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Abstract

Periodic structures found a big interest in engineering applications because they
introduce frequency band effects, due to the impedance mismatch generated by
periodic discontinuities in the geometry, material or boundary conditions, that can
improve the vibroacoustic performances. However, the presence of defects or
irregularity in the structure, leads to a partial lost of regular periodicity (called
quasi-periodic structure) that can have a noticeable impact on the vibrational and/or
acoustic behaviour of the elastic structure. The irregularity can be tailored to have
impact on dynamical behaviour. In the present paper numerical studies on the
vibrational analysis of one-dimensional finite, periodic and quasi-periodic structures
are presented. The contents deal with the finite element models of beams focused
on the spectral analysis and the damped forced responses. The quasi-periodicity is
defined by invoking the Fibonacci sequence for building the assigned variations
(geometry and material) along the span of finite element model. Similarly, the
same span is used as a super unit cell with Floquet-Bloch conditions waves for
analysing the infinite periodic systems. Considering both longitudinal and flexural
elastic waves, the frequency ranges corresponding to band gaps are investigated.
The wave characteristics in quasi-periodic beams, present some elements of
novelty and could be considered for designing structural filters and controlling the
properties of elastic waves.
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1 Introduction

The analysis of the propagation of waves in structures is a fundamental task in
many engineering applications. The knowledge of dispersion relations, providing
information on the type and nature of propagating waves is of interest for the prediction
of forced response, acoustic radiation, non-destructive testing and transmission of
structure-borne sound. All these themes are nowadays the subject of many studies in
order to improve the vibro-acoustic comfort of passenger carries, bridges, pipelines,
and space vehicles.

Wave propagation in simple structures can be investigated through analytical
models, exact or approximated. However, this kind of analysis usually involves
assumptions and approximations concerning the stress, strain and displacement
states of the structure, and always more refined numerical models are required as
the frequency increases since the wavelength may become comparable with the
cross-section dimensions. For example, if the propagation of bending waves in a beam
is investigated, Euler-Bernoulli, Rayleigh, Timoshenko or 3-dimensional elasticity-
based theories might be used, depending on the frequency range of interest1,2.
For complex structures, such as layered (composite and sandwich) beam3–5 and
plate6–12, or cylinders13–15, analytical formulations become quite difficult: beyond
the required assumptions and approximations in the models, the resulting dispersion
relations are usually transcendental and/or of high order, therefore their resolution is
not straightforward or requires symbolic manipulation15,16. For this reason, for the
analysis of complex structural components, semi-analytical or numerical methods have
been developed for the computation of dispersion curves. However, if the structure
under investigation presents characteristics which are periodically repeated in one
or more directions, the analysis procedure can take advantage of this property by
exploiting the periodicity17. A generic structure obtained as an assembly of identical
elements, called cells, can be considered as periodic. Several engineering structures
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can be assumed as periodic, starting from simple beams and plates, moving to stiffened
plates or car tyres, up to aircraft fuselages, railways, tracks, etc. In this case the
study of the wave propagation through the waveguide can be reduced to the analysis
of a single cell by applying the periodicity conditions together with continuity of
displacements and equilibrium of forces at the interfaces between two consecutive
cells (Floquet-Bloch theorem)18–20.

Periodic structures found a big interest in engineering applications because they
introduce frequency band effects that can improve the vibroacoustic performances.
In fact, in periodic structures, the impedance mismatch generated by periodic
discontinuities in the geometry, acting as a waveguide, and/or in the material,
can cause destructive wave interference phenomena over specific frequency bands
called “stop band“ or “band gaps“21. However, the presence of imperfections (i.e.
defects or irregularity) in the structure, due to the manufacturing process or not
exact reconstructions of the boundary conditions for example, lead to the loss of the
periodicity of the structure: this can have a noticeable impact on the vibrational and/or
acoustic behaviour of the elastic structure.

In this case it is more correct to speak about quasi-periodicity which is the property
of a structure that displays irregular periodicity. A quasi-periodic structure can
be idealised as repeated substructures which have asymmetric translations in any
direction of the Euclidian space. It can be considered as an intermediate case between
periodic and random elastic medium22. Quasi-periodic behaviour is thus a pattern of
recurrence with a component of unpredictability that does not lend itself to a precise
measurement. An example of a natural quasi-periodic structure is a quasicrystal. It
was discovered in 1981 by Dan Shechtman23,24 and it is a structural form that are both
ordered and non-periodic16. These structures are characterized by several properties,
such as low coefficient of friction and low heat conductivity, just to cite some of them,
that made them very attractive and interesting for technological applications, mainly in
the fields of crystallography and photonics23–29. Quasi-crystals were used as non-stick
coating on frying pans and cooking utensils30 and to develop heat insulation, led and
new materials able to convert heat to electricity31–33.

