksk = 1

j
stress displacement divergence rotation asymmetry energy

error rate error rate error rate error rate error rate error rate
2 1.5298e+1 −− 6.1570e−3 −− 2.3282e+2 −− 1.5827e+0 −− 5.0094e+0 −− 1.5277e+0 −−
3 3.8547e+0 1.99 1.2550e−3 2.29 6.6334e+1 1.81 3.8729e−2 2.03 1.3566e+0 1.88 3.7603e−1 2.02

4 7.9571e−1 2.28 2.8845e−4 2.12 1.7167e+1 1.95 7.245e−3 2.42 2.6268e−1 2.37 7.6726e−2 2.29

5 1.6220e−1 2.30 7.1211e−5 2.02 4.3292e+0 1.99 1.4674e−3 2.30 4.8063e−2 2.45 1.5543e−2 2.30

ksk = 2

j
stress displacement divergence rotation asymmetry energy

error rate error rate error rate error rate error rate error rate
2 6.5982e+0 −− 1.4763e−3 −− 1.0815e+1 −− 6.8016e−2 −− 1.4044e+0 −− 6.4350e−1 −−
3 1.1056e−1 2.58 1.2802e−4 3.53 1.0815e+1 2.79 1.0762e−2 2.66 1.9111e−1 2.88 1.0699e−1 2.59

4 1.1581e−1 3.25 8.1727e−6 3.97 1.4003e+0 2.95 1.1113e−3 3.28 2.3519e−2 3.02 1.1212e−2 3.20

5 9.4750e−3 3.61 6.4039e−7 3.67 1.7659e−1 2.99 8.5089e−5 3.71 2.6922e−3 3.13 9.2499e−4 3.60

ẼBDM+
γ

ksk = 1

j
stress displacement divergence rotation asymmetry energy

error rate error rate error rate error rate error rate error rate
2 1.5909e+1 −− 4.7291e−3 −− 7.4825e+1 −− 1.9752e−1 −− 2.6632e+0 −− 1.5436e+0 −−
3 4.0471e+0 1.97 6.1283e−4 2.95 1.0815e+1 2.79 4.8076e−2 2.04 7.1458e−1 1.90 3.8563e−1 2.00

4 8.2132e−1 2.30 5.8335e−5 3.39 1.4003e+0 2.95 8.4784e−3 2.50 1.2752e−1 2.49 7.7762e−2 2.31

5 1.6348e−1 2.33 6.3446e−6 3.20 1.7659e+1 2.99 1.5663e−3 2.44 1.9175e−2 2.73 1.5442e−2 2.33

ksk = 2

j
stress displacement divergence rotation asymmetry energy

error rate error rate error rate error rate error rate error rate
2 6.6848e+0 −− 1.4911e−3 −− 2.0206e+1 −− 7.3370e−2 −− 9.1499e+1 −− 6.4407e+1 −−
3 1.1190e+0 2.58 1.2639e−4 3.56 1.4320e+0 3.82 1.1316e−2 2.70 1.1343e−1 3.01 1.0775e−1 2.58

4 1.1724e−1 3.25 6.8611e−6 4.20 9.2555e−2 3.95 1.1689e−3 3.28 1.5131e−2 2.91 1.1291e−2 3.25

5 9.6566e−3 3.60 2.5853e−7 4.73 5.8340e−3 3.99 9.3046e−5 3.65 1.7545e−3 3.11 9.3336e−4 3.60

Errors and convergence rates are displayed in Table 3 for square and triangular

mesh scenarios, with �xed macro-partitions with 16 uniform squares or 32 triangles,
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respectively. Excepting the divergence of the stress, all other variables experiment

this enhanced accuracy, which is more evident for ksk = 2. Since ∇ · σ̃ is the L2-

orthogonal projection of f over Ũγin , its accuracy is kept in the superconvergence

rate of order hksk+t+n+1
in , as predicted in (7.6). As for MHM-H1 simulations shown

in Ref. 20, 26, a tendency in these MHM-WS space-based convergence rates to

extrapolate the predicted values by an exponent≈ 1/2 also occurs when using ẼRT [γ]

