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Abstract
A singleton-style consistency is a local consistency that verifies if each base relation (atom) of each
constraint of a qualitative constraint network (QCN) can serve as a support with respect to the closure
of that network under a (naturally) weaker local consistency. This local consistency is essential for
tackling fundamental reasoning problems associated with QCNs, such as the satisfiability checking or
the minimal labeling problem, but can suffer from redundant constraint checks, especially when those
checks occur far from where the pruning usually takes place. In this paper, we propose singleton-
style consistencies that are applied just on the neighbourhood of a singleton-checked constraint
instead of the whole network. We make a theoretical comparison with existing consistencies and
consequently prove some properties of the new ones. In addition, we propose algorithms to enforce
our consistencies, as well as parsimonious variants thereof, that are more efficient in practice than
the state of the art. We make an experimental evaluation with random and structured QCNs of
Interval Algebra in the phase transition region to demonstrate the potential of our approach.
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1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a Symbolic AI approach that deals
with the fundamental cognitive concepts of space and time in a qualitative, human-like,
manner [28, 16]. For instance, in natural language one uses expressions such as inside, before,
and north of to spatially or temporally relate one object with another object or oneself,
without resorting to providing quantitative information about these entities. QSTR provides
a concise framework that allows for rather inexpensive reasoning about entities located in
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14:2 Neighbourhood Singleton-Style Consistencies for QSTR

space and time and, hence, further boosts research and applications to a plethora of areas
and domains that include, but are not limited to, dynamic GIS [7], cognitive robotics [18],
deep learning [25], and qualitative model generation from video [15]. The interested reader
may look into a more comprehensive review of the emerging applications, the trends, and
the future directions of QSTR in [6].

The problem of representing and reasoning about qualitative spatial or temporal informa-
tion can be modeled as a qualitative constraint network (QCN), i.e., a network of qualitative
constraints corresponding to spatial or temporal relations between spatial or temporal vari-
ables respectively. Two fundamental reasoning problems associated with a given QCN N are
the problems of satisfiability checking and minimal labeling (or deductive closure) [37]. In
particular, the satisfiability checking problem is about deciding if there exists a valuation of
the variables of N that satisfies its constraints, and the minimal labeling problem concerns
finding the strongest implied constraints and consequently obtaining its minimal sub-network.
In general, for most well-known spatio-temporal calculi the satisfiability checking problem is
NP-hard [17]. Further, the minimal labeling problem is polynomial-time Turing reducible to
the satisfiability checking problem [20].

Motivation
In this paper, we focus mostly on the minimal labeling problem, which, since its introduction
in 1974 by Montanari [31], has been studied in the domain of both CSPs [21, 46] and
QCNs [19, 30]. As noted in [21], a minimal network is a quite useful knowledge compilation,
since it allows one to answer a number of queries in polynomial time that would otherwise be
NP-hard; indeed, in the context of QSTR, for instance, one could exploit minimality of a QCN
to immediately deduce whether a task A could be scheduled before a task B, or an object
X could be placed on top of an object Y . Difficult problems such as the minimal labeling
problem and alike are, in general, either approximated by the use of local consistencies [46]
or even solved by the aid of such consistencies [2]. Among the local consistencies introduced
in the literature, we study singleton-style consistencies in the aforementioned context, which
are consistencies that entail support for each base relation (atom) of the constraints of a
QCN with respect to the closure of that network under a weaker local consistency (typically
�
G-consistency [10, 35]). Specifically, we investigate how these consistencies behave when the
underlying weaker local consistency that they build upon is restricted to the neighbourhood
of a singleton-checked constraint. As noted in [47], neighbourhood-based restrictions can hit
the sweet spot between effectiveness and efficiency in singleton-style consistencies for CSPs;
therefore, it is imperative that we introduce and study such restrictions in the context of
QCNs as well, and consequently provide a foundation for further work in understanding this
kind of network structures, which have received much attention over the past years [16].

