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ABSTRACT 

This paper presents data reduction of average friction factor of gas flow through adiabatic micro-channels.  In the 

case of micro-channel gas flow at high speed, the large expansion occurs near the outlet and the pressure gradient 

along the length is not constant with a significant increase near the outlet.  This results in flow acceleration and a 

decease in gas temperature.  Therefore the friction factor of micro-channel gas flow should be obtained with 

measuring both the pressure and temperature.  The data reductions on friction factors were carried out under the 

assumption of isothermal flow for numerous experimental and numerical studies since temperature measurement 
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of micro-channel gas flow at high speed is quite difficult due to the measurement limitations.  In the previous study, 

it was found that the gas temperature can be determined by the pressure under the assumption of one dimensional 

flow in an adiabatic channel (Fanno flow).  Therefore in the present study data reduction to estimate friction factors 

between two relatively distant points considering the effect of a decrease in temperature is introduced with the 

temperature determined by the measured pressure at a specific location.  The Friction factors obtained by using the 

present data reduction are examined with the available literature and the results are compared with empirical 

correlations on Moody chart. 

 

Key words : average friction factor,  turbulent,  gas flow,  micro-tube,  flow choking   

 

 

INTRODUCTION 

 The pressure loss (drop or difference) determined by a friction factor between two points 

is one of the significant factors to design micro piping lines for MEMS (Micro Electro 

Mechanical System).  Since the experimental work by Wu and Little [1] who obtained the 

average friction factors using pressure difference between the inlet and the outlet of gases in 

micro-channels, many experimental and numerical studies on friction factor in a micro-channel 

have been undertaken.  The friction factor for gases with large variations in the physical 

properties flowing through channels was obtained under the assumption of isothermal flow by 

most of the researchers, e.g. Turner et al. [2], Asako et al. [3], Tang et al. [4], Lorenzini et al. [5], 

Yang et al. [6] and Hong et al. [7] due to the measurement limitation of gas temperature flowing 

through a channel.  The literature is surveyed in the article by Kawashima and Asako [8]. 

 However, in the case of micro-channel gas flow at high speed, a large expansion occurs 

near the outlet and the pressure gradient along the length is not constant with a significant 

increase near the outlet.  This results in flow acceleration and a decease in gas temperature.  

Therefore the friction factor of micro-channel gas flow should be obtained with measuring both 

the pressure and temperature.  In actual situation, micro-channel gas flow does not stay 

isothermal and shows a strong decrease in temperature near the outlet for adiabatic walls.  

Recently, Kawashima and Asako [8] found that the gas temperature can be determined by the 

pressure under the assumption of one dimensional flow in an adiabatic channel (Fanno flow) to 

obtain the friction factor considering the effect of a decrease in gas temperature.    
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 This is the motivation of the present study.  In this paper an equation is proposed to 

calculate the average friction factors between relatively distant points considering the effect of a 

decrease in gas temperature. 

 

DERIVATION OF AVERAGE FANNING FRICTION FACTOR FOR ADIABATIC WALL 

 The four multiples of the Fanning friction factor for an adiabatic wall (Fanno flow) is 

defined by [8] 
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The pressures at the ports that are located adjacently are measured to obtain a semi-local friction 

factor.  In such a case the change in temperature between two ports is small.  Therefore, the 

temperature which appears in the second term in the right hand side of Eq. (1) can be treated as 

constant.  Integrating Eq. (1) with the average of the temperatures at two pressure ports, 

2
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equation is obtained.   
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The temperature in Eq. (2) can be determined solving the following quadratic equation obtained 

by total temperature balance between given two points (inlet and x) [8]. 
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where p is the pressure at the pressure port.  The temperature is determined by 
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where the inlet values of velocity, density and temperature are obtained with isentropic process 

between the inlet and the stagnation under the assumption of ideal gas. 

 Kawashima and Asako [9] measured three local pressures near the outlet of a PEEK 

(polyether ether ketone) micro-tube with D = 514.4 m and L = 50 mm and obtained semi-local 

friction factors between two pressure ports that are located adjacently using Eqs. (2) and (4).  