and ẼBDM+
γ
families. Once stress convergence rate reaches the order h

ksk+3/2
sk , this

enhanced accuracy is translated to the displacement error estimate (7.7), improving

the Term 1 to order h
ksk+5/2
sk . When this term is dominant, the extra h

1/2
sk accuracy

order reveals, as for the cases of ẼRT [γ]
and ẼBDM+

γ
families using the mesh sizes

and polynomial degree scenario of this test problem. However, this tendency is not

con�rmed by the displacement errors given by the simulations with ẼBDMγ
, a fact

that can be justi�ed by a closer look in the bottom-side of Fig. 4: using n = 1 and

` = 1 the Term 2 dominates the Term 1 as hsk diminishes.

Problem 2: Heterogeneous Media

The model set has 16 layers with constant physical properties, covering an area of

10 × 10 × 5 km, with maximum topography at about 500 m and maximum depth

at about 4500 m. From the binary data downloaded fromb, and as suggested in

Ref. 26, the original layers 4 and 12 were replaced by the data of saturated clay:

ρ = 1760 kg/m3, ν = 0.49, E = 15 MPa.

We consider regridded 3D values sampled at h = ∆x = ∆y = 19.53125 m

(10000/512), and ∆z = 4500/256 = 17.578125 m, for the compressional velocity Vp,

shear velocity Vs, and density ρ, from which the Poisson coe�cient ν and Young's

modulus E are obtained by the expressions ν =
V 2
p − 2V 2

s

2(V 2
p − V 2

s )
and E = 2ρV 2

s (1 + ν).

Fig. 11 shows the plots of these parameters de�ned at the central cross line at

y = 5000 m, which is de�ned as the computational region for Problem 2. The

top, left and right sides of the domain are stress free, and the bottom side has zero

displacement. The domain is loaded by gravity (9.81 m/s2). We chose as a reference

value the evolution of σ
11

at the height of 2250.25 m.

MFEM-WS solutions with FE space con�guration Ẽh,RT [k]
, k = 1, 2 and com-

pared to conclude that the �nest mesh can be used as a reference solution. The

plots in Fig. 12 show the reference values of σ
11

along the horizontal center line of

the domain for four MHM-WS approximations, and compared with MHM-WS solu-

tions obtained using �xed 16× 8 subregions (as documented in the right-hand side

of Fig. 13). The interior meshes in each subregion are also �xed, and are obtained

after �ve uniform subdivisions of it. The approximations are obtained using ẼRT [γ]

spaces for ksk = kin = 1, and ` = 0, 1, 2 and 3 divisions of the skeleton mesh. It

bhttp://hpc4e.eu/downloads/datasets-and-software
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Fig. 11: Problem 2 - Young's modulus (left) and Poisson's ratio (right) at the cross line
y = 5000 m.

can be observed that by re�ning the skeleton mesh, the MHM-WS approximations

become closer to the reference solution, with quite well matching for ` = 3.

Fig. 13 shows contour plots of σ
11

comparing the reference results (left-hand

side) with the �nest MHM-WS approximate results (right-hand side), using ` = 3.

Fig. 12: Problem 2 - Plots of σ
11

at the height of 2250.25 m. The reference solution is

in black, and the solutions of MHM-WS, in red, Ẽγ based on 16 × 8 macro subregions,

ksk = kin = 1, hin = 10000/512 ≈ 19.53m, hsk = H/2` with ` = 0, 1, 2, 3.

9. Concluding Remarks

The family of stable H(div)-conforming multiscale mixed-method for elasticity

problems proposed in this work impose weakly stress symmetry on general polygonal
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Fig. 13: Problem 2 - Solution σ
11

obtained with reference FE using Ẽh,RT [2]
(top), and

MHM-WS (right) with Ẽγ based on a 16× 8 macro-elements, ksk = kin = 1, hsk = H/8,
and hin = 10000/512 ≈ 19.53 m.

meshes. Such a feature makes the methodology �exible to represent complex geome-

tries while it yields a systematic way to build multiscale �nite element spaces with

upscaling-downscaling stages. The multiscale nature of the methods provides a de-

tailed representation of the solution (stress, displacement, and rotation multiplier).

