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INTRODUCTION

A key aspect of agent-based architectures is endowing agents with goals [START_REF] Wooldridge | An introduction to multiagent systems[END_REF], and propositional goals in particular are ubiquitous in models of strategic reasoning. When taking collective decisions in a multi-issue domain, agents share the control over the variables at stake while still holding individual goals. This happens, for instance, when they need to arrange a business meal and have to decide on its specifics: should the restaurant be in the center, should it be fancy, should the meal be dinner or lunch? First, agents need a procedure to decide over each issue. Second, strategic behavior needs to be taken into account. Two frameworks have been proposed in the AI literature to solve this and similar problems: belief merging (see, e.g., Konieczny and Pino Pérez [START_REF] Konieczny | Merging Information Under Constraints: A Logical Framework[END_REF]) and goal-based voting [START_REF] Novaro | Goal-based Voting with Propositional Goals[END_REF]. Given our primary concern of resoluteness of the voting outcome we choose the latter framework and we focus on majoritarian rules.

The appeal of majority lies not only in its intuitive definition and extensive application in real-world scenarios, but also on having been widely studied in the related fields of voting theory and judgment aggregation [START_REF] Dietrich | Judgment aggregation by quota rules: Majority voting generalized[END_REF][START_REF] Kenneth | A set of independent necessary and sufficient conditions for simple majority decision[END_REF]. When moving to goal-based voting many definitions of majority are possible. The three adaptations studied here strike a balance between different needs: that of providing a resolute result, and that of treating each issue independently while still considering the complex structure of propositional goals.

Each of these majoritarian goal-based voting rules is analyzed with respect to their resistance to several manipulation strategies. Negative results, i.e., finding that a rule can be manipulated in the general case, lead us to study the computational complexity of manipulation, as well as restricting the language of individual goals in the hope of discovering niches of strategy-proofness.

FORMAL FRAMEWORK

We recall the framework of goal-based voting by Novaro et al. [START_REF] Novaro | Goal-based Voting with Propositional Goals[END_REF].

A group of agents, represented by set N = {1, . . . , n}, has to take a collective decision over a number of issues, represented by set I = {1, . . . , m} of propositional variables. We let L I be the propositional language over the atoms in I, with the usual boolean connectives. Agent i expresses her individual goal by a consistent propositional formula γ i of L I . The languages L ⋆ for ⋆ ∈ {∧, ∨, ⊕}, defined by the following BNF grammars φ := p | ¬p | φ ⋆φ, represent restrictions on the language of goals. A goal-profile Γ = (γ 1 , . . . , γ n ) collects the goals of all n agents.

An interpretation or alternative is a function v : I → {0, 1} associating a binary value with each variable in I, where 0 means the issue is rejected and 1 that is accepted. We assume that there is no integrity constraint: all interpretations over the issues are allowed. We write v |= φ to indicate that interpretation v makes φ true (i.e., v is a model of φ) and the set Mod(φ) = {v | v |= φ} contains all the models of formula φ. We denote the choices of agent i for issue j in the models of her goal

γ i as v i (j) = (m 1 i j , m 0 i j ), where m x i j = |{v ∈ Mod(γ i ) | v (j) = x }| for x ∈ {0, 1}. Abusing notation, we let v i (j) = x in case |Mod(γ i )| = 1 and m x i j = 1.
A goal-based voting rule is a function for any n and m defined as F : (L I ) n → P ({0, 1} m ) \ {∅}. If on every goal-profile F returns a singleton we call the rule resolute, and irresolute otherwise. The total number of acceptances and rejections of issue j in the outcome of F (Γ) are defined as

F (Γ) j = (F (Γ) 0 j , F (Γ) 1 j ), where F (Γ) x j = |{v ∈ F (Γ) | v j = x }| for x ∈ {0, 1}
. In case we have F (Γ) x j = 0, we write F (Γ) j = 1 -x for simplicity.