In recent years there is a growing interest in the design possibilities offered by
quasi-periodic structures also in the field of structural mechanics. This leads to
some modelling issues which will be well analysed due to the impossibility of
periodic simplifications, but an adequate design of the quasi-periodicity may offer
new vibroacoustic properties to the structure34,38–40, they also provide experimental
verification of the transmission properties of one dimensional phononic crystals based
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on the quasi-periodic Fibonacci and Thue-Morse number sequence. Hou et al. 34

investigated the transmission properties and the frequency spectra of Fibonacci binary
composite material with different thickness ratio of two layers. Whereas in this paper
Fibonacci series is dedicated for 1D structures i.e. beams and the vibration properties
and band structure of their unit cells are investigated. In term of analysis this paper
is mainly focused on Frequency Response Functions (FRF) and spectral analysis
to study the dynamic behaviour of the structures35–37. Aynaou et al. 38 performed a
theoretical investigation on acoustic wave propagation of one-dimensional phononic
band gap structures made of slender tube loops pasted together with slender tubes of
finite length according to a Fibonacci sequence. In this analysis Aynaou et al, found
that besides the existence of extended and forbidden modes, some narrow frequency
bands appear in the transmission spectra inside the gaps as defect modes. Similarly, in
the results of the current investigation, there are narrow frequency peaks that appears
in the frequency bands of the geometrical impedance mismatch case, especially
on longitudinal frequency response. Aynaou et al consists a treatment procedure
that spatial localisation of the modes lying in the middle of the bands and at their
edges is examined by means of local density of states. In the other hand, Chen and
Wang39 studied band gaps of elastic waves propagating in one-dimensional disordered
phononic crystals. Similar topological formation of Fibonacci and Thue-Morse are
investigated in an experimental observation of the formation of phononic scattering
band structure in one-dimensional periodically and quasi-periodically based on the
Fibonacci and Thue-Morse number sequences by King and Cox40. Gei41 shows that
in the case of axial and flexural vibration for systems based on different Fibonacci
sequences, the number of stop/pass bands within a defined range of frequencies
changes and follows the Fibonacci recursion rule, by showing also a self-similar
pattern. From a design point of view the asymmetrical conditions in quasi-periodic
structures can be built by following different sequences, such as: higher order
generations of Fibonacci sequence, Thue-Morse, Rudin Shapiro sequences as well
as Penrose lattices42. In this paper the modelling of simple quasi-periodic structures
is built with the conventional finite element method (FEM) to fulfil the generation
of quasi-periodic patterns since these are based on an asymmetrical distribution of
identical cells43,44. Finite, periodic and quasi-periodic structures are thus proposed and
compared by using the Fibonacci sequence to investigate about the possibility to have
and control useful frequency bands in which the response can be reduced as much as
possible. In Section 2 the models and their specific lexicon are presented. Section 3
contains the methods and tools used for the numerical investigations. The main results
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obtained are commented in Section 4 and finally, some concluding remarks are given
in Section 5.

2 Models and Lexicon

In this paper, quasi-periodic beams with a finite number of cells are analysed. In these
models specific sequences like Fibonacci series will be used to generate impedance
mismatches in view of the desired degree of quasi-periodicity45,46.
The degree of quasi-periodicity might be controlled with mathematical rules that will
be introduced in the next section.

2.1 Fibonacci Sequence and Nomenclature

The well-known sequence called Fibonacci49 is a series of integer numbers such that:

Sn = Sn�1 + Sn�2 (1)

For instance the Fibonacci sequence starting with 1 and 2 is 1, 2, 3, 5, 8, 13, 21,....The
configuration of the quasi-periodic structures is here carried out by using a sequence of
two possible variations according to Fig.1.

The variations can typically be due to the sections, materials or boundary conditions.
The first cell coincides with S1, then the cells can be assembled, forming a sequence
defined by a simple integer (order). The Sn denote the n-th sequence:

Figure 1. Configurations of quasi-periodic beam following a Fibonacci pattern 22.

Tab.1 shows the number of unit cells necessary to generate a given order of Fibonacci
sequence.
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Table 1. Example of number of cells according to Fibonacci orders.
Fibonacci orders function of number of cells

Orders 4th 5th 6th 7th 8th 9th 10th 11th

Number of Cells 5 8 13 21 34 55 89 144

The numerical models is identified by the order of the Fibonacci sequence, and thus
the length of the n-th order sequence, Sn, will be greater than Sn�1. As example,
Fig.2 shows a Fibonacci (S6) beam with a sequence of 13 [ABAABABAABAAB]
cross-sections.

Figure 2. Fibonacci configuration of 6th order

2.2 Cases

In this framework, variations between cells A and B will be obtained through
impedance mismatch. Two cases will be considered.

Case M1: impedance mismatch due to geometrical discontinuity, Fig.3 [case M1];
Case M2: impedance mismatch due to material discontinuity, Fig.3 [case M2].

