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Abstract

Periodic structures found a big interest in engineering applications because they
introduce frequency band effects, due to the impedance mismatch generated by
periodic discontinuities in the geometry, material or boundary conditions, that can
improve the vibroacoustic performances. However, the presence of defects or
irregularity in the structure, leads to a partial lost of regular periodicity (called
quasi-periodic structure) that can have a noticeable impact on the vibrational and/or
acoustic behaviour of the elastic structure. The irregularity can be tailored to have
impact on dynamical behaviour. In the present paper numerical studies on the
vibrational analysis of one-dimensional finite, periodic and quasi-periodic structures
are presented. The contents deal with the finite element models of beams focused
on the spectral analysis and the damped forced responses. The quasi-periodicity is
defined by invoking the Fibonacci sequence for building the assigned variations
(geometry and material) along the span of finite element model. Similarly, the
same span is used as a super unit cell with Floquet-Bloch conditions waves for
analysing the infinite periodic systems. Considering both longitudinal and flexural
elastic waves, the frequency ranges corresponding to band gaps are investigated.
The wave characteristics in quasi-periodic beams, present some elements of
novelty and could be considered for designing structural filters and controlling the
properties of elastic waves.
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1 Introduction

The analysis of the propagation of waves in structures is a fundamental task in
many engineering applications. The knowledge of dispersion relations, providing
information on the type and nature of propagating waves is of interest for the prediction
of forced response, acoustic radiation, non-destructive testing and transmission of
structure-borne sound. All these themes are nowadays the subject of many studies in
order to improve the vibro-acoustic comfort of passenger carries, bridges, pipelines,

and space vehicles.

Wave propagation in simple structures can be investigated through analytical
models, exact or approximated. However, this kind of analysis usually involves
assumptions and approximations concerning the stress, strain and displacement
states of the structure, and always more refined numerical models are required as
the frequency increases since the wavelength may become comparable with the
cross-section dimensions. For example, if the propagation of bending waves in a beam
is investigated, Euler-Bernoulli, Rayleigh, Timoshenko or 3-dimensional elasticity-
based theories might be used, depending on the frequency range of interest's.

3-5

For complex structures, such as layered (composite and sandwich) beam ™ and

plate()—IZ 13-15

, or cylinders , analytical formulations become quite difficult: beyond
the required assumptions and approximations in the models, the resulting dispersion
relations are usually transcendental and/or of high order, therefore their resolution is
not straightforward or requires symbolic manipulation'>'®. For this reason, for the
analysis of complex structural components, semi-analytical or numerical methods have
been developed for the computation of dispersion curves. However, if the structure
under investigation presents characteristics which are periodically repeated in one
or more directions, the analysis procedure can take advantage of this property by
exploiting the periodicity!”. A generic structure obtained as an assembly of identical

elements, called cells, can be considered as periodic. Several engineering structures
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can be assumed as periodic, starting from simple beams and plates, moving to stiffened
plates or car tyres, up to aircraft fuselages, railways, tracks, etc. In this case the
study of the wave propagation through the waveguide can be reduced to the analysis
of a single cell by applying the periodicity conditions together with continuity of
displacements and equilibrium of forces at the interfaces between two consecutive

cells (Floquet-Bloch theorem) 820

Periodic structures found a big interest in engineering applications because they
introduce frequency band effects that can improve the vibroacoustic performances.
In fact, in periodic structures, the impedance mismatch generated by periodic
discontinuities in the geometry, acting as a waveguide, and/or in the material,
can cause destructive wave interference phenomena over specific frequency bands

«?21

called “stop band“ or “band gaps“~'. However, the presence of imperfections (i.e.
defects or irregularity) in the structure, due to the manufacturing process or not
exact reconstructions of the boundary conditions for example, lead to the loss of the
periodicity of the structure: this can have a noticeable impact on the vibrational and/or
acoustic behaviour of the elastic structure.