The following are three variants of issue-wise majority defined for goal-based voting [START_REF] Novaro | Goal-based Voting with Propositional Goals[END_REF]. Firstly, EMaj interprets majority as the quota rule that accepts an issue if and only if more than half of the total number of votes are in its favor. Formally,

EMaj(Γ) j = 1 iff i ∈N ( v ∈Mod(γ i ) v (j ) |Mod(γ i )| ) ≥ ⌈ n+1 2 ⌉.
To guarantee equality among agents submitting formulas having a varying number of models, EMaj weights each model of an agent's goal inversely proportional to the total number of models of her goal.

Secondly, TrueMaj compares the total acceptances with the total rejections for an issue, setting the result to 1 (respectively, 0) if it is higher (respectively, lower) and to both 0 and 1 when tied. Formally, TrueMaj(Γ) = Π j ∈I M(Γ) j where for all j ∈ I:

M(Γ) j =        {x } if i ∈N m x i j |Mod(γ i )| > i ∈N m 1-x i j |Mod(γ i )| {0, 1} otherwise
As with EMaj, the models of an individual goal are weighted inversely to the total number of models for that goal.

Finally, 2sMaj first applies majority to the models of the agents' individual goals, and then again to the result of the first step of aggregation, i.e., 2sMaj(Γ) = Maj(Maj(Mod(γ 1 )), . . . , Maj(Mod(γ n ))).

MANIPULATION OF MAJORITY RULES

The induced preference relation on the alternatives is dichotomous: agents equally prefer any model of their goal to any counter-model. As for irresolute rules the outcome may be a set of interpretations, different notions of satisfaction could be defined depending on how an agent compares two sets of interpretations.

Let sat : L I × (P ({0, 1} m ) \ ∅) → [0, 1] be a function expressing the satisfaction of agent i towards the outcome of a rule F on profile Γ. To simplify, we write sat(i, F (Γ)) instead of sat(γ i , F (Γ)). The preference of agent i over outcomes is then defined as a complete and transitive relation ≼ i , whose strict part is ≺ i , such that F (Γ) ≼ i F (Γ ′ ) iff sat(i, F (Γ)) ≥ sat(i, F (Γ ′ )).

For Γ = (γ i ) i ∈N , let (Γ -i , γ ′ i ) = Γ ′ = (γ 1 , . . . , γ ′ i , .
. . , γ n ) be the profile where only agent i changed her goal from γ i to γ ′ i . Agent i has an incentive to manipulate by submitting goal γ ′ i in place of goal γ i if and only if

F (Γ -i , γ ′ i ) ≺ i F (Γ).
A rule F is strategy-proof if and only if for all profiles Γ there is no agent i who has an incentive to manipulate.

Everaere et al. [START_REF] Everaere | The Strategy-Proofness Landscape of Merging[END_REF] propose three manipulation strategies an agent i may perform depending on how much they are allowed to deviate from their truthful goal: unrestricted when i can send any γ ′ i instead of her truthful γ i , erosion when i can only send a γ ′ i such that Mod(γ ′ i ) ⊆ Mod(γ i ) and dilatation when i can send only a γ ′ i such that Mod(γ i ) ⊆ Mod(γ ′ i ). If a rule can be manipulated by erosion or dilatation it is manipulable in the general case, while if it is strategyproof for unrestricted manipulation it is also strategy-proof for erosion and dilatation.

The issue-wise majority rule is known to be strategy-proof in the context of judgment aggregation [START_REF] Dietrich | Strategy-proof judgment aggregation[END_REF], while this is not true anymore when moving to propositional goals: Theorem 3.1. EMaj, TrueMaj and 2sMaj can be manipulated by both erosion and dilatation.