The various configurations considered for M1 will be described in the next section.
Without loss of geometry, the material used in case M1 is steel A-36 whose properties
are provided in Tab.2
For the typical quasi-periodic structure case M2 the material variation is reported in
Tab.2.
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Figure 3. Configuration of discontinuities: (M1) and (M2).

Table 2. Mechanical properties of quasi-periodic bi-material beam.
Material Modulus of elasticity (Pa) Poissons Ratio Density (kg ·m�3)

Steel A-36 2⇥ 1011 0.26 7800
Aluminium 2045-T4 73⇥ 109 0.33 2700

Magnesium 45⇥ 109 0.35 1770
Copper 110⇥ 109 0.355 8960

2.3 Geometrical variations of case M1

A comparison for the case M1 by keeping constant the mass of the sum of the A
and B cells is considered. The aim is to find the most efficient geometrical variation
behaviour of unit cells (A) and (B) for vibration control. The factors prescribed in
Tab.3 are the ratio of the length of section edges. The four configuration types are
displayed in Fig.4. The configuration Type IV has no impedance mismatch, and Type
II will be first analysed as a reference.

Figure 4. Comparison of case M1 by keeping constant the mass and the length of sum of the A
and B cells (the beams have square cross sections).
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Table 3. Sizes of cells A and B as sub-cases for M1.
Geometrical variation

Type Cell width [mm] height [mm] Factor

I A 42.00 42.00 2.7B 15.36 15.36

II A 40.00 40.00 2B 20.00 20.00

III A 38.00 38.00 1.6B 23.58 23.58

IV A 31.62 31.62 1B 31.62 31.62

3 Methods and Tools

Two numerical methods are used: the FEM is considered for analysing the Frequency
Response Functions (FRF) of the finite beam while the Wave Finite Element Method
(WFEM) together with spectral analysis is taken into account for computing the
dispersion diagrams.

3.1 Finite Element Analysis

The analysis is performed with the conventional FE method: frequency response
function (FRF) analysis of damped quasi-periodic beams. The FE analysis is carried
out using ANSYS-APDL linked with MATLAB.
The types of elements used are Beam 188, which is a linear 2-node beam element.
Each cell (A and B) are composed of 4 nodes (three beam elements) and each node has
three degrees of freedom: longitudinal in the axial direction (x axis), bending in lateral
direction (y axis), and torsional rotation around (x axis). The actual distance between
each cell is 100 mm.

Hkj(⌦) =
NX

p=1

 pk pj

mp(!2
p � ⌦2 + i2⇠p!p⌦)

(2)

where Hkj(⌦) is the transfer function, mp the modal mass, !p the eigenfrequency, ⌦
the forcing frequency; ⇠p is the modal damping;  pk and  pj are the components of
the p-th eigenvector evaluated at the source and receiver points and N the number of
retained eigenmodes. Accordingly, the FRF of the quasi-periodic beams are computed.

These forced response analysis are performed with free-free boundary conditions.
The input force is located at one end of the beam in the transverse direction and the
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response is computed at the other end of the beam in the same direction.

Figure 5. Schematic diagram of beam with 6th order of Fibonacci for numerical analysis.

3.2 Spectral analysis of infinite beam (waveguide)

The Floquet-Bloch conditions can be applied to simulate infinite periodic beams that
is waveguides. This is classical for perfectly periodic structures. In order to perform
spectral analysis on quasi-periodic structures, super unit cells are used.

3.2.1 Super unit cell: In this work, a super unit cell is a cell hosting every single
order of the Fibonacci sequence and it hosts given orders of deterministic quasi-
periodic pattern in a single cell. Although it will be repeated in a periodic way, the
cell itself has a quasi-periodicity replication inside the super unit cell. In this work, we
also consider a second case, called double unit cell, as a reference. This case is perfectly
periodic. For illustration, the substructures in Fig.6 and Fig.7 are modelled as a super
unit cell and double cell respectively. In this example, the super unit cell is defined
according to the 6th order of Fibonacci sequence (type ABAABABAABAAB). The
super unit cell is used in the Wave Finite Element Method (WFEM) analysis presented
in the next section.

Figure 6. Periodic wave-guide (Super unit cell with 6th order of the Fibonacci sequence).
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Figure 7. Periodic wave-guide (reference double unit cell).