Such discrete solutions combine �ne scales computations within macro elements,

which are entirely independent of one another and prompt to be parallelized, with

coarse scales represented by constrained traction (Lagrange multiplier) on mesh

skeleton. As a result, the methods achieve optimal and high-order convergence by

re�ning the meshes' frame and local sub-meshes only. Also, local stress �elds are

in local equilibrium with external forces. Those properties are theoretically demon-

strated and validated through numerical tests, which also veri�ed the robustness

of the methods on a highly complex multilayer problem using meshes non-aligned

with interface layers.
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Appendix A. The MHM-H1 formulation

In the classic H1-conforming approach for linear elasticity problems, the body dis-

placement u ∈ H1(Ω,R2) verifying the boundary condition is such that

(A ε(u), ε(v)) = (f, v), ∀v ∈ H1
0 (Ω,R2). (A.1)

Given a partition T = {Ωi}, the Lagrange multiplier space Λ and the broken space

H1(T ,R2) =
{
v ∈ L2(Ω,R2); v|Ωi ∈ H1(Ωi,R2), Ωi ∈ T

}
,

its hybrid version is formulated as: �nd (u, λ) ∈ H1(T ,R2)× Λ such that∑
Ωi∈T

(A ε(u), ε(v))Ωi + 〈λ , v〉 = (f, v), ∀v ∈ H1(T ,R2), (A.2)

∑
Ωi∈T

〈µ , u〉∂Ωi = 〈µ , g〉, ∀µ ∈ Λ. (A.3)

It can be shown that (u, λ) ∈ H1(T ,R2) × Λ solves (A.2) - (A.3) if and only if

u ∈ H1(Ω,R2) is the solution of theH1-conforming formulation (A.1). Furthermore,

if σ = A ε(u) is the stress tensor, then λ|∂Ωi = −σ n∂Ωi .

A.1. An equivalent local-global hybrid primal formulation

Let U ⊥c,rm := Uc(T ,R2)⊥rm denotes L2-orthogonal complement of Urm inH1(T ,R2).

The approach for the MHM-H1 method for linear elasticity problems, as proposed
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in Ref. 19, is based on the representation u = urm + u⊥, in terms of a coarse

approximation urm ∈ Urm, and of u⊥ = u − urm ∈ U ⊥c,rm containing the smaller

scales in u. The local-global hybrid primal formulation is the result of two stages:

• Downscaling stage: u⊥ is characterized as u⊥ = T (λ)+T̂ (f), where {T (λ), T̂ (f)}
denote the local solvers de�ned on each Ωi ∈ T

(A ε(T (λ)), ε(v))Ωi = − < λ, v >∂Ωi , ∀v ∈ U ⊥c,rm, (A.4)

(A ε(T̂ (f)), ε(v))Ωi = (f, v)Ωi , ∀v ∈ U ⊥c,rm. (A.5)

• Upscaling stage: urm ∈ Urm and λ ∈ Λ solve the system

∑
Ωi∈T

〈µ, urm + T (λ)〉∂Ωi = −
∑

Ωi∈T
〈µ, T̂ (f)〉∂Ωi + 〈µ, g〉, ∀µ ∈ Λ, (A.6)

∑
Ωi∈T

〈λ, vrm〉∂Ωi = (f, vrm), ∀v ∈ Urm. (A.7)

It is shown in Ref. 19 that this system can be rewritten in an equivalent form as in

(2.9) - (2.10), but using the downscaling solutions of the MHM-H1 context.

A.2. Discrete MHM formulation with H1-conforming local solvers

The MHM -H1 formulation is driven into two discretization instances:

• A �nite dimensional space Ṽ = Urm + Ṽ ⊥ ⊂ H1(T ,R2). The construction of

this space rely on local H1-conforming FE spaces Ṽ (Ωi) for each subdomain Ωi,

based on re�ned partitions T Ωi . The functions v ∈ Ṽ (Ωi) are piecewise de�ned

over the elements K ∈ T Ωi by mapping scalar polynomial shape functions in the

corresponding master elements. For the presented experiments, they are spanned

by a hierarchy of arbitrary high-order shape functions described in Ref. 12.

