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Abstract. A good knowledge of rainfall is essential for hy- 1 Introduction

drological operational purposes such as flood forecasting.

The objective of this paper was to analyze, on a relativelyFlash floods are a very destructive hazard in the Mediter-
large sample of flood events, how rainfall-runoff modeling ranean region. They are caused by intense rainfall events
using an event-based model can be sensitive to the use of sparducing short flood rising times, usually several hours. For
tial rainfall compared to mean areal rainfall over the water- hydrological operational purposes such as flood forecast-
shed. This comparison was based not only on the model’s efing, a good knowledge of rainfall is essential when dealing
ficiency in reproducing the flood events but also through thewith flood events. Andrassian et al. (2001) or Wagener et
estimation of the initial conditions by the model, using dif- al. (2007) have indicated how crucial it is to test the sensi-
ferent rainfall inputs. The initial conditions of soil moisture tivity of rainfall-runoff models to different rainfall inputs, in
are indeed a key factor for flood modeling in the Mediter- order to assess their sensitivity and robustness. The rainfall
ranean region. In order to provide a soil moisture index thatcharacteristics, in particular the spatial distribution of rain-
could be related to the initial condition of the model, the soil fall and its intensity are known to influence the modeling of
moisture output of the Safran-Isba-Modcou (SIM) model de-flooding events (Andrassian et al., 2004; Saulnier and Le
veloped by Metto-France was used. This study was donelay, 2009). A large part of the rainfall-runoff modelling er-
in the Gardon catchment (545 Bjnin South France, using rors can be explained by the uncertainties on rainfall esti-
uniform or spatial rainfall data derived from rain gauge and mates (Moulin et al., 2009; Sangati and Borga, 2009). Ar-
radar for 16 flood events. The event-based model consideredaud et al. (2002) showed that using mean areal rainfall in-
combines the SCS runoff production model and the Lag andstead of spatially distributed rainfall tends to underestimate
Route routing model. Results show that spatial rainfall in-the volumes and the peak flows, when using the same cali-
creases the efficiency of the model. The advantage of usingration of the rainfall-runoff model. This underestimation in-
spatial rainfall is marked for some of the largest flood events.creases according to the spatial coefficient of variation of the
In addition, the relationship between the model’s initial con- rainfall. However, the possibility to recalibrate the model in
dition and the external predictor of soil moisture provided by order to get equivalents results with uniform or spatial rain-
the SIM model is better when using spatial rainfall, in partic- fall as model inputs has been little investigated up to now.
ular when using spatial radar data wikR values increasing This question was addressed in the present study using an
from 0.61 to 0.72. event-based rainfall-runoff distributed model.

Event-based models are often preferred to continuous
models for real time operational applications and forecast-
ing in combination with radar spatial rainfall (Reed et al.,
2007; Javelle et al., 2010), but their main limitation remains
that the initial conditions need be set from additional ex-
ternal information (Berthet et al., 2009). The response of
a catchment to a rainfall event is greatly influenced by the

Correspondence toy. Tramblay antecedent soil moisture conditions, which are crucial pa-
BY (ytramblay@gmail.com) rameters for flood modeling (Norbiato et al., 2008; Brocca
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et al.,, 2009a; Marchi et al., 2010). In recent studies, sig-The event-based model considered was the distributed SCS-
nificant relationships have been established for small catcht R model, which combines the SCS runoff model and the
ments between initial conditions of event-based SCS modeléag and Route routing model. First, the efficiency of the
(Mishra and Singh, 2003) and in situ soil moisture measure-model was compared for the different types of rainfall inputs,
ments (Huang et al., 2007; Brocca et al., 2009a, Tramblay eallowing the model to be calibrated for each type of rainfall
al., 2010). For larger catchments, an alternative to local moninput. Second, the relationships between the calibrated initial
itoring could be to use soil moisture data retrieved from satel-condition of the event-based model and a soil moisture index
lite products (Jacobs et al., 2003; Brocca et al., 2009b, 2010were also compared for the different rainfall inputs.