Contributions
Our contributions are fourfold and are described as follows:

(i) we enrich the family of consistencies for QCNs by proposing singleton-style consistencies
that are applied just on the neighbourhood of the singleton-checked constraint instead
of the entire network;

(ii) we theoretically obtain a strength-based hierarchy among existing consistencies for
QCNs and the novel ones;

(iii) we present algorithms to enforce the proposed consistencies for QCNs, as well as
parsimonious variants thereof;
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Figure 1 The base relations of IA; ·i denotes the converse of ·.

(iv) we make an experimental evaluation with random and structured QCNs of Interval
Algebra to measure and compare the performance of all considered algorithms, especially
in terms of how fast and how well they can independently approximate the minimal
sub-network of a QCN.

The rest of the paper is organized as follows. In Section 2 we give some preliminaries
on qualitative spatial and temporal reasoning. Next, in Section 3 we overview some known
state-of-the-art local consistencies for QCNs. Then, in Section 4 we introduce, formally define,
and thoroughly study the proposed neighbourhood-based consistencies for QCNs, and present
the algorithms for enforcing these consistencies, as well as parsimonious variants thereof. In
Section 5 we evaluate our approach with random and structured QCNs of Interval Algebra
and comment on the outcome; one finding is that neighbourhood-focused singleton-style
algorithms are ∼ 30% faster in the phase transition region than the standard algorithms.
Finally, in Section 6 we draw some conclusive remarks and give directions for future work.

2 Preliminaries

A binary qualitative spatial or temporal constraint language, is based on a finite set B of jointly
exhaustive and pairwise disjoint relations, called the set of base relations [29], that is defined
over an infinite domain D. The base relations of a particular qualitative constraint language
can be used to represent the definite knowledge between any two of its entities with respect
to the level of granularity provided by the domain D. The set B contains the identity relation
Id, and is closed under the converse operation (−1). Indefinite knowledge can be specified
by a union of possible base relations, and is represented by the set containing them. Hence,
2B represents the total set of relations. The set 2B is equipped with the usual set-theoretic
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Figure 2 Figurative examples of QCN terminology using IA.

operations of union and intersection, the converse operation, and the weak composition
operation denoted by the symbol � [29]. For all r ∈ 2B, we have that r−1 =

⋃
{b−1 | b ∈ r}.

The weak composition (�) of two base relations b, b′ ∈ B is defined as the smallest (i.e.,
strongest) relation r ∈ 2B that includes b ◦ b′, or, formally, b � b′={b′′ ∈ B | b′′∩(b ◦ b′) 6= ∅},
where b◦b′={(x, y) ∈ D×D | ∃z ∈ D such that (x, z) ∈ b∧(z, y) ∈ b′} is the (true) composition
of b and b′. For all r, r′ ∈ 2B, we have that r � r′ =

⋃
{b � b′ | b ∈ r, b′ ∈ r′}.

As an illustration, consider the well-known qualitative temporal constraint language of
Interval Algebra (IA), introduced by Allen [1]. IA considers time intervals (as temporal
entities) and the set of base relations B = {eq, p, pi, m, mi, o, oi, s, si, d, di, f , fi} to
encode knowledge about the temporal relations between intervals on the timeline, as depicted
in Figure 1. Specifically, each base relation represents a particular ordering of the four
endpoints of two intervals on the timeline, and eq is the identity relation Id.

Notably, most of the well-known and well-studied qualitative constraint languages, such
as Interval Algebra [1] and RCC8 [34], are in fact relation algebras [17]. In what follows, we
restrict ourselves to such calculi in order to facilitate discussion of the consistencies and of
the algorithms for enforcing them.

The problem of representing and reasoning about qualitative spatial or temporal in-
formation can be modeled as a qualitative constraint network, defined in the following
manner:

I Definition 1. A qualitative constraint network (QCN) is a tuple (V,C) where:
V = {v1, . . . , vn} is a non-empty finite set of variables, each representing an entity of an
infinite domain D;
and C is a mapping C : V × V → 2B such that C(v, v) = {Id} for all v ∈ V and
C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V , where

⋃
B = D× D.

An example of a QCN of IA is shown in Figure 2a; for clarity, converse relations as well
as Id loops are not mentioned or shown in the figure.

