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Abstract. The vast majority of structures introduce symmetry in one or two dimensions, which can be
a periodicity in the case of constructing several identical unit cells. Periodic structures have found a big
interest in engineering applications because they introduce frequency band effects, due to the impedance
mismatch generated by periodic discontinuity in the geometry, which can improve the vibroacoustic per-
formances. However, the presence of imperfections i.e. (defects, irregularity) in the structure, leads to
a partial lost of regular periodicity (called quasi-periodic structure) that can have a noticeable impact on
the vibrational and/or acoustic behaviour of the elastic system. The tailored irregularity, which is a de-
signed loss of periodicity, can be used, therefore, to improve the dynamic behaviour of structures. In the
present paper numerical studies on the vibrational analysis of two-dimensional non-planar periodic and
quasi-periodic structures have been performed. The content deals with finite and infinite systems. The
finite element models of solid structures focused on the band diagram analysis of the infinite systems and
the forced responses of the finite structures. The quasi-periodicity is defined by invoking the Thue-Morse
sequence for building the assigned variations (geometry) along the domain of finite element model. The
wave characteristics in quasi-periodic panels, present some elements of novelty and could be considered
for designing structural filters and controlling the properties of elastic waves.

1 INTRODUCTION

Periodic metamaterials are one of the central topics in vibration and acoustics domain. A degree of
regular periodicity in arrays of engineered metamaterials, always leads to design and create frequency
stop bands (i.e. waves cannot freely propagate in these frequency ranges). One of the main features
associated with the periodic distribution of mechanical devices is the ability of the system to block the
propagation of waves in specific frequency ranges [1]. Such structures behave as filtering systems, since
in some ranges of frequencies waves propagate without attenuation (if damping is neglected), while in
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others decay exponentially [2, 3]. They are also very well known metamaterials and phononic materi-
als for exhibiting frequency band gaps, that can improve the vibroacoustic response of structures [4, 5].
Recent studies show interesting topics on architectured material like phononic crystals, metamaterials,
and auxetic sandwich cores [6] to control the propagation of elastic waves. These architectured material
rely on two mechanisms for forming band gaps. Phononic crystals can form Bragg type band gaps, but
are limited in the low-frequency regimes because their unit cell size scales with wavelength. In contrary
metamaterials overcome this size, because they rely on resonances, but the resulting band gaps are nar-
row [7, 8].

Numerical analyses lead to the design of nominally perfect periodic structures. However, the presence
of imperfections i.e. defects or irregularities in post-manufacturing are highly likely to be occurred in
regular periodic designs. Recent studies show that there are effects on random variability due to the
additive manufacturing process on the performance of the elastic band gap behaviour in creating a stop
band effect in the forced response of the waveguide [9]. On the contrary, the present work is focused
on tailored irregularities, which is called (quasi-periodicity), which are considered to have impacts on
dynamical behaviour of the structures. The first challenge is how to predict the frequency band gap in
infinite quasi-periodic systems. In fact, the design of periodic configurations is usually based on the use
of Floquet-Bloch (FB) theorem which considers a single cell with adequate boundary conditions[10, 11].

To design an enhanced quasi-periodic structure and analyse the impact of this design in terms of dy-
namics response, two methods are under investigation. A forced response of the finite quasi-periodic
structure and a periodic panel which has commonality in terms of in-plane dimensions. In the second
method in order to predict the frequency stop band zones a dispersion analysis of the infinite periodic
structure is designed. In this design two meso-scale unit cells, which represent the dispersion analysis of
the infinite periodic structures are considered. The predicted dispersion curves can be directly compared
with its finite periodic counter parts for frequency band gaps prediction. In the forced response, those
two meso-scale cells are combined using Thue-Morse morphism series in order to tailor a quasi-periodic
panel. The FRFs of the quasi-periodic panel show effective results compared to strictly periodic panels
in terms of band gaps width enlargement and level of attenuation.

2 MODEL AND LEXICON

2.1 Infinite structure

The model consists of a metamaterial waveguide. Metamaterials in the present investigation are an en-
gineered sets of multiple elements to show some filtering properties. The waveguide consists of two
different unit cells in meso-scale. The unit cells are made of polymers materials and the mechanical
properties are given in Tab.1.

The unit cell is made of two sub-parts, on-board panel, and a resonator. The dimension of the meso-scale
wave-guide is detailed in the Fig.1. The information of the control volume of the both unit cells are taken
into account for modelling a lightweight, easy-to-manufacture metamaterial [12]. The on-board panel
has a thickness of 2mm with an area of 35× 35 mm2. The resonator shape has a height of 17.5mm and
a lateral and horizontal span of 30mm. Cell A and cell B have two different shapes with approximated
equal control volumes. The wall thickness of the cell A is 4.8mm and the circular hole in cell B has a
radius of 8mm.
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Figure 1: Meso-scale unit cells of infinite periodic panels

Table 1: Material properties of the metamaterial

Material Polymer
Modulus of elasticity(Pa) 2.32×109

Density (kg ·m−3) 1050
Poisson’s ratio 0.34

2.2 Finite structure

In the finite panel two perfectly periodic and two quasi-periodic structure are considered. In the last two
models specific Thue-Morse sequences are used to generate impedance mismatches in the view of desired
degree of quasi-periodicity. The degree of quasi-periodicity might be controlled with mathematical rules
that are introduced in the next section.