Beck et al., 2010). Marchandise and Viel (2009) or Tramblay

et al. (2010) reported satisfactory correlations between the

soil moisture output of the SIM model developedMgteo- 2 Rainfall-runoff model

France (Habets et al., 2008) and the initial conditions of an ) ) ]
event-based model, indicating its usefulness for flood mod-T "€ hydrological model used here combines a GIS-based dis-

eling and forecasting. However, such correlations require a{ribut_ed version of the runoff model of the SoiI_Conservation
robust calibration of the initial condition of the model. A is- Se€rvice (SCS) and a Lag and Route (LR) routing model. The
sue needing to be addressed is the test to find out how fapCS runoff model has been developed by the United States
spatial rainfall data could improve the robustness of the ini-D&partment of Agriculture (see Mishra and Singh, 2003 for a
tial condition calibration and the quality of the correlations '€view) and has been widely used for flood modeling, partly
with external soil moisture indicators, which will be used for P&cause it performs efhmently Whlle_usmg a reduced_ number
expanding the use of the model out of the calibration domain©f Parameters. SCS is commonly interpreted as direct sur-
In the context of flash flood forecasting, recent studiesface runoff but it can also describe soil saturatlon.processes
have focused on using radar rainfall data to determine rain{Stéenhuis et al., 1995). The lag and route routing model
fall and discharge thresholds coupled with soil moisture, inhas also been widely used (Bentura and Michel, 1997). The
particular for ungauged catchments (Norbiato et al., 2008:m0del was implemented in the ATHYS modeling platform
Montesarchio et al., 2009; Javelle et al., 2010). In addi-(Nttp://www.athys-soft.org _
tion to traditional rain gauge networks, radar-derived rainfall  The distributed model lies on the following steps:
data are becoming more available for flood modeling, pro-
viding high temporal and spatial resolution estimates of rain-
fall (Delrieu et al., 2009; Sangati and Borga, 2009; Javelle
et al., 2010). Nevertheless, the modeling efforts are often
mitigated; the impact of the spatial distribution of rainfall on
runoff estimation is complex and can be dependent on the
nature of the rainfall, the nature of the catchment, and the 3. The runoff from each cell was calculated using a SCS
spatial scale considered (Segond et al., 2007). Comparisons  runoff model.
between studies concerning floods in several Mediterranean
catchments would be valuable to evaluate the benefits of us- 4. Each cell produced an elementary hydrograph at the
ing a distributed hydrological model with different rainfall outlet, using a lag and route routing model (Fig. 1).
sources (Yates et al., 2000; Cole and Moore, 2008; Saulnier )
and Le Lay, 2009; Bonnifait et al., 2009). As indicated by - The complete hydrograph of the flood was obtained af-
Delrieu et al. (2009), re-analysis of gauges and radar rainfall  ter addition of the elementary hydrographs.
data that has been collected in the past 30 years would be
useful for research and engineering applications, such as th&1 Runoff model
analysis of extremes or the forcing of distributed hydrologi-
cal models.

1. A digital elevation model (DEM) was used to define a
regular grid of cells of 50& 500 m over the watershed.

2. The rainfall of each cell was interpolated using the
Thiessen method.

For each cell of the catchment, the effective precipitation

The objective of this paper was to analyze how flood mod—(mm) tﬁomnb:’t"lg to runoff at_ tqet_tg?nbat Pe(t)! IS deg\gg
eling with an event-based model can be sensitive to the use c{fom d eI IT'S anh:_animtjs prect|r|10| atl (I)t using a i t-
spatially distributed rainfall compared to mean areal rainfall, hasff. rela |gns Ip between the Cému a |vet r?mfgo) 4a.
uniform over the watershed. Two questions were addressed'® imer and a reservoir capacity (Gaume etal., )
whqt is the. impact of taking into account the spatial vari- P(t)—0.2.5 P(t)—0.2.5
ability of rainfall on (1) the model efficiency for the flood Pe(t)=Pb()| s ——o< |\ 2— 5 "Fa<

. ) ) X P(@)+08.8 P()+08.8
peak and volume simulations, (2) the relationship between
the initial condition of the model and an external antecedentA reduction of the cumulative rainfall has been considered, in
soil moisture predictor? This study was done in the Gardonorder to simulate the decrease of the runoff coefficient in case
catchment (545 kR) in South France using uniform or spa- of intermittent rainfall (Bouvier et al., 2006). This reduction
tial rainfall derived from rain gauge and radar rainfall data. allows a better simulation of the flood events having more