3.2.2 Transfer matrix of super unit cell: The transfer matrix is a square matrix of
even dimension and is function of frequency of the disturbance propagating in the
structure52. For a given structure, each super unit cell composed of n individual cells,
has the same transfer matrix [T] such that;

xn = Tx0 (3)

where xn is the state vector on the left-side of the cell (i.e. on the left-side of the super
unit cell), x0 is the state vector on the right-side of cell 1 (i.e. on the right-side of the
super unit cell), and T = TnTn�1, ...T1 where Tj is the transfer matrix of cell j. In
order to obtain the transfer matrices, both mass and stiffness matrices are extracted
from APDL-ANSYS.
The dynamic behaviour of the cell number j is described by:

Djqj = fj (4)

where Dj ,fj , and qj define respectively the dynamic stiffness matrix, force and
displacement vector. The dynamic stiffness matrix writes

Dj = �!2Mj + Kj⇤ (5)

with Kj⇤ = Kj⇤(1 + i⌘) where Mj ,Kj , and ⌘ are respectively the mass matrix, the
stiffness matrix and the loss factor corresponding to the structural damping. The
matrices and vectors are partitioned according to the degrees of freedom: qj

L, qj
I , and

qj
R respectively refer to the left-side, internal, and right-side parts of the super unit cell

number j. The corresponding terms in the matrices are written
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The internal degrees of freedom can then be condensed using the second row of Eq.6,
in order to retain the analysis to the left and right boundary displacements and forces.

qj
I = �Dj�1

II (DjT
LIqj

L + Dj
IRqj

R). (7)

it leads to
"

Dj
LL � Dj

LIDj�1

II Dj
IL DjT

LR � Dj
LIDj�1

II Dj
IR

Dj
RL � Dj

RIDj�1

II Dj
IL Dj

RR � Dj
RIDj�1

II Dj
IR

#(
qj
L

qj
R

)
=

(
fjL
fjR

)
. (8)

The reduced dynamic stiffness matrix is written as follow:

"
D̃j

LL D̃j
LR

D̃jT
LR D̃j

RR

#(
qj
L

qj
R

)
=

(
fjL
fjR

)
. (9)

One define state vectors for the boundaries of the component j:

uj
L =

(
qj
L

fjL

)
, uj

R =

(
qj
R

fjR

)
. (10)

The transfer matrix is hence obtained by reorganising the degrees of freedom according
to the state vector:

uj
R = Tjuj

L (11)

where, uk
L and uj

R are the displacement vector of the right and left component of the
unit cell, and Tj is the transfer matrix in Eq.11:

Tj =

2

4 �̃Dj�1

LR D̃j
LL �̃Dj�1

LR

D̃j
RL � D̃j

RRD̃j�1

LR D̃j
LL D̃j

RRD̃j�1

LR

3

5 . (12)

The transfer matrix of the super unit cell is then obtained in Eq.3.

3.2.3 Dispersion analysis: Periodicity conditions applied on the super unit cells are
then written as

up+1
L = e

µup
L (13)
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where µ is the propagation constant. Combining Eq.11 and Eq.13,yields to the
eigenvalue problem:

Tp
�i = ��i. (14)

where � = e
µ.

Depending on the nature of the eigenvalue of [Tp], the waves propagating in a periodic
structure are described as travelling waves and attenuating waves which occur in
alternating frequency bands known as pass-bands and stop-bands. If the eigenvalues
of [Tp] are complex and of the form e

±ikL, k 2 IR the corresponding wave is in a
pass-band and the wave travels in the form of e±ikL, where k is a real wave number,
the positive and negative signs indicating left and right travelling waves, respectively.
On the other hand if all eigenvalue of the [Tp] are of the form e

±� or e±�+i⇡ , � 2 IR,
is pure real exponent, the corresponding frequency is in a stop-band and the wave
amplitude after travelling n elements are attenuated by the factor e(±�n), in which the
real exponent � implies attenuated waves52.The dispersion curves are computed by
imposing frequency and computing k according to the given eigenvalue problem.

4 Frequency response function of finite beams using FEM

FRFs of finite structures are analysed in two subsections according to the cases named
M1 and M2.
The FRFs are plotted in wider frequency ranges of 10 kHz for flexural and 25 kHz for
axial vibration. The frequency range was chosen for the first 22 natural frequencies. A
modal analysis is taken into consideration to investigate the number of elements per
wavelength in order to fulfil a criterion for a sufficiently accurate numerical modal
analysis. The boundary condition is free-free and a frequency range up to 10kHz for
flexural and 25 kHz for axial vibration is chosen because the main target is on the first
22 natural frequencies. The model is meshed by 1D 2-node beam element type 188.
Mesh setting with two different beam elements (188� 2 node and 189� 3 node) with
the number of elements per wavelength 4, 5, and 10 are checked. The span of the beam
is 1300 mm and 39 elements per wave length was more accurate with beam element
188� 2 node to converge the exact natural frequency which is 9700 Hz.
The strategy to compute the harmonic response function of periodic beams is carried
out in MATLAB. A script is created to define finite element model of the periodic
double cell with an arrangement of 13 unit cells. The boundary condition is considered
as free-free and a white noise (i.e. harmonic force of 1N from 0� 10 kHz with a
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bandwidth of 10 Hz is applied to one end of the beam. The white noise is applied
in vertical z and horizontal x direction, respectively for flexural and longitudinal
vibrations.