In this case it is more correct to speak about quasi-periodicity which is the property
of a structure that displays irregular periodicity. A quasi-periodic structure can
be idealised as repeated substructures which have asymmetric translations in any
direction of the Euclidian space. It can be considered as an intermediate case between
periodic and random elastic medium??. Quasi-periodic behaviour is thus a pattern of
recurrence with a component of unpredictability that does not lend itself to a precise
measurement. An example of a natural quasi-periodic structure is a quasicrystal. It
was discovered in 1981 by Dan Shechtman?*?* and it is a structural form that are both
ordered and non-periodic '®. These structures are characterized by several properties,
such as low coefficient of friction and low heat conductivity, just to cite some of them,
that made them very attractive and interesting for technological applications, mainly in
the fields of crystallography and photonics>*~>°. Quasi-crystals were used as non-stick

coating on frying pans and cooking utensils >’

and to develop heat insulation, led and
new materials able to convert heat to electricity 3!,

In recent years there is a growing interest in the design possibilities offered by
quasi-periodic structures also in the field of structural mechanics. This leads to
some modelling issues which will be well analysed due to the impossibility of
periodic simplifications, but an adequate design of the quasi-periodicity may offer
new vibroacoustic properties to the structure’*¥40 they also provide experimental

verification of the transmission properties of one dimensional phononic crystals based
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on the quasi-periodic Fibonacci and Thue-Morse number sequence. Hou et al.*

investigated the transmission properties and the frequency spectra of Fibonacci binary
composite material with different thickness ratio of two layers. Whereas in this paper
Fibonacci series is dedicated for 1D structures i.e. beams and the vibration properties
and band structure of their unit cells are investigated. In term of analysis this paper
is mainly focused on Frequency Response Functions (FRF) and spectral analysis
to study the dynamic behaviour of the structures®>—’. Aynaou et al.*® performed a
theoretical investigation on acoustic wave propagation of one-dimensional phononic
band gap structures made of slender tube loops pasted together with slender tubes of
finite length according to a Fibonacci sequence. In this analysis Aynaou et al, found
that besides the existence of extended and forbidden modes, some narrow frequency
bands appear in the transmission spectra inside the gaps as defect modes. Similarly, in
the results of the current investigation, there are narrow frequency peaks that appears
in the frequency bands of the geometrical impedance mismatch case, especially
on longitudinal frequency response. Aynaou et al consists a treatment procedure
that spatial localisation of the modes lying in the middle of the bands and at their
edges is examined by means of local density of states. In the other hand, Chen and

Wang ¥

studied band gaps of elastic waves propagating in one-dimensional disordered
phononic crystals. Similar topological formation of Fibonacci and Thue-Morse are
investigated in an experimental observation of the formation of phononic scattering
band structure in one-dimensional periodically and quasi-periodically based on the
Fibonacci and Thue-Morse number sequences by King and Cox*’. Gei*' shows that
in the case of axial and flexural vibration for systems based on different Fibonacci
sequences, the number of stop/pass bands within a defined range of frequencies
changes and follows the Fibonacci recursion rule, by showing also a self-similar
pattern. From a design point of view the asymmetrical conditions in quasi-periodic
structures can be built by following different sequences, such as: higher order
generations of Fibonacci sequence, Thue-Morse, Rudin Shapiro sequences as well
as Penrose lattices*?. In this paper the modelling of simple quasi-periodic structures
is built with the conventional finite element method (FEM) to fulfil the generation
of quasi-periodic patterns since these are based on an asymmetrical distribution of
identical cells****. Finite, periodic and quasi-periodic structures are thus proposed and
compared by using the Fibonacci sequence to investigate about the possibility to have
and control useful frequency bands in which the response can be reduced as much as
possible. In Section 2 the models and their specific lexicon are presented. Section 3

contains the methods and tools used for the numerical investigations. The main results
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obtained are commented in Section 4 and finally, some concluding remarks are given

in Section 5.

2 Models and Lexicon

In this paper, quasi-periodic beams with a finite number of cells are analysed. In these
models specific sequences like Fibonacci series will be used to generate impedance
mismatches in view of the desired degree of quasi-periodicity **.

The degree of quasi-periodicity might be controlled with mathematical rules that will

be introduced in the next section.

2.1 Fibonacci Sequence and Nomenclature

The well-known sequence called Fibonacci® is a series of integer numbers such that:

Sp=8n-1+ Sn—2 )

For instance the Fibonacci sequence starting with 1 and 2 is 1, 2, 3, 5, 8, 13, 21,....The
configuration of the quasi-periodic structures is here carried out by using a sequence of
two possible variations according to Fig.1.