@)
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‘< Elementary hydrograph from cell m
|

Q total

Fig. 1. Diagram of the lag and route routing model.

than one peak, and was applied as a linear function of thevherel, is the length of the flow path from the cell m to the

cumulative rainfall at time, according to the coefficiets:.. outlet, Vo the speed of propagation (my, andKg a coeffi-
cient without dimensionVy and K are assumed here to be
dpP() = Pb(t)—dsP(z) ) identical for each cell, and must be calibrated from rainfall
dt and discharge data. In the present study, dnilys varying
with P(0) =0 at the beginning of the event for each event andy is set to a constant value. The flow

Thus, the runoff model accounts for two parameSeand paths from the cell to the outlet are derived from the DEM.
ds S is the maximal soil water retention and can be con- 1he elementary discharge?) due to the effective rainfall
sidered as the initial water deficit at the beginning of eachPe (7o) of cell m at timexo is given by:
event. Therefore thd parameter is the initial condition of
the event-based model (i.e. it depends on each event). In thig(") = 0
application, the runoff parametérdoes not vary in space, Pe(to) exp( t —(to+Trm)

if t<to+Tm (6)

but remains the same for all the cells. Tdeparameter can ¢ () =
be considered as the drainage of the soil water and can be
obtained from the recession curves of the observed flood hy- \yhere 4 is the cell size. Finally, all the elementary dis-

drographs. If assuming that the retention curves are of expocharges provided from each cell at each time are added to
nential type, thelsparameter can thus be derived from: obtain the complete hydrograph of the flood.

)A if t>t+T,

m Km

Q(1r) = Q(to) exp(—ds (t — 1)) (3) 2.3 Model calibration and performance indicators

The Eq. (3) is adjusted to the recession part of the observegy,o mqdel was calibrated through an iterative process using
flood hydrograph. In the present studgis fixed to its me- o gimplex method developed by Nelder and Mead (Rao,
dian values obtained with all the events. 1978). The Nash-Sutcliffe model efficiency coefficient (Nash
and Sutcliffe, 1970) was used to evaluate the agreement be-

2.2 Routing model tween the simulated and the reference runoff hydrograph:

The effective rainfall is then routed from the cell to the outlet ZT (X7, )2
of the catchment. For each cell m, the model computes aNash=1— L‘tz (7
propagation time at the outlefy, and a diffusion timekm: Z;T:1 (X, —X)
Im where X, andY; are the observed and simulated discharges
Tm= Vo 4) at timer. X is the mean value of the observed discharges
during the event. A Nash coefficient of 1 indicates perfect
Km=KoTm (5) agreement between the simulated and reference runoff. Since

www.nat-hazards-earth-syst-sci.net/11/157/2011/ Nat. Hazards Earth Syst. Sci., 17,0 2041
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the purpose of this study is to focus on the peak of floods,
the calibration domain included only the discharges above
40P s~ in order to evaluate the model for the highest dis-

charges only and to minimize the influence of the periods
with small discharge values.

In addition, several statistics were computed in order to
estimate the model efficiency to reproduce the flood peaks
and flood volumes, depending on the rainfall input of the
model. These statistics include the relative bias (RBIAS),
and the relative root mean square error (RRMSE), computed
between the observe@; and estimated)e flood peak or
volume for each everit

Barre des Cevennes

Mialet

Saint Roman

Ql Qel 8313

RBIAS[% 100 8

[9%] =~ 2;( o ) (8)
RRMSE= | — Z < Qi—Qe; ) (9) Altitude (m) s406

N i—1 Qi - High : 1197 Soudorgues
. .. . -Low:121
Finally, the efficiency index (EFF) proposed by Aubert et
al. (2003) and Brocca et al. (2010) has been used to evalu-
ate the efficiency of spatially distributed rainfall compared to ¥
uniform rainfall for flood modeling: ’;‘é;
Z(Qspatia(f)—Qobs(t))z

EFF=1— (20)

Z (Quniform(t) — Qobs(t))?

where? is the time, Qops the observed discharg&spatial
the simulated discharge with spatial rainfall a@ghitorm the
simulated discharge with uniform rainfall data. If EFF is
greater than 0 then the use of spatially distributed rainfall
produces an improvement in the runoff simulation by the
model. EFF was calculated only f@ropg(t)>40m s 1.