4.1 FRF results for Case M1-Type II

A first analysis of M1-Type II is performed, considering increasing orders of the
Fibonacci sequence (4th, 5th, 6th, 7th, 8th, 9th, 10th, and 11th orders). It is reminded
that the structure is not periodic, and that an increase in Fibonacci order is associated to
an increase in the length of the beam. All results are carried out in the frequency range
[0� 10000] Hz. The results in Fig.8 shows multiple stop bands which stay coherent
from one order to the other, for instance, around [600� 900] Hz, [1900� 2300] Hz
and a larger frequency stop band around [2900� 4000] Hz.

Figure 8. FRFs of the flexural waves for given orders of Fibonacci beam with geometrical
variation

The trend is similar to periodic structures when the number of cells increases: the band
gaps location does not change, while the depth in the FRF is becoming larger. The
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largest frequency stop band appears around [4900� 7100] Hz. The lowest depth of the
amplitude that exceeds (�450) decibels corresponds to the precision of the numerical
tool and is obviously not measurable in practice. The dark blue curve corresponds to the
highest generated order of Fibonacci, the 11th order in this investigation and shows the
deepest gaps. Other curves follow in unequal increment in the depth as the generation
order is increasing. The picks which can be observed in the Fig.8 corresponds to the
resonances of the finite beams.
Beside the flexural response shown in Fig.8, a similar analysis is performed for the
longitudinal waves. Fig.9 shows responses of the beams with an applied force in
the axial direction. There are only two stop bands around [4300� 4800] Hz and
[6600� 10000] Hz.

Figure 9. FRFs of the longitudinal waves for given orders of Fibonacci beam with geometrical
variation

The trend is similar to the flexural waves shown in Fig.8 when the number of cells
is increasing: the band gaps locations do not change, while the depth in the FRF
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is becoming larger. There is also a localised mode which is appearing inside the
band gap of longitudinal waves. The effects of dynamic behaviour of the beam-spans
when increasing the number of cells following Fibonacci orders is emphasised by this
analysis. In practice, these types of beam-spans can be used as a junction filter between
structures. The induced vibrational energy transfers through this junction, and it acts as
a meta-material filtering property to the elastic waves due to the impedance mismatch
in geometry and material.

4.2 Frequency response function of double cell and super unit cell

structure using WFEM:

In this part, FRFs of periodic beams are analysed. Two cases are considered, a double
cell variation with a span of 13 unit cells having perfect periodic order and a super unit
cell Fibonacci 6th order with 13 unit cells, which has non-symmetric repetition of cells
inside periodic super unit cell. The results are discussed with four types of variations
in geometry for both cases. The aim of this analysis is to investigate the effect of the
geometric variation on width and shift in frequency of band gaps and comparing the
two models in order to find a compromised one for vibration control.

The application is based on flexural and longitudinal waves of perfectly periodic
models in Fig.10 and Fig.11. The analysis is applied for four types of geometrical
variations as a test cases.

Both, flexural and longitudinal waves are investigated under FB periodicity condition.
The ranges of frequency of FRF of flexural waves in Fig.9 is considered at around
10 kHz, whereas for longitudinal waves in Fig.11 is around 25 kHz, depending
on the frequency stop bands zone. More details on geometrical variation of the
Types plotted in Fig.10 and Fig.11 are reported in Table 3. The response shows an
enlargement in frequency stop bands as the height of cross section (B) decreases and
the frequency stop bands tends to increase from almost 8 kHz up to around 2.5 kHz.
Similarly, a frequency response function of the same periodic double cell is considered
for longitudinal waves to describe the dynamic behaviour of beam in compression
conditions.
Fig.11 shows an enlargement of frequency stop bands into the left and right sides of the
frequency ranges. The result shows an enlargement of frequency stop bands compared
to continuous beam type IV, characterised by no ranges of free wave propagation, to
almost 15kHz range covered by stop bands.
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Figure 10. WFEM frequency response function of periodic double cell beam for flexural
waves

Now we consider a super unit cell. In Fig.12 the frequency response function is derived
in the frequency range [0� 1]kHz. The results are based on frequency band gaps
shift and enlargement of width of the band gaps. Fig.12 shows a frequency response
function of a 6th order beam. It can be noted that band gaps move to higher frequencies
at increasing the height of the second cell (B). For instance, the first subplot which is
dedicated for Type I (B height=15.36 mm) has a band gaps around 400� 650 Hz. In
case of Type II (B height=20.00 mm) the band gap is shifted to higher frequencies.

Ultimately, the use of super unit cell has a significant pros compared to the double
unit cell. The first point that can be noticed in the FRFs of the Fig.12 is that there is
a tremendous shift of frequency stop bands from lower to higher frequency ranges.
The second point is that there is a frequency stop band appearing in lower frequency
ranges bellow 1 kHz, which is not the case in double unit cell approach. In conclusion
the characteristics of the beam with Fibonacci series or simply (quasi-periodic beams)

Prepared using sagej.cls



18 Journal Title XX(X)

Figure 11. WFEM frequency response function of periodic double cell beam for longitudinal
waves

is that the geometrical impedance mismatch between the non-symmetrical interfaces
in these types of beams gives an efficient impact on reducing the response especially
in lower frequency regimes compared to (ABABABABABABA) periodic case. If we
consider in terms of band gaps, it does not show an efficient result in creating wider
stop bands, but it has multiple attenuation level in lower and medium frequency ranges.
The results obtained in this paper shows that the beam with Fibonacci characteristics
can improve performances in terms of attenuation level without weight penalty, which
can be an asset for meta-materials.