Hong et al. [10] also measured three local pressures near the outlet of a glass micro-tube with D 

= 397 m and L = 120 mm to obtain semi-local friction factors between two adjacently located 

pressure ports.  The effect of a decrease in gas temperature between two pressure ports is 

relatively small since the distances between two pressure ports are less than 0.1L.   

 However in the case that two locations are not close such as the inlet and the outlet, T in 

the second term of Eq. (1) can not be considered as a constant.  It should be integrated between 

x1 and x2.  Therefore, in the present study, the focus is to obtain the friction factor between two 

relatively distant points.  The above T (Eq. (4)) is a function of p.  The average Fanning friction 

factor integrating Eq. (1) between x1 and x2 is 
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Therefore, the average Fanning friction factor between x1 and x2 can be obtained from Eq. (5).  

Eq. (5) will also help piping design where pressure loss determination between relatively distant 

points is done using average friction factors.  

 

EXPERIMENTAL AND NUMERICAL ESTIMATIONS OF AVERAGE FANNING FRICTION FACTOR 

 

Table 1   Experimental results on average friction factors for turbulent gas flow in micro-tubes 

 D (m) Gas Re Micro-tube 

Outer surface  

Average friction factor 

Choi et al.  

(1991) [11] 

3.0 ~ 81.2  N2 20 ~ 18000 Silica tube 

Not clear 

Isothermal flow 

lower than Blasisu eq. 

Yu et al. 

(1995) [12] 

52 ~ 191  N2 250 ~ 20000 Silica tube 

Nearly adiabatic 

Isothermal flow 

lower than Blasisu eq. 

Tang et al. 

(2007) [4] 

55 ~ 201  N2 28 ~ 6200 Fused silica tube 

Not covered 

Isothermal flow 

lower than Blasisu eq. 

Yang et al. 

(2012) [6] 

86, 308,  

920 

 Air 150 ~18800 Stainless steel tube 

Inserted in  

a vacuum chamber 

Isothermal flow 

higher than Blasius eq. 

 

 

 There are a few literature which investigate friction factors of turbulent gas flow through 

micro-tubes as tabulated in Table 1.  The most average friction factors between the micro-tube 

inlet and outlet are obtained under the assumption of isothermal flow and the obtained average 

friction factors are lower than the Blasius equation.  Only the exception is friction factors 

obtained by Yang et al. [6].   

 At least the inlet temperature, the inlet pressure, the mass flow rate and the outlet 

pressure are required to obtain the average friction factor from Eq. (2) or Eq. (5).  These raw data 

are not shown in the literature.  We asked Professor Tang [4] and Professor Yang [6] to show us 

the raw data but they failed to find the data since they were collected long time ago.  Then, the 

experiments and numerical calculations for nitrogen gas flowing through a stainless steel micro-

tube (D = 867 m, L = 200mm and Ra = 0.48 m) whose inner surface is relatively smooth 

were carried out for data reduction.  The average Fanning friction factors between the inlet and 

the outlet, ff, ave were obtained under the assumption of Fanno flow from Eq. (5) with both the 

experimentally measured and numerically calculated data.  For both of them, the micro-tube 
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outlet pressure is assumed to be at atmospheric pressure for the micro-tube gas flow discharged 

into the atmosphere.  Detailed description of the experimental setup and the numerical 

methodology are documented in the previous studies [13 and 14] and will not be given.   