Fig. 2. Location of the Gardon catchment with the 7 rain gauges
and the SIM pixels.

The climate is Mediterranean, with frequent heavy storms
and intense rainfall in the fall and winter seasons. The floods

3 Study area and hydrological data mainly occur during very intense rainy events that may reach
several hundred millimeters in 24 h (Delrieu et al., 2005). In
3.1 The Gardon catchment September 2002, the daily rainfalls reached locally more than

600 mm. Every year, several events exceed a 100 mm rainfall
The Gardon at Anduze is a 545 kRrMediterranean catch- in 24 h. The flood rising times are short, ranging from3to 5 h
ment located in the South of France, in thev€nnes moun- in this basin; runoff coefficients depend on rainfall amounts
tainous area (Fig. 2). In the Gardon watershed, several stucand initial soil moisture conditions, they can reach 0.5-0.6 in
ies have been undertaken to estimate the severity of floodthe extreme cases (Bouvier et al., 2006).
(Dolciné et al., 2001; Bouvier et al., 2006; Moussa et al.,
2007). The Gardon is a tributary of the Rhone River. The3.2 Hydrological datasets
catchment has a contrasted topography, the altitudes range
between 120 and 950 m, the slopes are very steepj20 The data was provided by the regional flood warning service
average. The basin has three main geological units; schissPC-GD, (‘Service de Revision des Crues Grand Deltp”
(dominant, 60%), granite and limestone. The soils are rela-The data available was hourly discharge at Anduze and rain-
tively thin, from 10 cm at the top of the hillslopes to 100 cm fall data from 7 gauges located in the basin as shown on Fig. 2
close to the river bed. The Gardon is mostly forested with a(Anduze, Barre des &ennes, Mialet, Saumane, Soudorges,
vegetation cover typical of the Mediterranean area (Mouss&aint Roman and Saint Jean du Gard). In addition, rainfall-
et al., 2007), composed of beech, chestnut trees (40%), holmadar images at 1-km resolution were provided. The radar
oaks and garrigue (22%), conifers (17%), moor (12%), pas-operated by Mto-France is located in the city of Manduel,
ture and cultivated land (9%). 40km south east of Anduze. The radar images provided

Nat. Hazards Earth Syst. Sci., 11, 1876, 2011 www.nat-hazards-earth-syst-sci.net/11/157/2011/
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Fig. 3. Radar images of cumulated rainfall for each event (units are in<).

by the SCP-GD were processed with the software CALA-in the fall season during the months of September October
MAR® developed by the RHEA company (Einfalt et al., and November, except for two events during the months of
1990; Jacquet et al., 2004). The CALAMAR® software March and May.
produces rainfall estimates obtained from radar images ad-
justed with a time-varying correction factor, using the rain 3.3 SIM soil moisture output
gauge monitoring network for calibration. The time step
for the radar images was originally 5min; the images haveThe output from a hydro-meteorological model, SIM, was
been aggregated at hourly time step matching the one ofised to characterize soil moisture. The SIM model was de-
discharge data. veloped byMéteo-Franceand enables the soil wetness index
For this study, 16 flood events on the Gardon of An-to be computed for the whole France. SIM is based on the
duze between 1994 and 2006 were considered. The selectedupling of three different models at a scale of 8 km?:
events were those with simultaneous discharge, rain gaug8AFRAN, which produces the meteorological input, ISBA,
and radar data available. Figure 3 shows the cumulated rainahich deals with both mass and energy fluxes between the at-
fall for each flood event considered in the present study, obmosphere, vegetation and soils and MODCOU, which routes
tained with the radar data. Table 1 show some hydrologicaboth superficial and groundwater discharges. A complete
characteristics of the 16 events, including the duration, thedescription of the SIM model can be found in Habets et
base flow (BF), the peak discharge (Qm), the total precipi-al. (2008) and Quintana Seiget al. (2009). The model com-
tation averaged over the 7 rain gauges (Ptot) and the runofbines elevation, land cover and soil characteristics with at-
coefficient (RC). The maximum discharge is quite variable,mospheric input to estimate river flow. Among other vari-
ranging from 151 to 3130 &s ! for the event of 8 Septem- ables, SIM can reproduce the soil moisture conditions. Paris-
ber 2002. The total precipitation observed ranges from 45Anguela et al. (2008) found good agreement between the soil
to 355 mm depending in the flood event. As shown in Ta-moisture output of the SIM model and local soil moisture
ble 2, the selected events are well distributed between theneasurements or ERS-scatterometer data. The percentage of
different alert levels of the SPC-GD in Anduze, integrating soil saturation is available daily at 08:00 h (winter time) for
some small floods (green and yellow alert levels) and ma-cells of 8x 8 knm? at three different levels in the soils: surface
jor floods (orange and red alert levels). All events occurredlayer, root layer and deep layer (levels are respectively 0.1,