I Definition 2. Let N = (V,C) be a QCN, then:
a solution of N is a mapping σ : V → D such that ∀(u, v) ∈ V × V , ∃b ∈ C(u, v) such
that (σ(u), σ(v)) ∈ b (see Figure 2b);
N is satisfiable iff it admits a solution;
a sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN (V,C ′) such that C ′(u, v) ⊆ C(u, v)
∀u, v ∈ V ; if in addition ∃u, v ∈ V such that C ′(u, v) ⊂ C(u, v), then N ′ ⊂ N ;
a base relation b ∈ C(v, v′) with v, v′ ∈ V is feasible (resp. unfeasible) in N iff there
exists (resp. there does not exist) a solution σ : V → D of N such that (σ(v), σ(v′)) ∈ b;
N is minimal iff ∀v, v′ ∈ V and ∀b ∈ C(v, v′), b is a feasible base relation in N ;
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the constraint graph of N , denoted by G(N ), is the graph (V,E) where {u, v} ∈ E iff
C(u, v) 6= B and u 6= v;
N is the empty QCN on V , denoted by ⊥V , iff C(u, v) = ∅ for all u, v ∈ V .

Let us further introduce the following operation that substitutes C(v, v′) with r ∈ 2B in
a given QCN:

given a QCN N = (V,C) and v, v′ ∈ V , we define that N[v,v′]/r with r ∈ 2B yields the QCN
N ′ = (V,C ′) defined by C ′(v, v′) = r, C ′(v′, v) = r−1 and C ′(u, u′) = C(u, u′) ∀(u, u′) ∈
(V × V ) \ {(v, v′), (v′, v)}.

3 State-of-the-art Consistencies

We view a consistency φ
G, where φ is some operation (such as the weak composition operation)

and G a graph, as a predicate on QCNs, i.e., a function that receives an input QCN and
returns true or false depending on whether φ

G holds on that QCN or not respectively. In
what follows, given some operation φ (such as the weak composition operation) and a graph
G, the unique ⊆-maximal φG-consistent sub-QCN of N is called the closure of N under the
consistency φ

G and is denoted by φ
G(N ).

We recall the definition of �G-consistency, which is a basic and widely used local consistency
for reasoning with QCNs.

I Definition 3. Given a QCN N = (V,C) and a graph G = (V ′, E), where V ′ ⊆ V ,
N is said to be �G-consistent iff ∀{vi, vj}, {vi, vk}, {vk, vj} ∈ E we have that C(vi, vj) ⊆
C(vi, vk) � C(vk, vj).

Intuitively, �G-consistency entails consistency for all triples of variables of a QCN that
correspond to triangles of a given graph G. If G is the complete graph on the variables
of a given QCN, then �G-consistency becomes identical to �-consistency [35], and, hence,
�-consistency can be seen as a special case of �G-consistency.

In [39] the authors build upon �G-consistency and propose a local consistency in the context
of qualitative constraint-based reasoning that serves as the counterpart of directional path
consistency in traditional constraint programming [14] or quantitative temporal reasoning [13],
and is mainly distinguished by the fact that the involved consistency notions are tailored
to handle infinite domains and qualitative relations. This local consistency is called ←−�G -
consistency and, in particular, it entails consistency for all ordered triples of variables of a
QCN that correspond to triangles of a given graph G; this ordering can be specified by a
bijection between the set of the variables of a QCN and a set of integers, and can be chosen
randomly or via an algorithm or heuristic. We recall the formal definition of that consistency
as follows:

I Definition 4. Given a QCN N = (V,C), an ordering (α−1(0),α−1(1),. . .,α−1(n− 1)) of V
defined by a bijection α : V → {0, 1, . . . , n− 1}, and a graph G = (V ′, E), where V ′ ⊆ V ,
N is said to be ←−�G -consistent iff ∀vi, vj , vk ∈ V such that {vi, vj}, {vi, vk}, {vk, vj} ∈ E and
α(vi), α(vj) < α(vk) we have that C(vi, vj) ⊆ C(vi, vk) � C(vk, vj).