The variations can typically be due to the sections, materials or boundary conditions.
The first cell coincides with S, then the cells can be assembled, forming a sequence

defined by a simple integer (order). The S,, denote the n-th sequence:

Sn= Sn-l + Sn-Z

S, = {ABAAB}

| S; = {ABA}

| s — B 1
Cell (B)

I | s [ r—

Figure 1. Configurations of quasi-periodic beam following a Fibonacci pattern>*.

Tab.1 shows the number of unit cells necessary to generate a given order of Fibonacci

sequence.
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Table 1. Example of number of cells according to Fibonacci orders.

Fibonacci orders function of number of cells
Orders 4™ 15t 6t [ 7 ] 8™ ] 9t 107 | 1170
Number of Cells 5 8 13 | 21 34 | 55 89 144

The numerical models is identified by the order of the Fibonacci sequence, and thus
the length of the n-th order sequence, S,,, will be greater than S,,_1. As example,
Fig.2 shows a Fibonacci (Sg) beam with a sequence of 13 [ABAABABAABAAB]
cross-sections.

Unit cell with cross-
section type (A)

Unit cell with cross-
section type (B)

Figure 2. Fibonacci configuration of 6" order

2.2 Cases

In this framework, variations between cells A and B will be obtained through

impedance mismatch. Two cases will be considered.

Case M1: impedance mismatch due to geometrical discontinuity, Fig.3 [case M1];

Case M2: impedance mismatch due to material discontinuity, Fig.3 [case M2].

The various configurations considered for M1 will be described in the next section.
Without loss of geometry, the material used in case M1 is steel A-36 whose properties
are provided in Tab.2

For the typical quasi-periodic structure case M2 the material variation is reported in
Tab.2.
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[ | —

Case M1: Geometry variation (Cross section variation)

Case M2: Material variation

Figure 3. Configuration of discontinuities: (M1) and (M2).

Table 2. Mechanical properties of quasi-periodic bi-material beam.

Material Modulus of elasticity (Pa) | Poissons Ratio | Density (kg - m~—3)
Steel A-36 2 x 1011 0.26 7800
Aluminium 2045-T4 73 x 10° 0.33 2700
Magnesium 45 x 10° 0.35 1770
Copper 110 x 10° 0.355 8960

2.3 @Geometrical variations of case M1

A comparison for the case M1 by keeping constant the mass of the sum of the A
and B cells is considered. The aim is to find the most efficient geometrical variation
behaviour of unit cells (A) and (B) for vibration control. The factors prescribed in
Tab.3 are the ratio of the length of section edges. The four configuration types are
displayed in Fig.4. The configuration Type IV has no impedance mismatch, and Type

1T will be first analysed as a reference.

T | I — I I — N — N I — [ N e
— — —

Typel
40 mm [ s [ F——+20mm
Typell
38 mm {] | | | | [ [ | [ [ | | [ ]$23,58 mm
Type 111
31,62 mmf [ I | I | | I | | [ I | | ]$31,62 mm
Type IV

Figure 4. Comparison of case M1 by keeping constant the mass and the length of sum of the A
and B cells (the beams have square cross sections).
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Table 3. Sizes of cells A and B as sub-cases for M1.

Geometrical variation
Type | Cell | width [mm] | height [mm] | Factor
I A 42.00 42.00 57
B 15.36 15.36 ’
I A 40.00 40.00 )
B 20.00 20.00
A 38.00 38.00
I B 23.58 23.58 1.6
A 31.62 31.62
v B 31.62 31.62 !

3 Methods and Tools

Two numerical methods are used: the FEM is considered for analysing the Frequency
Response Functions (FRF) of the finite beam while the Wave Finite Element Method
(WFEM) together with spectral analysis is taken into account for computing the

dispersion diagrams.

3.1 Finite Element Analysis

The analysis is performed with the conventional FE method: frequency response
function (FRF) analysis of damped quasi-periodic beams. The FE analysis is carried
out using ANSYS-APDL linked with MATLAB.

The types of elements used are Beam 188, which is a linear 2-node beam element.
Each cell (A and B) are composed of 4 nodes (three beam elements) and each node has
three degrees of freedom: longitudinal in the axial direction (x axis), bending in lateral
direction (y axis), and torsional rotation around (x axis). The actual distance between

each cell is 100 mm.