www.nat-hazards-earth-syst-sci.net/11/157/2011/ Nat. Hazards Earth Syst. Sci., 17,0 2041
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Table 1. Characteristics of the selected flood events.

Event Date Duration Base Flow Peak Total rainfall ~ Total rainfall Runoff Hu2
(h) (m3/s) discharge with rain with radar ~ coefficient (%)
(m3/s) gauges (mm) (mm)
1 22 September 1994 101 9.7 670 256.8 280.7 0.30 47.6
2 3 October 1995 68 38.0 1610 286.2 342.0 0.48 56.8
3 13 October 1995 39 27.0 1410 196.7 265.9 0.46 63.8
4 24 November 1995 169 95.0 450 132.1 121.7 0.51 60.8
5 10 November 1996 110 0.8 380 185.5 248.6 0.15 554
6 17 May 1999 197 135 620 163.9 163.9 0.75 56.5
7 19 September 2000 20 11.1 340 104.5 155.7 0.08 39.8
8 28 September 2000 64 3.4 1190 203.3 232.4 0.30 51.7
9 14 March 2002 83 10.0 640 54.5 99.7 0.59 56.2
10 8 September 2002 32 2.8 3130 355.8 426.6 0.32 48.1
11 27 Octoer 2004 42 154 236 115.6 123.7 0.22 57.1
12 5 September 2005 85 8.9 151 262.9 326.0 0.10 38
13 3 November 2005 34 23.9 195 45.1 57.3 0.31 62.8
14 23 September 2006 22 1.9 166 77.3 82.9 0.09 52.6
15 18 October 2006 47 2.3 1250 222.3 250.9 0.42 57.2
16 14 November 2006 119 5.5 256 100.1 126.9 0.19 56.2
75
Table 2. Alerts levels of the SPC-GD at Anduze.
70t

Alert level Discharge (rﬁ’s) Event number 65

Green <500 4,5,7,11,12,13,14,16

Yellow 500 et 1200 1,6,9, 60

Orange 1200 et 2000 2,3,8,15 £

Red > 2000 10 g%

1.9 and 2.7 m for the Gardon catchment). The soil depths
were supplied by the ECOCLIMAP database, which char-
acterizes the soil and vegetation parameters at a?Iscale
(Habets et al., 2008). Paris-Anguela et al. (2008) have shown

[4x]
o
T

that the estimation of the root-zone moisture is better than the
estimation obtained for surface soil moisture. The difference

can be explained by the fact that surface soil moisture is moréig. 4. Averaged Hu2 values over the Gardon of Anduze catchment

'S
(5
T

Y
o
T

35
0

50 100

affected by atmospheric conditions than root-zone soil mois{2004-2008).
ture. Marchandise and Viel (2009) also noted that the soil
moisture of the root layer (Hu2) was the most suitable for hy-

200
Days

150

250 300

350

drological applications. Consequently in this study, only thet© ZEOS are pre;ented in F‘Q- 4, thi annual p'atterr; iﬁ subject
soil saturation Hu2 (%) of the intermediate layer was consid-10 €hanges in time depending on the beginning of the rainy

ered: season in fall. Hu2 values range from 35% to 75%, which
' means that the soils are never absolutely dry, or saturated on
Hu2= 9, 100 (11) the whole pixel scale. For the 16 flood events considered in
0

s the study, the Hu2 showed little spatial variability in between
wheref denotes the volumetric water content mdhe sat- the cells of the SIM output available Covering the Gardon of
urated volumetric water content. Anduze watershed area (Fig. 2), with a coefficient of varia-