4.3 Frequency response function of quasi-periodic beam with

geometrical variations of type II:

This test case is influenced by the previous results. As it can bee seen from Fig. 10, Fig.
11 and Fig. 12, that there is an evident band gaps shift and width enlargement while
the factor of the cross sections of Tab.3 increased from (1� 2.7). Now in this sub-
section the same procedure is applied to the quasi-periodic beam with the 11th order
of Fibonacci using four types of geometrical variation according to the Tab.3. Fig.13
shows four curves, each corresponding to the four cross-section types of variations.
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Figure 12. WFEM FRF for flexural waves of super unit cell with 6th order of Fibonacci
sequence

Type IV is a continuous beam without impedance mismatch of the cross-section,
while the others include geometrical variations. Starting from Type III with dashed
line, Type II dot curve line, and Type I with dot dashed line, each has stop bands in
different ranges of frequencies. It can be highlighted that by increasing the factor of
the geometrical variation the wide of band gaps is increasing. There are some few band
gaps that exist in Type II and III but not as deep as Type I .
In conclusion, case M1 shows significant impacts on vibration control of the beam

span. The first case, flexural analysis shows that, by increasing the length of Fibonacci
orders, the depth of the band gaps grows deeper and it is also emphasised in
longitudinal waves. The second part describes width enlargement and shift in frequency
of band gaps, in which quasi-periodic super unit cell shows more impact compared to
the double unit cell approach.

4.4 FRF results for Case M2

The second quasi-periodicity configuration is based on the impedance mismatch of
material constituents. The beam is analysed as a continuous span (with no cross section
variation). The mass of the system for all orders of Fibonacci is kept the same, while
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Figure 13. FRFs of the flexural waves for 11th order of Fibonacci beam with geometrical
variation

the length of the beam is changed and the number of cells are increased according to
Fibonacci pattern. the length of the structure varies from 0.5 m to 14.4 m that includes
[4th,5th, 6th, 7th, 8th, 9th, 10th, 11th] orders of Fibonacci with [5, 8, 13, 21, 34,
55, 89, 144] cells. The results of the dynamic analysis for flexural waves in Fig.14
shows similar behaviour as those for the geometrical impedance mismatch in terms of
increase of the depth of the band gaps when the order increases.

The main result in this analysis is that material constituent discontinuity does not have
a high dynamical influence in the depth growth of frequency stop bands as it is in
the cross section variation case. Analysing again the numerical results in comparative
way (i.e. without paying attention to the absolute values), the growth of depths in the
frequency band gaps is lower than those computed for the variation of cross-sections.
Fig.15 is dedicated to the longitudinal waves of the case M2, where it shows a change
in the location of band gaps compared to the flexural waves. The ranges of band gaps
can be observed in two locations between [4400� 4800] Hz and [6700� 10000] Hz.
It has much better influences regarding the locations of the band gaps compared to the
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Figure 14. FRFs of the flexural waves for given orders of Fibonacci beam with material
variation.

flexural waves and also the depth is gradually becoming larger.

The response of the 11th order of Fibonacci beam in the FRF shows a flat curve in
the larger band gaps location (without any higher dynamics), that is due to the longer
length of the beam. Beside the flexural and longitudinal (FRFs) of the case M2,
another extra sub-case scenario has been investigated by considering combination of
lower and higher sound velocity materials. As there was not a big difference between
the sound velocity of (Aluminium 2045-T4) and (Steel A-36), two other materials
(copper and magnesium) are also taken into account for the flexural FRFs of the 11th

order of Fibonacci sequence.

Fig.16 shows three curves, each corresponding to the material combination of case
M2. Steel A-36 is selected as a constant material (cross-section (A)) and the copper,

Prepared using sagej.cls



22 Journal Title XX(X)

Figure 15. FRFs of the longitudinal waves for given orders of Fibonacci beam with material
variation.

aluminium and magnesium are varied according to the Fibonacci sequence alongside
axial direction as (cross-section (B)). The results shows that materials combination
of steel and copper respectively with velocity of 5063m/s and 3503m/s has a very
low depth of attenuation and narrower band gaps marked in solid line in the frequency
ranges between [5000� 7000] Hz. In contrary materials combination of steel with
aluminium and magnesium respectively with velocity of 5199m/s and 5042m/s are
reported in dashed and dot dashed lines which has larger depth and wider band gaps
compared to the copper one.
In conclusion, the dynamic response of quasi-periodic finite span reduces while

keeping the four types of variations. It seems from the lexicon that the sound velocity
of case M2 with constant cross sections and material variation is simply the ratio
between modulus of elasticity and density. In contrary, the sound velocity of case M1
with constant material and cross section variation is the ratio of modulus of elasticity
with respect to density multiplied by a factor that is squared of height of the cross
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Figure 16. FRFs of the 11th order of Fibonacci beam with material variation.

section. Thus, it explains that M2 is less efficient in terms of change in the impedance
mismatch.