N

) o wpkij
Hi (1) = ; mp(wf, — Q2 +28,wp ) 2)

where Hj; (€) is the transfer function, m,, the modal mass, w,, the eigenfrequency, (2
the forcing frequency; &, is the modal damping; 1), and v,,; are the components of
the p-th eigenvector evaluated at the source and receiver points and N the number of

retained eigenmodes. Accordingly, the FRF of the quasi-periodic beams are computed.

These forced response analysis are performed with free-free boundary conditions.

The input force is located at one end of the beam in the transverse direction and the
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response is computed at the other end of the beam in the same direction.

HaTonic force Response
| —— — —— —— —
Free-free

Figure 5. Schematic diagram of beam with 6" order of Fibonacci for numerical analysis.

3.2 Spectral analysis of infinite beam (waveguide)

The Floquet-Bloch conditions can be applied to simulate infinite periodic beams that
is waveguides. This is classical for perfectly periodic structures. In order to perform

spectral analysis on quasi-periodic structures, super unit cells are used.

3.2.1 Super unit cell: In this work, a super unit cell is a cell hosting every single
order of the Fibonacci sequence and it hosts given orders of deterministic quasi-
periodic pattern in a single cell. Although it will be repeated in a periodic way, the
cell itself has a quasi-periodicity replication inside the super unit cell. In this work, we
also consider a second case, called double unit cell, as a reference. This case is perfectly
periodic. For illustration, the substructures in Fig.6 and Fig.7 are modelled as a super
unit cell and double cell respectively. In this example, the super unit cell is defined
according to the 6" order of Fibonacci sequence (type ABAABABAABAAB). The
super unit cell is used in the Wave Finite Element Method (WFEM) analysis presented

in the next section.

Component 1 Component 2 Component p
I _____ = I _____ = I _____ =
L e e |
—> X
I e e B | I e O B |
Component p Component (p+1)

Figure 6. Periodic wave-guide (Super unit cell with 6" order of the Fibonacci sequence).
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Component 1 Component 2 Component p
| I |- I
) (B) (A) . ® |
Component p Component p+1

Figure 7. Periodic wave-guide (reference double unit cell).

3.2.2 Transfer matrix of super unit cell: The transfer matrix is a square matrix of
even dimension and is function of frequency of the disturbance propagating in the
structure>”. For a given structure, each super unit cell composed of n individual cells,

has the same transfer matrix [T] such that;
x, = Txg 3)

where X, is the state vector on the left-side of the cell (i.e. on the left-side of the super
unit cell), X is the state vector on the right-side of cell 1 (i.e. on the right-side of the
super unit cell), and T = T, T,_1,...T; where T; is the transfer matrix of cell j. In
order to obtain the transfer matrices, both mass and stiffness matrices are extracted
from APDL-ANSYS.

The dynamic behaviour of the cell number j is described by:

D¢/ = @

where D/ .f7, and q’ define respectively the dynamic stiffness matrix, force and

displacement vector. The dynamic stiffness matrix writes

D/ = —w?W + K* o)

with K7* = K’*(1 + in) where M?,K?, and 7 are respectively the mass matrix, the
stiffness matrix and the loss factor corresponding to the structural damping. The
matrices and vectors are partitioned according to the degrees of freedom: qJL, q]}, and
q}é respectively refer to the left-side, internal, and right-side parts of the super unit cell

number j. The corresponding terms in the matrices are written
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DJL_L DJL_I DJL_R qJL fJL

DI} D}, Dip|{qi =70, ©)
. T ! 1 .

Dir Dip Dyl laz fr

The internal degrees of freedom can then be condensed using the second row of Eq.6,

in order to retain the analysis to the left and right boundary displacements and forces.

. 1 T . .
a7 = —Dp; (D747 +Dgaz). Q)

qj fj
{w-{e} o

it leads to

. . -1 . .T . .1 .
J J J J J J J J
DLL - DLIDII DIL DLR - DLIDII DIR

. : 1, . ; 1
J J J J J J J J
DRL - DRIDII DIL DRR - DRIDII DIR

The reduced dynamic stiffness matrix is written as follow:

,.,j ..,j . .

Dy, Dyr qJL _ ij 9
~ 5T ~j j - fj . ( )
D;r Dggr| (49r R

One define state vectors for the boundaries of the component j:

up =< Crup =4 e (10)
{f]L 1y

The transfer matrix is hence obtained by reorganising the degrees of freedom according

to the state vector:

w), = Tu), (11)
where, u’z and u}é are the displacement vector of the right and left component of the

unit cell, and T’ is the transfer matrix in Eq.11:

o 'R i1
_DLR DLL _DLR . (12)

= JLL : o
) ) ~J - ~J ~J

The transfer matrix of the super unit cell is then obtained in Eq.3.