 The experimentally and numerically obtained ff, ave is plotted in Fig. 1 as a function of 

Reynolds number.  The 

ff obtained from Eq. (2) is also plotted in the figure.  The viscosity, 

which is evaluated at the stagnation temperature by using REFPROP [15] is used to calculate the 

Reynolds number.  The solid line and dotted line in the figures represent the values obtained by 

the theoretical formula (f = 64/Re) and f = 0.3164/Re0.25 (Blasius equation) for incompressible 

flow theory, respectively.  Since the effect of inner surface roughness on micro-tube flows is 

relatively large compared with conventional tube flows, the inner surface roughness of micro-

tubes used for the experiment were measured.  In order to measure the roughness of the inner 

surface of the tube, a part of the micro-tube is cut.  The arithmetic mean heights of the surface of 

the micro-tubes were measured with a 3D laser scanning confocal microscope for profilometry 

(Keyence, VK-X260).  The arithmetic mean height of the stainless steel micro-tube used in this 

study was 0.448 m.  The value of the inner relative surface roughness of the micro-tubes was 

5.1710-4.  Therefore the inner surface of the micro-tube used in this study is considered to be 

smooth.  For reference, the following Colebrook-White equation (Eq. 7) [16] calculating the 

friction factor of turbulent flow in a rough pipe is plotted in the figure with the red dotted line.  
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where ks is equivalent sand grain surface roughness.  In order to employ the above Colebrook-

White equation obtained with ks, of the stainless steel micro-tube, the ks is assumed to be 1Ra. 

The values obtained by the Colebrook-White equation nearly coincide with Blasius equation 

within Re = 20000.  And in the range of Re > 20000, it deviates from Blasius equation. 

 Mach numbers obtained using the measured local pressures at three locations near the 

micro-tube outlet are plotted in Fig. 2 as a function of Reynolds number.  The values of Mach 

number increase with increasing Reynolds number and level off in the range Re > 23000 since 

the flow is choked.   



International Journal of Heat and Mass Transfer  

 

7 

 

Due to the steep decrease in gas static temperature near the outlet from gas expansion, T 

in the second term of Eq. (1) can not be treated as a constant.  Therefore, the values of 



ff obtained from Eq. (2) deviate from those of ff, ave obtained from Eq. (5) at Re > 10000 for Fig. 

2 as the gas velocity and bulk temperature differences between the inlet and the outlet are large.   

In the range of Re > 23000, they deviate greatly from those of ff, ave obtained from Eq. (5) 

since the assumption of pout = patm is not valid with flow choking.  When the flow is choked, the 

gas velocity and bulk temperature at a specific cross section inside a tube remain unchanged, and 

the outlet pressure is higher than the back pressure (atmospheric pressure) with an increase in 

Reynolds number.  However, the outlet bulk temperature obtained under the assumption of pout = 

patm does not remain unchanged and rather decreases.  Therefore the arithmetic average bulk 

temperature decreases and 

ff increases at Re > 23000. 

 Both experimental and numerical values of ff, ave obtained from Eq. (5) are in excellent 

agreement with Blasius equation even though the outlet flow is under-expanded with flow 

choking and the outlet pressure is higher than the atmospheric pressure in the range of Re > 

23000.  The measure of under-expansion at the outlet is relatively small in this tube.  And the 

relatively larger pressure difference between the inlet and the outlet is not significantly affected 

by under-expansion at the outlet. 

 In the case of the high speed gas flow in an adiabatic tube, the gas temperature decreases 

in the tube.  This results in viscosity change.  In order to account for the variation of the viscosity, 

the viscosity which is evaluated at the average of the inlet and the outlet temperatures, is used to 

calculate the Reynolds number.  The average friction factor ff, ave obtained from Eq. (5) vs the 

Reynolds number based on the average temperature is also plotted Fig. 1.  Then the obtained 

uncertainty of the friction factor is represented in the figure.  The uncertainty of the pressure 

measured by the pressure transducer ( Krone KDM30, 0~1 MPa) is 2.5 kPa (0.25 % F.S.).  In 

the lower Re range, the uncertainty of the friction factor is slightly higher compared to the 

uncertainty of the friction factor in the higher Re range.  The corresponding uncertainty of the 

friction factor obtained in the range of 2590  Re  43204 is less than 0.0095 and more than 