• A �nite dimensional subspace Λ̃sk ⊂ Λ of piecewise polynomials based on parti-

tions T e of edges e ⊂ ∂Ωi, embedding the piecewise constant functions.

According to the principles of the local-global hybrid setting (A.4) - (A.7), the

MHM-H1 solutions (ũrm+ũ⊥, λ̃) ∈ Urm+Ṽ ⊥×Λ̃sk are are characterized as follows:

• ũ⊥ = T̃ (λ̃) +
˜̂
T (f), {T̃ (λ̃),

˜̂
T (f)} being the discrete local solvers

(A ε(T̃ (λ̃)), ε(v))Ωi = −(λ̃, v)∂Ωi , ∀v ∈ Ṽ ⊥, (A.8)

(A ε(
˜̂
T (f)), ε(v))Ωi = (f, v)Ωi , ∀v ∈ Ṽ ⊥. (A.9)

• ũrm ∈ Urm and λ̃ ∈ Λ̃sk solve the system∑
Ωi∈T

〈µ, ũrm + T̃ (λ̃)〉∂Ωi = −
∑

Ωi∈T
〈µ, ˜̂

T (f)〉∂Ωi + 〈µ, g〉, ∀µ ∈ Λ̃sk, (A.10)

∑
Ωi∈T

〈λ̃, v〉∂Ωi = (f, v), ∀v ∈ Urm. (A.11)
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This two-scale formulation is analyzed in Ref. 19. For

Ṽ =
⊕

Ωi∈T
Pkin(Ωi,R2) ⊂ H1(T ,R2), Λ̃sk =

⊕
e⊂Γ

Pksk(e,R2) ⊂ Λ,

well-posedeness occurs for kin ≥ ksk + 1 if ksk is even, and kin ≥ ksk + 2, otherwise.

If Ṽ =
⊕

Ωi∈T
Qkin(Ωi,R2) ⊂ H1(T ,R2), well-posedness holds provided kin ≥ ksk+2.

Similar results hold if the local spaces are continuously piecewise constructed on

top of re�ned meshes T Ωi of each subregion Ωi, under the same polynomial degree

constraints. For these kinds of polynomial, or piecewise polynomial approximation

spaces, a priori error estimations proved in Ref. 19 states that for a smooth exact

solution u, and under mesh shape-egularity and elliptic regularity assumptions,

||λ− λ̃||Λ + ||urm − ũrm||H1(TH) . Hksk+1 (A.12)

H|u− ũ|H1(T ) + ||u− ũ||L2 . Hksk+2, (A.13)

where H is the characteristic macro-partition size of the subdomains Ωi ∈ T , || · ||Λ,
||·||H1(T ) and |·|H1(T ) denoting standard norm forH−

1
2 (Γ,R2), norm and semi-norm

for H1(T ,R2), respectively .

In the recent work of Ref. 26, the MHM-H1 formulation was extended to more

general families of approximation spaces and meshes, allowing the use of polygons

in 2D and polyhedra in 3D. It is proved and veri�ed numerically that there is a

superconvergence in the displacement when re�ning either the global partition or

the skeleton mesh. The accuracy of the MHM-H1 method on non-aligned coarse

partitions was highlighted there using an elasticity problem in a high-contrast het-

erogeneous domain. An especial treatment proposed in Ref. 26, using Galerkin Least

Squares local solvers, also shows that this new MHM-H1 method is locking-free, a

property that fails for classical H1-conforming low-order numerical methods.

Appendix B. Classical FE Pairs for Poisson and Stokes Problems

For an element K, there is a master element K̂ and a geometric invertible map

FK : K̂ → K transforming K̂ onto K. FK induces transformations FK and Fdiv
K

used to map functions de�ned in K̂ to functions de�ned in K.