3.2.3 Dispersion analysis: Periodicity conditions applied on the super unit cells are

then written as

ut = etul (13)
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where p is the propagation constant. Combining Eq.11 and Eq.13,yields to the
eigenvalue problem:
T’ ¢; = M. (14)

where \ = ef.

Depending on the nature of the eigenvalue of [T?], the waves propagating in a periodic
structure are described as travelling waves and attenuating waves which occur in
alternating frequency bands known as pass-bands and stop-bands. If the eigenvalues

+ikL

of [T?] are complex and of the form e , k € IR the corresponding wave is in a

+ikL where k is a real wave number,

pass-band and the wave travels in the form of e
the positive and negative signs indicating left and right travelling waves, respectively.
On the other hand if all eigenvalue of the [T?] are of the form e*” or e*#+i™ 3 € IR,
is pure real exponent, the corresponding frequency is in a stop-band and the wave
amplitude after travelling n elements are attenuated by the factor (=™, in which the
real exponent 3 implies attenuated waves>>.The dispersion curves are computed by

imposing frequency and computing k& according to the given eigenvalue problem.

4 Frequency response function of finite beams using FEM

FRFs of finite structures are analysed in two subsections according to the cases named
M1 and M2.

The FRFs are plotted in wider frequency ranges of 10 kHz for flexural and 25 kHz for
axial vibration. The frequency range was chosen for the first 22 natural frequencies. A
modal analysis is taken into consideration to investigate the number of elements per
wavelength in order to fulfil a criterion for a sufficiently accurate numerical modal
analysis. The boundary condition is free-free and a frequency range up to 10kHz for
flexural and 25 kHz for axial vibration is chosen because the main target is on the first
22 natural frequencies. The model is meshed by 1D 2-node beam element type 188.
Mesh setting with two different beam elements (188 — 2 node and 189 — 3 node) with
the number of elements per wavelength 4, 5, and 10 are checked. The span of the beam
is 1300 mm and 39 elements per wave length was more accurate with beam element
188 — 2 node to converge the exact natural frequency which is 9700 Hz.

The strategy to compute the harmonic response function of periodic beams is carried
out in MATLAB. A script is created to define finite element model of the periodic
double cell with an arrangement of 13 unit cells. The boundary condition is considered

as free-free and a white noise (i.e. harmonic force of 1N from 0 — 10 kHz with a
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bandwidth of 10 Hz is applied to one end of the beam. The white noise is applied
in vertical z and horizontal x direction, respectively for flexural and longitudinal
vibrations.

4.1 FRF results for Case M1-Type 11

A first analysis of M1-Type I is performed, considering increasing orders of the
Fibonacci sequence (4", 5t", 6t", 7th 8th 9th 10" and 11" orders). It is reminded
that the structure is not periodic, and that an increase in Fibonacci order is associated to
an increase in the length of the beam. All results are carried out in the frequency range
[0 — 10000] Hz. The results in Fig.8 shows multiple stop bands which stay coherent
from one order to the other, for instance, around [600 — 900] Hz, [1900 — 2300] Hz
and a larger frequency stop band around [2900 — 4000] Hz.

-50
-100
M -150
o
3
El -200
&
§ -250 = = 5" order
~— th
E 2300 - 6 order ||
g - 7th order
§ 350 ¢ 8™ order |
o _ _ oth
E 400 - 9 thorder |
107 order
-450 _‘_'11[h order| |
_500 1 Il 1 Il
0 2000 4000 6000 8000 10000

Frequency (Hz)

Figure 8. FRFs of the flexural waves for given orders of Fibonacci beam with geometrical
variation

The trend is similar to periodic structures when the number of cells increases: the band

gaps location does not change, while the depth in the FRF is becoming larger. The
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largest frequency stop band appears around [4900 — 7100] Hz. The lowest depth of the
amplitude that exceeds (—450) decibels corresponds to the precision of the numerical
tool and is obviously not measurable in practice. The dark blue curve corresponds to the
highest generated order of Fibonacci, the 11** order in this investigation and shows the
deepest gaps. Other curves follow in unequal increment in the depth as the generation
order is increasing. The picks which can be observed in the Fig.8 corresponds to the
resonances of the finite beams.