2.2.1 Thue-Morse sequence

A Thue-Morse sequence is binary sequence (an infinite sequence of 0s and 1s). The sequence starts with
0 then 01, 0110,01101001, and so on, [13]. For the simplicity, let us define the Thue-Morse morphism
to be the function s from the set of binary sequences to itself by replicating every 0 in a sequence with
01 and every 1 with 10 [14]:

s(x,y) = s(x)s(y) (1)

Eq.1 defines a map s for all strings x,y. Defining the Thue-Morse morphism s(0) = 01, s(1) = 10 leads
to the relations for increasing the quasi-periodicity pattern in two directions:

s(0) = 01 = AB
s2(0) = s(s(0)) = 0110 = ABBA
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s3(0) = s(s(s(0)) = 01101001 = ABBABAAB

Each 0 and 1 represents cell A and cell B respectively. In the present finite element model only 8 com-
bined unit cells are used, it means that the Thue-Morse morphism map stops at s3.

Two types of quasi-periodic finite panels are considered. The first one is a pure quasi-periodic panel
(8×8 unit cells) and the second quasi-periodic panel is designed similar to the first one with an addition
of two bare panels without resonators in the right and left sides of the quasi-periodic one. These two bare
panels are used as an input zone in the left and output zone in the right side of filtering domain shown in
Fig.2.

Figure 2: Quasi-periodic panel with the combination of cell A and B

2.2.2 Periodic sequence

The two periodic panels have a repetition of single cell A for first panel, and single cell B for second
panel respectively with the dimensions of 8×8 shown in Fig.3.
According to the Fig.3, the panel has a thickness of 2 mm, and the hallow resonator has a wall thickness
of 4.8 mm.

4



Timorian et al

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 3: Two strictly periodic panels, left with cell A periodicity and right with cell B

3 STRUCTURAL DYNAMICS

3.1 Dispersion analysis

Classical FB method is used for the band diagram analysis of the strictly periodic infinite panel. The
Floquet-periodicity is defined in the four side boundaries of the unit cell. The unit cell represents a
bi-directional spatial periodicity in the given infinite structure. The band diagram is computed along
the three symmetry directions of the first Brillouin zone shown in Fig. 4. Classical (FB) Floquet-
Bloch theory is used as a periodic boundary condition using COMSOL Multiphysics for the analysis of
dispersion curves. The periodicity boundary conditions in four sides of the lattice are

µR = e− jkxLµL (2)

µU = e− jkyLµB (3)

where, µR and µL are the displacement in the right and left side of the x axis and µU and µB are the
displacement in the upper and bottom of the y axis. L is the length of reciprocal element, kx and ky are the
wavenumers in the x and y directions. Band diagrams are analysed by setting up eigensolver analysis as
a parametric sweep using one parameter, k, which varies from 0 to π. The range of the k parameter spans
three wave vectors starting from (A to R to S and back to A), covering the edges of the first irreducible
Brillouin zone Fig. 4.
Two different unit cells are considered for the dispersion analysis. First cell A and second cell B. Both
cells have commonalities in terms of mass, volume fraction, material and structural properties in order
to be useful periodic tool to be compared with the quasi-periodic counter part. The results predicted
by these two cells could lead to design a quasi-periodic lattice, which is a finite panel with a tailored
irregularity that is invoked by Thue-Morse morphism deterministic approach. The results of the band
diagram is plotted in Fig. 5 There are two complete frequency band gaps in each sub-figure. The first
band gaps with small ∆ω = 570 Hz that represents the (resonance band gaps) following the larger Bragg
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Figure 4: Diagram of the first irreducible Brillouin zone for a square lattice

band gaps ∆ω = 2.9 kHz around 11 kHz is predicted for the cell A. Cell B in the right hand side of the
Fig.5 shows almost similar dispersion behaviour but with a wider resonance band gaps ∆ω = 754 Hz
around 4 kHz and a slight wider Bragg band gaps 3.1kHz compared to cell A. According to a sensitivity
analysis on both cells, the compromised wall thickness of the cell A = 4.8 mm and radius of the resonator
shape cell B = 8 mm is selected to isolate the maximum vibration level.
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Figure 5: Band diagram of infinite panels with a representative, left cell A and right cell B