(i) Scalar functions: p = FK p̂ = p̂ ◦F−1
K ; for vector functions: v = FK v̂ by applying

FK to the components of v̂;

(ii) Vector functions (Piola transformation): v = Fdiv
K v̂ = FK

[
1

JK
DFK v̂

]
, where

DFK is the Jacobian matrix of FK , and JK =
∣∣det(DFK)

∣∣.
In K̂, scalar polynomials are usually of the form: Pk(K̂,R), of total degree at most

k, for the triangle; Qk,t(K̂,R), of maximum degree k in x and t in y, for the square.
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B.1. Poisson-compatible approximation spaces

Approximations spaces for �ux Ṽ ⊂ H(div,Ω,R2) and pressure P̃ ⊂ L2(Ω,R),

for mixed formulation of Poisson problems, are generally piecewise de�ned as by

local spaces V (K,R2) ⊂ H(div,K,R2) and P (K,R) ⊂ L2(K,R). They are usually

de�ned by P (K,R) = FK P̂ , and V (K,R2) = Fdiv
K V̂, mapping polynomial spaces

V̂ and P̂ de�ned on a reference element K̂. We consider that V̂ is spanned by

a hierarchy of vector shape functions organized into two classes: the functions of

interior type, with vanishing normal traces over all element edges,
˚̂
V, and the func-

tions associated to the element edges V̂∂ . Thus, the decomposition V̂ = V̂∂ ⊕ ˚̂
V

naturally holds. For stability (inf-sup condition), the divergence-compatibility con-

dition ∇ · V̂ = P̂ is required. This property can be extended to the spaces Ṽ

and P̃ by the construction of a projection πD : H1(Ω,R2) → V such that

(∇ · (η − πDη), ψ) = 0, ∀ψ ∈ P̃. There is an uni�ed form to de�ne πD by

the so called projection-based operators (see Ref. 11). They are represented as

πDη = πD,∂η + π̊D(η − πD,∂η) with edge and internal operators de�ned by

〈πD,∂η · nK , φ〉∂K = 〈η · nK , φ〉∂K ; ∀φ ∈ P (∂K),

(∇ · π̊Dη̊, ∇ · w)K = (∇ · η̊, ∇ · w)K , ∀w ∈ ˚̃V (K),

(π̊Dη̊, w)K = (̊η, w)K , ∀w ∈ ˚̃V (K), ∇ · w = 0,

where P (∂K) represents the space of normal traces of vector functions in Ṽ (K).

Two classical Poisson-compatible FE pairs shall be used in this paper:

BDMk, k ≥ 1 5: V̂BDMk
(K̂,R2) = Pk(K̂,R2) and PBDMk

(K̂,R) = Pk−1(K̂,R).

RT [k], k ≥ 1 28: V̂RT [k]
= Qk+1,k(K̂,R)×Qk,k+1(K̂,R) and P̂RT [k]

= Qk,k(K̂,R).

B.2. Stokes-compatible approximation spaces

Stokes-compatible �nite element pairs W̃ , Q̃ ⊂ H1(Ω,R2) × L2(Ω,R), for velocity

and pressure approximations in mixed Stokes formulations, are generally piecewise

de�ned by local FE pairs W (K,R2), Q(K,R) K ∈ T . The following two classical

Stokes-compatible FE pairs shall be used in this paper:

• Crouzeix-Raviart spaces (CRk) for triangular elements, proposed in Ref. 10 for

k = 2, 3, and extended to higher orders in Ref. 25: WCRk(K,R2) = Pk(K,R2) +

bKPk−2(K,R2), bK = λ1λ2λ3 being the bubble function de�ned by the barycen-

tric coordinates λi of the triangle K, and QCRk(K,R) = Pk−1(K,R).

• Girault-Raviart spaces (GR[k]) for quadrilaterals, considered in Ref. 18 or k ≥ 2:

WGR[k]
(K,R2) = FK(Qk,k(K̂,R2)) and QGR[k]

(K,R) = Pk−1(K,R)