As shown on F|g 4, the SIM model is able to reproducetiOn between 0.05 and 0.12. The data of the different cells
the annual pattern of soil moisture on a daily scale. A typi- Were averaged in order to obtain one single soil moisture de-
cal Mediterranean pattern with the highest moisture observegcriptor over the basin for each flood event (Table 1).
during the fall and winter season and very dry during summer
months can be seen. Depending on the year (the years 2004
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Fig. 5. Relative difference of total rainfall for each event computed between radar rainfall data and corresponding rain gauges 1 to 7
(1-Anduze, 2-Barre, 3-Mialet, 4-Roman, 5-Saumane, 6-Soudorgues and 7-St-Jean).

4 Results and discussion by 23%) the rain gauges precipitation. Depending on the
event considered, the bias could range fre80% to 100%

4.1 Comparison of rain gauge and gridded radar or above for a few cases. For the majority of cases, there

rainfall data is a systematic positive bias towards higher amounts of pre-

cipitation when using the radar data (Fig. 5). The differ-
Radar rainfall measurements need to be corrected from raiences between the two rainfall estimates are probably due
gauges measurements, as stated by Creutin et al. (1997p the fact that the Gardon catchment is located quite far
Hardegree et al. (2008), and Wagener et al. (2007). Althouglaway from the radar (40 to 80 km), which can seriously af-
the radar data were already corrected from rain gauges medect radar efficiency in a mountainous area. These results
surements, a new control was effected by a comparison oére coherent with the results obtained in others studies. Cre-
the rain gauge and gridded radar rainfall data. Each pixel olutin et al. (1997) reported for the Gardon of Anduze catch-
the radar data images corresponding to the 7 available raiment a significant statistical difference between ground and
gauges was identified. The cumulative rainfall over theseradar measurements (after correction). Similarly, Hardegree
pixels for each event was extracted and compared with theet al. (2008) found that radar data for the Snake River Plain
cumulative rainfall recorded in the corresponding rain gauge of south-western Idaho overestimated cumulative gauge pre-
A relative bias was computed in order to assess the differcipitation by 20%—40%.
ences between the two rainfall estimates. The results indi-
cated that the radar precipitation overestimated (in average

www.nat-hazards-earth-syst-sci.net/11/157/2011/ Nat. Hazards Earth Syst. Sci., 17,0 2041
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4.2 Rainfall-runoff modeling results using different 8
precipitation inputs 7[ T . . - .

The event-based rainfall-runoff model as described in the I —
Sect. 2 was used with the different precipitation data inputs ¢ °f
available. The different precipitation inputs used with the -
SCS-LR model over the Gardon watershed were: 3t E : -

VO values
IS

1. The uniform precipitation based on areal mean of the 7 I i
rain gauge data (UG). C

UG UR SG SR

2. The uniform precipitation based on areal mean of the
radar data (UR). . . 2l

3. The 7 rain gauge data spatially interpolated (SG). sor —

400+
4. The radar data at 1-km resolution (SR). T T

3 300F ! B

All four precipitation datasets were used at 1-hour time? 200} .
resolution to provide comparable estimates. The model wa:
calibrated using the available discharge data for each even !
Both parametersis and Ko were set constant for all the ot E 5 56 = .
events, because (i) they were found to vary little from an Tyne of rainfallinput used in the SCS-LR model
event to another, and (ii) to reduce the possible sources of
equifinallity when calibrating the whole set of parameters, Fig- 6. Box-plot of Vg (a) and S(b) values for each rainfall input in
and therefore, to make the calibration &fand Vo more the re_unfall-ru_noff model (the box_ has lines representing the lower
robust. Theds parameter was obtained from the recessionquart'le’ median and upper quartile values).
curves of the observed flood hydrographs and was set to the
median value of 0.4 for all events. The paramekgrwas
also set constant for all events witfigp=1.5, the optimal
value obtained for this catchment in previous runs of the
model. TheS and Vp parameters were calibrated for each
event using the four different rainfall inputs.

100+

that a model using different rainfall spatial resolutions might
need re-calibration of the model parameters.

The S parameter varies from 0 to 557 mm depending on
the event (Fig. 6b). Larges$ values are obtained with the
models using radar data comparison with the models us-
4.2.1 Impact on model parameters ing rain gauge data, either averaged or spatially distributed.