Since ←−�G -consistency is basically �G-consistency restricted to some ordering of the triples of
variables of a given QCN, it is expected that it will perform worse than �G-consistency in terms
of tackling the satisfiability checking or the minimal labeling problem of that QCN, in the
general case. However, that behaviour of ←−�G -consistency in the context of the aforementioned
reasoning problems for arbitrary QCNs has yet to be investigated (cf. [40]), and we shall use
this work as an opportunity to do so (see Section 5).
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14:6 Neighbourhood Singleton-Style Consistencies for QSTR

We continue with the presentation of some state-of-the-art singleton-style consistencies.
Given a graph G = (V ′, E), where V ′ ⊆ V , a QCN N = (V,C) is ◆G-consistent iff for every
pair of variables {v, v′} ∈ E and every base relation b ∈ C(v, v′), after instantiating C(v, v′)
with {b} as the singleton and applying �G-consistency on N , the revised constraint C(v, v′) is
always supported by {b}. Formally, ◆G-consistency of a QCN is defined as follows:

I Definition 5. Given a QCN N = (V,C) and a graph G = (V ′, E), where V ′ ⊆ V , N is
said to be ◆G-consistent iff N is �G-consistent and ∀{v, v′} ∈ E and ∀b ∈ C(v, v′) we have that
C ′(v, v′) = {b}, where (V,C ′) = �G(N[v,v′]/{b}).

If G is the complete graph on the variables of a given QCN, we can easily verify that
◆

G-consistency corresponds to �B-consistency of the family of �f -consistencies studied in [11].
Interestingly, ◆G-consistency for QCNs can also be seen as a counterpart of singleton arc
consistency (SAC) [12] for CSPs.

Finally, in [42] the authors define a local consistency that is more restrictive than any
of the practical2 local consistencies known to date for QCNs, called collective ◆G-consistency,
or ◆∪

G -consistency for short. This singleton-style consistency is inspired by k-partitioning
consistency for CSPs [5]. We recall the formal definition of that consistency as follows:

I Definition 6. Given a QCN N = (V,C) and a graph G = (V ′, E), where V ′ ⊆ V , N is said
to be ◆∪

G -consistent iff N is ◆G-consistent and ∀{v, v′} ∈ E, ∀b ∈ C(v, v′), and ∀{u, u′} ∈ E
we have that ∃b′ ∈ C(u, u′) such that b ∈ C ′(v, v′), where (V,C ′) = �G(N[u,u′]/{b′}).

This underlying filtering condition of ◆∪

G -consistency is based on relation partitioning com-
bined with �G-consistency, and allows for improved pruning capability over ◆G-consistency [42].

4 Neighbourhood Singleton-style Consistencies

In this section we propose and study a variety of singleton-style consistencies that are applied
just on the neighbourhood of the singleton-checked constraint instead of the whole network.

Before doing so, let us first formally introduce a preorder in order to compare the pruning
(or inference) capability of different consistencies. Let φG and ψ

G be two consistencies defined
by some operations φ and ψ respectively and a graph G. Then, φG is stronger than ψ

G iff
whenever φG holds on a QCN N with respect to a graph G, ψG also holds on N with respect
to G, and φ

G is strictly stronger than ψ
G iff φ

G is stronger than ψ
G and there exists at least one

QCN N and a graph G such that ψG holds on N with respect to G, but φG does not hold on N
with respect to G. (The terms weaker and strictly weaker can be defined likewise.) Finally,
φ
G and ψ

G are incomparable iff there exist QCNs N and N ′ such that φG is strictly stronger
than ψ

G with respect to N and some graph G, and φ
G is strictly weaker than ψ

G with respect
to N ′ and some graph G (we note that the graph G can be different in the two cases).

In general, standard singleton-style consistencies can make a lot of redundant checks,
which consequently can slow down their efficacy. It has been observed in the domain of
CSPs that the majority of constraint revisions occur close to the relation that is being
singleton checked, and rarely too far from it [47]. For that purpose, constraint programming
researchers have proposed weaker singleton-style consistencies that localize propagation to the
neighbourhood of the variable at hand [47, 33]. Neighbourhood singleton-style consistencies
for CSPs, despite being strictly weaker than SAC [12] in general, can produce almost as much

2 Clearly, in special cases notions like k-consistency can be defined and exploited theoretically [9], but
these can be hardly implemented efficiently and are therefore not suitable for applications.
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filtering as SAC with substantially less cost on many problems [33]. In what follows, we define
two neighbourhood singleton-style consistencies for QCNs, and then we proceed to present
algorithms and parsimonious variants thereof for applying these consistencies efficiently.