5 Spectral analysis of the M1 waveguides

5.1 Double cell

The same transfer matrix, extracted for the FRFs of the previous results based on
periodic double cell, is used again for dispersion curves computation. Frequency-
shift of the stop/pass band positions is quantified, using the real solution of waves41.
Herein, for quantifying the frequency shift of stop bands, the dispersion curves are
plotted considering only the real parts of propagative waves. In Fig.17, three types
of cross-section variation for double cell periodicity is plotted by fixing type I . The
investigated frequency range is zoomed to [0� 2] kHz for periodic double cell in order
to visualise precisely the shift of band gaps. There is one main observation: the shift
in frequency. Concerning the first, again the band gaps move to higher frequencies at
increasing the height of cross section B. The frequency stop bands in the first types is
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around [650� 850] Hz, whereas for Type II it shifts to higher frequencies at around
[1000� 1350] Hz with a little width compared to first type.

Figure 17. WFEM frequency response function of periodic double cell beam for flexural
waves

In Type III , band gap moves to higher frequencies [1300� 1600] Hz. Evaluating the
stop band width in four cases, it seems that the stop band width is enlarging after Type
I up to Type III , while in Type IV , the width of stop band tends to disappear with a
shift to higher frequencies compared to the other types. In fact, it gradually shifts by
reducing the height of the second cross section (B) as it reaches the zero impedance
mismatch in Type IV .

5.2 Super unit cell

Similarly, an important part of analysis had to be taken into account for the spectral
analysis of the quasi-periodic embedded super unit cell in periodic infinite systems.
Fig.18 shows the dispersion curves of 6th order of Fibonacci. The same technique used
for the dispersion of fully periodic double cell is also considered in this system. Again
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the comparison is plotted between Type I, used as reference, and the other Types.

Figure 18. Dispersion curve of super unit cell with 6th order of Fibonacci sequence

Comparing the results, in terms of real part of the wave number, of periodic beam
Fig.17 and quasi-periodic beam Fig.18 it can be noted that in both cases the stop bands
shift to higher frequencies but for the quasi periodic beam it changes quite dramatically.
In fact, comparing the same band gap for the two beams it can be noted that the band
gap in quasi-periodic beam is almost 2 times larger than periodic one. In view to be
more clear in Fig.19 a comparison between band gaps of periodic and quasi periodic
beam, at same cross section ratio, is provided. The horizontal axis of the plot shows
an average frequency which corresponds to the band gaps interval �f over the overall
selected range of frequency f in each Fig.17 and Fig.18 respectively. The plot has two
different curves, the blue one corresponds to the fully periodic beam with double cell
including the geometrical cross-section variation, whereas the red curve corresponds to
the quasi-periodic beam with the 6th order of Fibonacci and including those four types
of geometrical cross section variation effects.The band gap width of quasi periodic
beam is higher then the periodic one up to ratio 2. After that the band gap width
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of periodic increases by increasing the ratio, while the band gap of quasi periodic
decreases.

Figure 19. Spectral behaviour of band gaps for periodic and quasi-periodic embedded beams

6 Comparison of two quasi-periodic models (Fibonacci &

Thue-Morse)

In this section a comparison of flexural waves obtained by investigating two different
quasi-periodic models, Fibonacci and Thue-Morse sequence22, is discussed. The
Thue-Morse sequence can be obtained within the present approach always invoking
the [A] and [B] base modules. In view to compare beams having the same mass,
since the two models follow different sequences, the two models have two different
orders: 5th for Fibonacci and 3rd for Thue-Morse. For the Fibonacci case the beam
is composed of 8 unit cells with the sequence [ABAABABA], Fig.1: whilst for the
Thue-Morse case the beam consists of 8 cells following this sequence [ABBABAAB].
Hence, the beams have constant masses and same length but with different material
properties. Cell(A) is made of steel (A� 36) whereas cell(B) is made of Aluminium
alloy (2045� T4). There are 8 unit cells in each beam. The length of the beam is 80
mm. They have free-free boundary conditions and are forced with a unit spectrum
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force in the first node while the response is taken from the last node of the beams.

Figure 20. FRFs of the Fibonacci and Thue-Morse beams with the material variations.