0.0002.  In the same Reynolds number, the uncertainty of the friction factor obtained by Eq. (2) 

and Eq. (5) is also the same.  The average friction factor ff, ave vs the Reynolds number based on 

the average temperature is slightly higher than the average friction factor ff, ave vs the Reynolds 

number based on the stagnation temperature, since the Reynolds number based on the average 
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temperature is larger than the Reynolds number based on the stagnation temperature.  As a result 

of that, the average friction factor ff, ave vs the Reynolds number based on the average 

temperature is in very close agreement with Blasius equation. 
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 at stagnation temp.
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Fig.1  Fanning friction factor as a function of Re 
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Fig. 2  Mach number as a function of Re 
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 Fig. 3  Tin / Tout and ff, Eq. (2) / ff. Eq. (5) as a function of the pressure ratio 

 

 

 In the present experiment, the pressure and temperature in the chamber at the upstream 

section of the micro-tube were measured.  The measured pressure and temperature can be 

considered as the stagnation values, since the gas velocity in the chamber is very low.  The 

temperature and pressure at the inlet of the micro-tube are obtained with an isentropic process 

between the inlet and the stagnation under the assumption of ideal gas.  Also the pressure loss at 

the tube entrance is considered.  The square edged type is assumed for the entrance configuration. 

The outlet pressure is assumed to be at atmospheric pressure since the gas at the outlet is 

discharged into the atmosphere.  The outlet temperature of the thermally insulated micro-tube 

can be obtained by solving Eq. (4) since the outlet pressure is assumed to be at atmospheric 

pressure.  As a result of that, the correlation between the temperature ratios at two points (the 

inlet and the outlet) and their corresponding pressure ratios were obtained.  The temperature ratio, 
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T1/T2 is plotted in Fig. 3 as a function of its pressure ratio.  The ratio of the friction factors 

obtained by Eq. (2) and Eq. (5), ff, Eq. (2) / ff. Eq. (5)  is also plotted in the figure.  T1/T2 and ff, Eq. (2) / ff. 

Eq. (5) increase with an increase in the pressure ratio.  T1/T2 is 10 % higher than isothermal value at 

pin/pout=3 and ff, Eq. (2) is 5 % higher than  ff. Eq. (5) at pin/pout=3.  Therefore, Eq. (5) should be used 

instead of Eq. (2) when the pressure ratio pin/pout is greater than 3 if the 5% difference is allowed. 

 

CONCLUSION  

 The average Fanning friction factor between two relatively distant points is derived with 

the temperature determined by the pressure measured at a location to estimate friction factor 

between the inlet and outlet for gas flow through adiabatic micro-channels.  The following 

conclusions were reached.   

(1) The experimental and numerical Fanning friction factors obtained from Eq (5) in the 

turbulent flow regime are in excellent agreement   

(2) Both experimental and numerical average friction factor ff, ave obtained from Eq. (5) nearly 

coincide with Blasius equation even though the outlet flow is under-expanded with flow choking. 

(3) The average friction factor ff, ave vs the Reynolds number based on the average temperature is 

in very close agreement with Blasius equation. 

 

NOMENCLATURE 

B2  calculated value from Eq. (6) 

cp  specific heat at constant pressure   J/(kg K) 

D  micro-tube diameter     m 

ff  Fanning friction factor    - 

ff
*  semi-local Fanning friction factor   - 

ff, ave  average Fanning friction factor   - 

G   mass flow rate per unit area    kg/(s m2) 

ks  equivalent sand grain surface roughness  m 

L  micro-tube length     m 

Ma  Mach number      - 

n  pressure port number 

p  static pressure      Pa 
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x  coordinates      m 

R  gas constant      J/(kgK) 

Ra  arithmetic mean roughness    m 

Re  Reynolds number     - 

T  static temperature     K 

u  velocity component     m/s 

   kinetic energy correction factor   - 

   specific heat ratio     - 

   viscosity      Pas 

   density       kg/m3 

w   shear stress on wall     Pa 

 

subscript 

ave  cross sectional average value 

in  inlet 
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