This is in agreement with the fact that the total precipita-
Figure 6a shows the distribution of the optinig) param-  tion is on average 23% greater when using radar data over
eters obtained for all the events with the different rainfall the rain gauge data. In addition, tlSevalues are underes-
inputs. The mediarVy values obtained with the 4 rainfall timated when considering uniform rainfall compared to dis-
inputs used are different, with medidfy values of respec- tributed rainfall, withS values smaller for the rainfall data
tively 3.08 and 3.17 for the uniform rainfall inputs UG and UG and UR than for the rainfall inputs SG and SR, respec-
UR, and mediariy values of 2.63 and 2.74 for the rainfall tively. Moreover, no dependencies have been observed be-
inputs SG and SR. On averagé, values tend to be larger tweensS andVy values for all the rainfall inputs.
when using the uniform precipitation inputs UG and UR, as
indicated by their higher median. The reason is that uniform4.2.2  Impact on flood simulations
rainfall tends to artificially diffuse the real rainfall over the
whole catchment, and then it is necessary to increase th&he median Nash coefficients, the relative bias and RMSE
Vo parameter for hydrograph reshape. There is also a largeon runoff volume and peak flow of the flood simulations with
spread in thé/y values when using the uniform rainfall in- the different rainfall inputs are presented in Table 3. In Fig. 7
puts UG and UR compared @ values obtained with the the Nash coefficients obtained for each event with rain gauge
spatial rainfall inputs SG and SR (Fig. 6). This finding is data (uniform or spatially distributed) and the radar data (uni-
coherent with Arnaud et al. (2002) who observed that theform or spatially distributed) are plotted. These results show
calibration of a rainfall-runoff model is affected when using that using spatially distributed rainfall data potentially im-
an averaged uniform rainfall input; the generated biases havproves the simulations, with higher median Nash values ob-
consequences for the numerical stability of the model paramtained with SG and SR (respectively 0.86 and 0.81, Table 3).
eters and increase parameter uncertainty. Similarly, Cole an@he median Nash values obtained with uniform rainfall data
Moore (2008) or Brdossy and Das (2008) results indicate are lower, respectively 0.77 and 0.76 for UG and UR. On
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Fig. 7. Nash values for each event using uniform mean areal rainfall of spatially distributed rainfall from rain gauge data (left) or radar
data (right).

Table 3. Results of rainfall-runoff modeling using four different rainfall inputs (UG, UR, SG, SR).

Rainfall RBIAS RBIAS RRMSE RRMSE Median

input Volume PeakFlow Volume PeakFlow Nash
(%) (%) (%) (%)

uG —0.05 —0.20 0.20 0.22 0.77

UR —0.07 —0.19 0.14 0.23 0.76

SG —0.10 -0.13 0.15 0.19 0.86

SR —0.07 —0.12 0.13 0.19 0.81

average, the use of spatial rainfall improves the Nash coeffical localization of the storm cells was needed to improve the
cients by 8.7%. The errors in flood volume and peak flow discharge simulations.

are also reduced when using spatial rainfall data (SG and The performance of the model with spatial rain gauge or
SR) compared to uniform rainfall data (UG and UR). This radar data is very similar, with a lower mean Nash coeffi-
result is in agreement with Anéassian et al. (2004), who cient (0.81) with radar data but the model using the radar
observed an improvement of the streamflow simulations onvainfall data yields almost the same values of RBIAS and
virtual catchments when taking into account the spatial repRRMSE on peak discharge or runoff volume as shown on
resentation of precipitation. Table 3. These similar results for modeling efficiency must