3.2 Finite element analysis

In this part, four types of investigations, on periodic and quasi-periodic panels; specifically, the aim
is to apply on a finite structure the results obtained with a infinite periodic sequence.
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Fig. 6 show three curves; by focusing on the Bragg type band gaps zone, the blue curve with dash
lines corresponds to the cell B. It has thinner stop band wide compared to the other curves and there
is also a slight shift in the stop bands towards the higher frequencies compared to the two cell A and
combined (A, B). Despite of that cell A has a shift of the same band gaps zone towards the lower fre-
quency ranges. Paying attention to the dark green solid curve that corresponds to the combined cell A
and cell B, it has wider band gaps compared to both blue dash curve and dotted orange curve almost
around 10.5− 14.2 kHz. Also it should be mentioned that in the velocity amplitude response it has the
lowest pick in comparison of two other curves. The highest picks could be seen at around 8.25 kHz, and
the orange has the highest pick with the amplitude of 20dB.
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Figure 6: FRFs of three finite structures in terms of velocity amplitude in dB response

In conclusion of the first part, it could be predicted that the combination of two unit cells in finite quasi-
periodic panel (8×8 unit cells) is a compromise model and it has impacts on the dynamic behaviour of
panel compared to the two other strictly single periodic panels in terms of wide of band gaps and lower
attenuation level.
In the second part of the finite element analysis, an FRF of the quasi-periodic structure with (840×280×
2 mm3) is taken into account. This meta-structure shown in Fig.7 is made of three sub-parts. The middle
part is a quasi-periodic panel of combined cell A and cell B and the two other parts in the left and right
hand side bare panels with no resonators on it.
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The panel has a cantilever constraint (fixed boundary condition) marked blue in Fig.7. A unit white
spectrum force is applied to the input zone right left hand side bare panel (marked with red arrow) and
the response is observed in terms of Root Mean Square (RMS) with the average node points in the input
and output zones.
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Figure 7: Geometry of meta-structure (filter)

Fig.8 shows FRF response in terms of velocity amplitude in dB. Practically, this type of panel is used as
a junction filter between two bare panels. The induced vibration energy transfers through this junction,
and it acts as a meta-material filtering property to the elastic waves due to the impedance mismatch in
the shape of resonators embedded in the bare panels.

The FRF shows two types of curves, the blue one corresponds to the the average of the 64 nodes in
the input zone, where all the elastic waves are confined in the zone and there is no sign of frequency stop
bands. The orange curve corresponds to the response of the output zone. The frequency stop bands starts
from 10.36 kHz and continues to 13.6 kHz. There are some picks around 12 kHz inside the band gap
in shaded area. Three frequencies are chosen inside the shaded area and their operative modes or forced
deflections are plotted in Fig. 9.

A similar procedure for the numerical modelling of filtering effects has been done in the paper of
Billon et al [10]. They basically selected 4 points in the FRFs. Two points are located in the inside the
predicted band gap and two outside the band gap. One point inside the band gap does not really reflects
good response despite of being in the predicted band gaps. In fact, in the present FRFs only three points
are considered, two of them are on the lower and upper bound of the band gaps and the third one is taken
in the middle of the attenuation zone.
As it can be seen from the results in the paper of Billon et al [10], the average squared amplitude velocity
around 43.3 kHz which is inside the predicted band gap zone, has visible deformed shapes over −20dB.
In contrary, although there are some picks in the middle of band gap in the present result but they are
bellow −25dB with less deflections.
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Figure 8: FRFs of the meta-structure in terms of RMS of velocity amplitude in dB

The operative modes in Fig.9 shows the deformation of the panel in 10.36 kHz, the start point of band
gaps, 11.36 kHz middle of the band gaps, and 13.12 kHz almost at the finishing point of the band gaps.
It can be seen that the panel has an efficient filtering effects by using quasi-periodic pattern.

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	

(a) 10.36 kHz (b) 11.36 kHz

(c) 13.12 kHz

Figure 9: Operative modes of the meta-structure with three selected frequencies in the upper, lower and middle
position of the attenuation level
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4 CONCLUSIONS

The first aspect is formulating fundamental procedures to design a quasi-periodic meta-structure using
Thue-Morse morphism sequence. The second aspect is dedicated to analysis of the impact of this design
in terms of dynamical behaviour. The results of FRFs and dispersion analysis shows that quasi-periodic
pattern have impact on dynamic behaviour of panels, especially in terms of isolating unwanted vibrational
behaviour all over the metamaterial part of the span, specifically inside the attenuation level.
In this analysis, the presented tailored irregularity, which in higher extent is a designed loss of periodicity
in finite structure has influential access to extend the attenuation level to lower velocity amplitude-dB and
slightly increase the wide of the band gaps. These impact came due to the impedance mismatch of the
combined (resonators) embedded on the bare panel. There are some points to be highlighted in the below:

The quasi-periodicity (Thue-Morse morphism) in two directions shows lower frequency band gaps
compared to the one direction ones like Fibonacci sequences. Quasi-periodic panel in the present article
has an efficient impacts on the vibrational analysis compared to the single periodic panels. In general
quasi-periodic pattern is capable of confining the energy in some modes, and in higher extends there are
possibilities to shift those localised modes in desired frequency bands.
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