Beside the flexural response shown in Fig.8, a similar analysis is performed for the
longitudinal waves. Fig.9 shows responses of the beams with an applied force in
the axial direction. There are only two stop bands around [4300 — 4800] Hz and
[6600 — 10000] Hz.

——yth order
== =5M order
6" order

""" 7" order
Sth

Displacement (Magnitude-dB)

A

S

S
T

order 7
== -9 order
-450 10" order .
""" 11" order
_500 1 1 1 1

0 2000 4000 6000 8000 10000
Frequency (Hz)

Figure 9. FRFs of the longitudinal waves for given orders of Fibonacci beam with geometrical
variation

The trend is similar to the flexural waves shown in Fig.8 when the number of cells

is increasing: the band gaps locations do not change, while the depth in the FRF
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is becoming larger. There is also a localised mode which is appearing inside the
band gap of longitudinal waves. The effects of dynamic behaviour of the beam-spans
when increasing the number of cells following Fibonacci orders is emphasised by this
analysis. In practice, these types of beam-spans can be used as a junction filter between
structures. The induced vibrational energy transfers through this junction, and it acts as
a meta-material filtering property to the elastic waves due to the impedance mismatch

in geometry and material.

4.2 Frequency response function of double cell and super unit cell
structure using WFEM:

In this part, FRFs of periodic beams are analysed. Two cases are considered, a double
cell variation with a span of 13 unit cells having perfect periodic order and a super unit
cell Fibonacci 6" order with 13 unit cells, which has non-symmetric repetition of cells
inside periodic super unit cell. The results are discussed with four types of variations
in geometry for both cases. The aim of this analysis is to investigate the effect of the
geometric variation on width and shift in frequency of band gaps and comparing the
two models in order to find a compromised one for vibration control.

The application is based on flexural and longitudinal waves of perfectly periodic
models in Fig.10 and Fig.11. The analysis is applied for four types of geometrical

variations as a test cases.

Both, flexural and longitudinal waves are investigated under FB periodicity condition.
The ranges of frequency of FRF of flexural waves in Fig.9 is considered at around
10 kHz, whereas for longitudinal waves in Fig.11 is around 25 kHz, depending
on the frequency stop bands zone. More details on geometrical variation of the
Types plotted in Fig.10 and Fig.11 are reported in Table 3. The response shows an
enlargement in frequency stop bands as the height of cross section (B) decreases and
the frequency stop bands tends to increase from almost 8 kHz up to around 2.5 kHz.
Similarly, a frequency response function of the same periodic double cell is considered
for longitudinal waves to describe the dynamic behaviour of beam in compression
conditions.

Fig.11 shows an enlargement of frequency stop bands into the left and right sides of the
frequency ranges. The result shows an enlargement of frequency stop bands compared
to continuous beam type IV, characterised by no ranges of free wave propagation, to

almost 15kHz range covered by stop bands.

Prepared using sagej.cls



Timorian et al. 17
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Periodic double cell
—Type IV
0k —— ~Type IlI 4

-50 EE
-100

-150

Displacement (Magnitude-dB)
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Frequency (Hz)

Figure 10. WFEM frequency response function of periodic double cell beam for flexural
waves

Now we consider a super unit cell. In Fig.12 the frequency response function is derived
in the frequency range [0 — 1]JkHz. The results are based on frequency band gaps
shift and enlargement of width of the band gaps. Fig.12 shows a frequency response
function of a 6" order beam. It can be noted that band gaps move to higher frequencies
at increasing the height of the second cell (B). For instance, the first subplot which is
dedicated for Type I (B height=15.36 mm) has a band gaps around 400 — 650 Hz. In

case of Type 11 (B height=20.00 mm) the band gap is shifted to higher frequencies.

Ultimately, the use of super unit cell has a significant pros compared to the double
unit cell. The first point that can be noticed in the FRFs of the Fig.12 is that there is
a tremendous shift of frequency stop bands from lower to higher frequency ranges.
The second point is that there is a frequency stop band appearing in lower frequency
ranges bellow 1 kHz, which is not the case in double unit cell approach. In conclusion

the characteristics of the beam with Fibonacci series or simply (quasi-periodic beams)
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Figure 11. WFEM frequency response function of periodic double cell beam for longitudinal
waves
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