Comparison is made by comparing FRFs and spectral analysis and results are reported
respectively in Figs.20 and 21. The results carried out from the two models are both
good showing different levels of attenuation with some differences in frequencies.
In fact, focusing on the FRF results plotted in Fig.20, both the curves show a large
stop band around [7800� 9800] Hz with Fibonacci �10 dB lower attenuation level
compared to Thue-Morse, but, in the remaining frequency range, there is another stop
bands (less in width and depth) that appear in a frequency range for one model and in
another frequency range for the other one.
This is more evident in Fig.21 where the real and imaginary parts of the wavenumber
are plotted. This plot is much visible and it can be noted that the number of stop
bands for both curves are the same, but the width and the depth of the bands gaps
for Fibonacci and Thu-Morse models is different. For instance in the frequency
[2000� 2500] Hz the stop bands of the Thue-Morse model outperforms, both in width
and in depth, the one obtained by Fibonacci one. In the frequency range [3000� 4000]

Hz the behaviour is vice versa.
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Figure 21. Dispersion curve of the Fibonacci and Thue-Morse beam based on flexural waves.

By accomplishing the outcome results of two different quasi-periodic models, it should
be noticed that globally, both models perform similar results with a slight different
width and the attenuation level. Fibonacci model has lower attenuation level in their
large stop bands, which can lead to a compromised model in vibration control of beam
spans.

7 Conclusions

The structural response of periodic and quasi-periodic beams are investigated. These
beams are modelled using deterministic approach. Periodic beams are made of two
different cells in terms of mass and cross section dimensions. Whereas quasi-periodic
beams has the same configuration of cells made of these two different cells but the
replication of periodic cells are not perfect and it follows Fibonacci sequence pattern.
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In the first case an analysis of the harmonic response of quasi-periodic beams with
increasing orders (length) of Fibonacci sequence with the finite element method
is investigated. In this case, beams are made up of cells (constant length) whose
cross-section areas and materials properties follow a Fibonacci sequence is studied.

The second one relays on the four types of geometrical variations. The geometrical
variations of case M1 are applied in the periodic and quasi-periodic beams of double
and super unit cells. In this case while comparing the results, global mass of the beams
are kept constant and cross sections are varied.

The last case consist of spectral analysis or the wave propagation behaviour of
periodic structures with the WFEM. In this case beams are made up of identical super-
unit-cells/patterns which are composed of cells whose properties follow Fibonacci
sequence of a 6th order.

7.1 Main results

The first results by increasing the orders of a quasi-periodic beam with the impedance
mismatch due to geometric variation (cross-section variation) give a clear view of the
phenomena. A rapid growth in the depth amplitude of the band gaps by increasing the
Fibonacci orders can be noted.

Studies of the geometric variation applied to a quasi periodic beam is extended, in a
proper way for the periodicity condition, in the WFEM method to reduce and increase
the volume representative of cross-section (A) and cross-section (B) proportionally,
while keeping the total mass of the both cells constant. Focused on flexural and
longitudinal waves, four types of numerical models are designed for the spectral
analysis.

As stated in the last case study conclusion, a quasi-periodic beam with 6th order of
Fibonacci sequence is placed in a super unit cell for FB waves analysis. Four types of
cross-section variations in the beams are considered. The main results, obtained for
6th order, show that a larger difference between the cross-sections (i.e. cross section
(A) is much larger and cross section (B) is much smaller) lead to three main effects:
i) change in extension/enlargement of frequency band gaps, ii) shift of frequency
band gaps to lower frequency range and iii) an increase in the depth of amplitude of
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frequency band gaps.

Overall the quasi-periodic structures with geometrical impedance mismatch have
an efficient impact on reducing the response in lower frequency regimes compared
to strictly periodic counterparts. Although, it does not show large widths in lower
frequency stop bands, but a small degree of geometrical impedance change, can shift
the stop bands drastically compared to the strictly periodic spans. The results obtained
have also shown that the quasi-periodicity can improve performance since attenuation,
in given frequency range, can be obtained without weight penalty, which can be an
asset for lightweight structures.

Highlights and contribution of the study

1. Forced response of quasi-periodic beams with increasing the order of Fibonacci,
shows rapid growth in the depth displacement amplitude of the band gaps.

2. Forced response studies of four types of geometrical variations in identical
super-unit-cells and double unit cells/patterns shows three aspects: i) change in
extension/enlargement of frequency band gaps, ii) shift of frequency band gaps to
lower frequency range and iii) an increase in the depth of amplitude of frequency
band gaps.

3. Frequency response function of a quasi-periodic beam of 11th order with four
types of geometrical and material variations gives an efficient results containing
enlarging the wide of band gaps towards left and right of frequency ranges.
For instance geometrical variation of TypeI and material variation of (Steel-
Aluminuim).

4. Spectral analysis of four types of geometrical variations in identical super-unit-
cells and double unit cells/patterns are analysed. The significants of periodic
beam composed of cells whose properties follow Fibonacci sequence of a 6th

order and cells whose properties follow a perfect periodic orders are studied.
The results shows larger (�f) for a unit cell with composition of cells following
Fibonacci sequence.
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