In order to define the new consistencies, we first need to define what exactly is meant
by “neighbourhood of a relation” in the context of QCNs. Informally, given a QCN N and
a graph G, the neighbourhood of a relation in N comprises all the triangles that involve
the corresponding edge in G, and all the edges among the vertices of those triangles as well.
Noting that in a given graph G = (V,E), for each u ∈ V the set of adjacent vertices of u,
denoted by adj(u), is the set {w | {u,w} ∈ E}, we can formally define the neighbourhood of
a relation of a QCN as follows:

I Definition 7. Given a QCN N = (V,C), a graph G = (V ′, E), where V ′ ⊆ V , and two
variables v, v′ ∈ V such that {v, v′} ∈ E, the neighbourhood of C(v, v′), denoted by GN(vv′),
is the induced subgraph G[S], where S = (adj(v) ∩ adj(v′)) ∪ {v, v′}.

As an example, consider the QCN and its accompanying graph shown in Figure 3. The
neighbourhood of C(x1, x3) is the induced subgraph of the set of vertices {x1, x2, x3, x4}.

With the aforementioned definition in mind, we can define the notion of neighbourhood
◆

G-consistency as follows:

I Definition 8. Given a QCN N = (V,C) and a graph G = (V ′, E), where V ′ ⊆ V , N is
said to be neighbourhood ◆G-consistent, or N◆G-consistent for short, iff N is �G-consistent
and ∀{v, v′} ∈ E and ∀b ∈ C(v, v′) we have that C ′(v, v′) = {b}, where (V,C ′) =
�
GN(vv′)

(N[v,v′]/{b}).

Similarly, we can define the notion of neighbourhood ◆∪

G -consistency as follows:

I Definition 9. Given a QCN N = (V,C) and a graph G = (V ′, E), where V ′ ⊆ V , N is
said to be neighbourhood ◆∪

G -consistent, or N◆∪

G -consistent for short, iff N is N◆G-consistent
and ∀{v, v′} ∈ E, ∀b ∈ C(v, v′), and ∀{u, u′} ∈ E we have that ∃b′ ∈ C(u, u′) such that
b ∈ C ′(v, v′), where (V,C ′) = �GN(vv′)

(N[u,u′]/{b′}).
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14:8 Neighbourhood Singleton-Style Consistencies for QSTR

The reader can note that Definitions 8 and 9 mirror Definitions 5 and 6 respectively, the
difference being that the closure under �G-consistency is restricted to the neighbourhood of
the constraint at hand.

We recall the following result from [42] in our effort here to build a strength-based
hierarchy among all discussed consistencies:

I Proposition 1 ([42]). We have that ◆∪

G -consistency is strictly stronger than ◆G-consistency.

In the sequel, Figure 3 will be crucial in proving the results that follow.

I Proposition 2. We have that ◆∪

G -consistency is strictly stronger than N◆∪

G -consistency.

Proof. Consider the QCN along with its accompanying graph depicted in Figure 3. As
noted in its caption the QCN is N◆∪

G -consistent and N◆G-consistent, but not ◆G-consistent or
◆

∪

G -consistent. Specifically, in order for the QCN to become ◆G-consistent and ◆
∪

G -consistent,
the base relation mi needs to be removed from C(x2, x5). In addition, by the definitions of
◆

∪

G -consistency and N◆∪

G -consistency, we have that every ◆∪

G -consistent QCN is N◆∪

G -consistent.
Specifically, given a QCN N and two graphs G and G′ such that G ⊆ G′, it holds that if N
is �G-consistent then N is �G′-consistent. J

Following the same line of reasoning as that of the proof of Proposition 2, we assert the
next result:

I Proposition 3. We have that ◆G-consistency is strictly stronger than N◆G-consistency.

We proceed with presenting the next result:

I Proposition 4. We have that N◆∪

G -consistency is strictly stronger than N◆G-consistency.