Since strategy-proofness cannot be guaranteed in general, we study the manipulability of the proposed rules when the agents'

L ∧ L ∨ L ⊕ E D E D E D EMaj SP SP M SP M M TrueMaj SP SP M SP M M 2sMaj SP SP SP SP M M
Table 1: E stands for erosion, D for dilatation, SP for strategy-proof and M for manipulable.

goals are restricted to conjunctions (corresponding to the framework of judgment aggregation with abstentions [START_REF] Dietrich | Judgment Aggregation Without Full Rationality[END_REF][START_REF] Dokow | Aggregation of Binary Evaluations with Abstentions[END_REF]), disjunctions or exclusive disjunctions. Our results are summarized in Table 1.

COMPLEXITY OF MANIPULATION

We also study how computationally difficult would it be for an agent to find a goal allowing them to get a better outcome for the rules EMaj and 2sMaj. The formal definition of the Manip(F ) problem is in line with analogous work in judgment aggregation [START_REF] Endriss | Complexity of Judgment Aggregation[END_REF]: the input is a profile Γ and an agent i, and the question is whether there is a γ ′ i such that F (Γ -i , γ ′ i ) ≺ i F (Γ). Let pp, for Probabilistic Polynomial Time, be the class of problems that can be solved in nondeterministic polynomial time with acceptance condition that more than half of the computations accept. We show that: Theorem 4.1. Manip(2sMaj) and Manip(EMaj) are PP-hard.

RELATED WORK AND CONCLUSIONS

The literature on combinatorial voting (see, e.g., the chapter by Lang and Xia [START_REF] Lang | Voting in Combinatorial Domains[END_REF]) provides solutions to tackle the combinatorial explosion entailed by the structure of the alternatives, such as voting sequentially over issues using tractable voting rules. The work of Lang [START_REF] Lang | Logical Preference Representation and Combinatorial Vote[END_REF] on voting in multi-issue domains with compactly represented preferences is the starting point of our considerations. Propositional goals are perhaps the simplest compact language for preferences, linked to the literature on social choice with dichotomous preferences [START_REF] Elkind | Structure in Dichotomous Preferences[END_REF][START_REF] Elkind | Structured Preferences[END_REF]. The framework of belief merging [START_REF] Konieczny | Merging Information Under Constraints: A Logical Framework[END_REF][START_REF] Konieczny | Logic Based Merging[END_REF], also studies the aggregation of propositional formulas, focusing on aggregators satisfying a set of desirable properties inspired from belief revision. Closely related work is the study of strategy-proofness in judgment aggregation [START_REF] Dietrich | Strategy-proof judgment aggregation[END_REF][START_REF] Endriss | Complexity of Judgment Aggregation[END_REF], where the input is a complete binary choice over all issues rather than a propositional goal, as well as in belief merging [START_REF] Everaere | The Strategy-Proofness Landscape of Merging[END_REF]. Manipulation of voting rules has been amply studied in voting theory, starting from the seminal result of Gibbard and Satterthwaite [START_REF] Gibbard | Manipulation of voting schemes: a general result[END_REF][START_REF] Allen | Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions[END_REF] to more recent studies aimed at finding barriers to manipulation (see, e.g., the survey by Conitzer and Walsh [START_REF] Conitzer | Barriers to Manipulation in Voting[END_REF]). Propositional goals in a strategic setting have been extensively studied in the literature on boolean games [START_REF] Harrenstein | Boolean games[END_REF][START_REF] Wooldridge | Incentive Engineering in Boolean Games[END_REF]. Here, however, issues are not exclusively controlled by agents, a closer model being that of aggregation games [START_REF] Grandi | Equilibrium Refinement through Negotiation in Binary Voting[END_REF].

In this paper we studied the strategic component of the recent framework of goal-based voting for three variants of issue-wise majority [START_REF] Novaro | Goal-based Voting with Propositional Goals[END_REF]. We find that EMaj, TrueMaj and 2sMaj are manipulable, even for erosion and dilatation strategies. As positive results, an agent with a goal in the language of conjunctions cannot manipulate, and for disjunctions TrueMaj and EMaj are only manipulable by erosion. While not strategy-proof in general, these resolute majority rules are pp-hard for an agent to manipulate.