When considering each of the 16 flood events (Fig. 7), itPe considered as the fact that 7 rain gauges are available in
can be seen that the Nash coefficients obtained with spatiall{h® catchment, allowing a fair estimation of the rainfall on
distributed rainfall are higher than those obtained with uni-the catchment scale; the efficiency of the radar rainfall input
form rainfall for 14 events out of 16 for both rainfall inputs Would have been more conclusive in the case of a reduced
(rain gauge and radar). The event 7 has the lowest Nash Vaggnsny of rain gauges. These results are similar to those ob-
ues, below 0.6 with all the different rainfall inputs, indicat- t@ined by Borga (2002) in South-West England, or Carpenter
ing probably some inadequate rain estimation with both rain€t al. (2001) in the south United-States, indicating that hydro-
gauge and radar data. For the events 2 and 12, with |oca|grgph pr_edictions driven by rad_ar data may attain simulation
ized rainfall at the southern edge of the catchment (Fig. 3), af:fflClencua_s close to those obtained from the gauge-based ref-
great improvement in the flood simulations is observed whergrence rainfall.
using the distributed rainfall inputs, with Nash coefficients
increasing from 0.3 to 0.7. For some of the most important4.3 Impact of the spatial distribution of rainfall on
events (corresponding to the orange and red alerts level, Ta-  the relationships betweenS and antecedent soil
ble 2), better simulations are obtained with spatial rainfall as moisture conditions
shown on Fig. 8. Saulnier and Le Lay (2009) and Bonnifait
et al. (2009) have also previously concluded in their analysedJsing the flood simulations obtained with rainfall inputs UG,
of the 8 September 2002 event that the accurate geographiJR, SG and SR, th& parameter describing the soil potential
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Fig. 10. EFF index between uniform or spatially distributed rainfall data with rain gauge data (left) and radar data (right).

maximum water retention has been compared to the Hu2 panput (see Sect. 4.2.1) were kept unchanged. The results indi-
rameter obtained from the SIM model. Hu2 values vary from cate that the models using spatial rainfall perform better than
one event to another as shown in Table 1, indicating a rangéhe models using uniform rainfall, with the median Nash val-
of different initial moisture conditions. The plots of the rela- ues for the SG and SR inputs respectively equal to 0.55 and
tionships between Hu2 argiderived with UG, UR, SG and 0.52, and median Nash values for the UG and UR inputs re-
SR are presented in Fig. 9. Direct linear relationships existspectively equal to 0.45 and 0.43. The EFF index has been
between theS parameters obtained with the different rain- computed using the Eg. (10) in order to compare the relative
fall inputs and the Hu2 values for each event, withvalues  efficiency of spatially distributed rainfall for runoff simula-
ranging from 0.56 to 0.72. The results indicate an improve-tion. Figure 10 shows the results obtained with rain gauge
ment of theS-Hu2 relationships when using spatial rainfall and radar data, indicating for most events, in particular when
data instead of uniform mean areal rainfall, for each given in-using rain gauge data, better runoff modeling efficiency with
put type (SG better than UG; SR better than UR). However spatially distributed rainfall data (with EEFL). On average,
the bestR? are obtained with the radar rainfall data, witR the use of spatially distributed rainfall improves the runoff
values of respectively 0.70 and 0.72 with UR and SR. Thesimulation by 21% when using rain gauge data, and by 15%
relationships shown in Fig. 9 are identical to the relation- when using radar data.

ships obtained by Tramblay et al. (2010) for a small (£km

sub-catchment of the Gardon; furthermore, Marchandise and

Viel (2009) reported significant correlations between Hu25 Summary and conclusions

and S for different catchments in southern France wif

values ranging from 0.25to 0.73. This paper compared spatially distributed rainfall and mean
areal rainfall as inputs in an event-based rainfall-runoff mod-

4.4 Global impact of the spatial distribution of rainfall eling approach. On the basis of the analyses and the results
on flood simulations reported in this study, it can be concluded that spatial rain-

fall increases the efficiency of the model. The best benefits
The impact of using spatially distributed rainfall inputs on of using spatial rainfall data have been obtained for some of
model performances anstHu?2 relationships was analyzed the largest flood events; on average for all the flood events
separately in the sections above. In this last section, both imthe Nash coefficient is 8.7% larger when using spatial rain-
pacts are combined in order to assess the relative efficiencfall instead of uniform rainfall. In addition, the relationship
of spatially distributed rainfall for flood modelling. Conse- between theS parameter, describing the initial condition of
quently, the model is applied with tieparameter estimated the model, and an external predictor of soil moisture, here
from the S-Hu2 relationships established in the Sect. 4.3the Hu2 parameter of the SIM model, is better when using
(Fig. 9), for each rainfall input. The values of thg pa- spatial rainfall, in particular when using radar data with
rameter obtained previously for each event and each rainfalalues increasing from 0.56 to 0.72. Radar rainfall data also
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