Proof. Consider the QCN along with its accompanying graph depicted in Figure 3 in [42]. It
is the case that the QCN is N◆G-consistent, but not N◆∪

G -consistent. Additionally, by definition
of N◆∪

G -consistency, we have that every N◆∪

G -consistent QCN is N◆G-consistent. J

We continue with another result as follows:

I Proposition 5. We have that N◆∪

G -consistency is incomparable to ◆G-consistency.

Proof. Consider again the QCN along with its accompanying graph depicted in Figure 3
in [42]. It is the case that the QCN is ◆G-consistent, but not N◆∪

G -consistent. On the other
hand, as noted also in the proof of Proposition 2, the QCN of Figure 3 here is N◆∪

G -consistent,
but not ◆G-consistent, with respect to its accompanying graph. J

From Propositions 2 and 4 (or 1 and 3) we obtain the following result:

I Corollary 1. We have that ◆∪

G -consistency is strictly stronger than N◆G-consistency.

Finally, to complete our strentgh-based hierarchy we close off with some results that
involve the non-singleton-style consistencies �G-consistency and ←−�G -consistency.

I Proposition 6. We have that N◆G-consistency is strictly stronger than �G-consistency.

Proof. Consider the QCN depicted in Figure 14 in [36], which was used to prove that �-
consistency cannot decide the minimality of a QCN in general. It is the case that the QCN
is �G-consistent, but not N◆G-consistent, with respect to the complete graph on the set of
variables of that QCN. Notably, applying N◆G-consistency on that QCN makes it minimal.
Additionally, by definition of N◆G-consistency, we have that every N◆G-consistent QCN is
�
G-consistent. J
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◆
∪

G

N◆∪

G

◆

G

N◆G �
G

←−�
G

Figure 4 A strength-based hierarchy of consistencies for QCNs; an arrow denotes the (transitive)
strictly stronger relationship and a dotted line the (symmetric) incomparable relationship.

Algorithm 1 PSWC∪N(N , G).

in :A QCN N = (V,C), and a graph G = (V ′ ⊆ V,E).
out :A sub-QCN of N .

1 begin
2 N ← �

G(N );
3 Q ← list(E);
4 while Q 6= ∅ do
5 {v, v′} ← Q.pop();
6 (V,C ′) ← ⊥V ;
7 foreach b ∈ C(v, v′) do
8 (V,C ′) ← (V,C ′) ∪ �GN(vv′)

(N[v,v′]/{b});

9 if (V,C ′) ⊂ N then
10 flag ← False;
11 foreach {u, u′} ∈ E do
12 if C ′(u, u′) ⊂ C(u, u′) then
13 C(u, u′)← C ′(u, u′);
14 C(u′, u)← C ′(u′, u);
15 flag ← True;

16 if flag then Q ← list(E);

17 return N ;

From Propositions 1, 2, 3, 4, and 6 we obtain the following result:

I Corollary 2. We have that each of the consistencies of ◆∪

G -consistency, N◆∪

G -consistency,
◆

G-consistency, and N◆G-consistency is strictly stronger than �G-consistency.

From [40] we have the following result:

I Proposition 7 ([40]). We have that �G-consistency is strictly stronger than ←−�G -consistency.

From Corollary 2 and Proposition 7 we obtain the following last result:

I Corollary 3. We have that each of the consistencies of ◆∪

G -consistency, N◆∪

G -consistency,
◆

G-consistency, N◆G-consistency, and �G-consistency is strictly stronger than ←−�G -consistency.

A visual representation of the established strength-based hierarchy of consistencies is
shown in Figure 4.

TIME 2019
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Algorithm 2 PSWCN(N , G).

in :A QCN N = (V,C), and a graph G = (V ′ ⊆ V,E).
out :A sub-QCN of N .

1 begin
2 N ← �

G(N );
3 Q ← list(E);
4 while Q 6= ∅ do
5 {v, v′} ← Q.pop();
6 (V,C ′) ← ⊥V ;
7 foreach b ∈ C(v, v′) do
8 (V,C ′) ← (V,C ′) ∪ �GN(vv′)

(N[v,v′]/{b});

9 if C ′(v, v′) ⊂ C(v, v′) then
10 C(v, v′) ← C ′(v, v′);
11 C(v′, v) ← C ′(v′, v);
12 Q ← list(E);

13 return N ;

Algorithm 3 `PSWC∪N(N , G).

in :A QCN N = (V,C), and a graph G = (V ′ ⊆ V,E).
out :A sub-QCN of N .

1 begin
2 N ← �

G(N );
3 Q ← list(S ⊆ E);
4 while Q 6= ∅ do
5 {v, v′} ← Q.pop();
6 (V,C ′) ← ⊥V ;
7 foreach b ∈ C(v, v′) do
8 (V,C ′) ← (V,C ′) ∪ �GN(vv′)

(N[v,v′]/{b});

9 C(v, v′) ← C ′(v, v′);
10 if (V,C ′) ⊂ N then
11 foreach {u, u′} ∈ E \ {v, v′} do
12 if C ′(u, u′) ⊂ C(u, u′) then
13 C(u, u′)← C ′(u, u′);
14 C(u′, u)← C ′(u′, u);
15 Q.push({u, u′});

16 return N ;

Algorithms and Complexities

For the sake of completeness, we present here algorithms PSWC∪N and PSWCN, shown in
Algorithms 1 and 2 respectively, which given a QCN N and a graph G as input apply
N◆∪

G -consistency and N◆G-consistency on N respectively. By dropping the red underlined
parts in the aforementioned algorithms, the reader can verify that they fall back to algorithms
PSWC∪ and PSWC respectively, which were introduced in [42].
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Given a QCN N = (V,C) and a graph G = (V ′, E), where V ′ ⊆ V , the worst-case time
complexity for both PSWC∪N and PSWCN is O(α|B|2|E|2), where α is the worst-case time
complexity for computing �G′(N ) with respect to the largest graph G′ ⊆ G that is used in
Line 8 of the algorithms (as each constraint defines its own neighbourhood G′). For any given
QCN N = (V,C) and a graph G = (V ′, E), where V ′ ⊆ V , we note that α is O(∆|B||E|),
where ∆ is the maximum vertex degree of G [10].

Finally, given a QCN N and a graph G, a parsimonious variant for approximating
N◆∪

G -consistency in N is algorithm `PSWC∪N, shown in Algorithm 3. Again, by dropping the
red underlined parts in the aforementioned algorithm, the reader can verify that it falls back
to a slight generalization of algorithm `PSWC∪, which was introduced in [41]. Specifically,
contrary to the algorithm as it appears in [41], in Line 3 of Algorithm 3 we allow any subset S
of the set of edges of the input graph to be used; this subset serves as the seed of constraints
from which the singleton checks will start propagating themselves. Algorithm `PSWC∪N is
lazy in the sense that it relies upon previously revised constraints to allow itself to continue
propagation. Therefore, depending on the subset S to be used, and the order in which the
constraints are processed, the algorithm may produce different outputs for the same input
(see [41]).

The worst-case time complexity of `PSWC∪N is the same as that of PSWC∪N (and PSWCN),
although we will see later on in Section 5 that it is much faster in practice.

5 Experimental Evaluation

In this section we investigate the utility of the proposed neighbourhood singleton-style con-
sistency algorithms, as well as the discussed state-of-the-art local consistency algorithms that
appear in the literature, with respect to the fundamental reasoning problems of satisfiability
checking and minimal labeling that are associated with QCNs. Specifically, we explore their
efficiency in determining the satisfiability of a given network instance and in discovering
the unfeasible base relations of that network instance (in regard to both CPU time and
correctness of decision).

Technical specifications

The evaluation was carried out on a computer with an Intel Core i5-4570 processor, 16 GB of
RAM, and the Xenial Xerus x86_64 OS (Ubuntu Linux). All algorithms were coded in Python
and run using the PyPy intepreter under version 5.1.2, which implements Python 2.7.10.
Only one CPU core was used.

Dataset

We used the dataset employed in [43]. That dataset comprises 1 000 random and structured
QCNs of IA that were created using models A(n, l, d) [32] and BA(n,m) [38] respectively.
Pertaining to A(n, l, d), there are 100 QCNs of IA of n = 70 variables and with l = 6.5 base
relations per non-universal constraint on average, for all values of the average constraint
graph degree d from 7 to 12 with a step of 1. Pertaining to BA(n,m), there are 100 QCNs of
IA of n = 150 variables for all values of the constraint graph preferential attachment m [4]
from 2 to 5 with a step of 1. Finally, regarding the graphs that were given as input to our
algorithms, the maximum cardinality search algorithm [45] was used to obtain triangulations
of the constraint graphs of our QCNs. The choice of such chordal graphs was not only
reasonable but also crucial given their important theoretical and practical implications in
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qualitative constraint-based spatial and temporal reasoning, as reviewed in [44]; the use of
those graphs itself was inspired by [23, 22, 27] among other works, where preliminary results
pertainining to tree decompositions were established.

Tools

In addition to our implementations of the algorithms that were presented in Section 4, we
utilized the following four software tools:3

Solver, the state-of-the-art reasoner for checking the satisfiability of QCNs of Interval
Algebra and RCC8 that was introduced in [38] (and in particular the reasoner called
Phalanx5 in that work);
Minimizer, our own implementation of the approach for solving the minimal labeling
problem of QCNs of Interval Algebra and RCC8 that was first presented in [2];4
PWC, the state-of-the-art algorithm for applying �G-consistency on QCNs of Interval
Algebra and RCC8 that was used in [38] (which is a module of the Phalanx5 reasoner
mentioned earlier);
DPWC, the state-of-the-art algorithm for applying ←−�G -consistency on QCNs of Interval
Algebra and RCC8 that was introduced in [40] (and in particular the reasoner called
Pyrrhus in that work).

Results

The results of our experimental evaluation are detailed in Tables 1 and 2, where a fraction x

y
for Solver denotes that it required x seconds of CPU time on average per dataset of network
instances during its operation and detected y such instances as being unsatisfiable in total, a
fraction x

z
for Minimizer denotes that it determined z% of base relations to be unfeasible in

total, and a fraction x

y|z
for the rest of the algorithms denotes all the previous information

combined together (from the viewpoint of the respective algorithm).
The first thing to note is that Solver has no competition whatsoever in terms of deciding

the satisfiability of a network instance. This was expected, as this type of reasoner is tailored
to avoid “bad” branches in the search tree and to reach a leaf (i.e., a solution) in the most
efficient way possible. On the other hand, when the entire search tree needs to be taken into
account, as is the case with Minimizer, the computational task is much more time-consuming;
therefore, Minimizer has by far the worst performance among its competition.

Regarding the singleton-style consistency algorithms, we can note that they of course have
an overhead compared to Solver, but they are much faster in general than Minimizer and they
can, in many cases, simulate its pruning capability in an almost exact manner. It is worth
mentioning that the neighbourhood-focused singleton-style algorithms PSWC∪N and PSWCN
are around 30% faster in the phase transition region than the standard algorithms PSWC∪

and PSWC respectively, whilst retaining much of the good performance characteristics
(viz., unfeasible base relations elimination and satisfiability decision) of the latter. The

3 These software tools are available at https://msioutis.gitlab.io/software.
4 In particular, we ported the code to Python and included all recent advances that are associated with

the components that comprise that approach, such as improvements in its underlying satisfiability
checking module. It must also be noted that the strongest of the local consistencies discussed here, viz.,
◆

∪

G -consistency, was used as a preprocessing step to enhance the performance of Minimizer.

https://msioutis.gitlab.io/software
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parsimonious variants `PSWC∪ and `PSWC∪N are up to 6 times faster in the phase transition
region than PSWC∪ and PSWC∪N respectively, but detect in general slightly fewer unsatisfiable
network instances and eliminate slightly fewer unfeasible base relations as well. We should
note that for a given QCN N = (V,C) and a graph G = (V ′, E), where V ′ ⊆ V , the subset
S that was used in Line 3 of the parsimonious variants (see Algorithm 3) corresponds to the
set of edges E(G(�G(N))), i.e., the set of edges of the constraint graph of �G(N).

Synopsis

In conclusion, and with respect to the involved datasets here, we observe that the considered
singleton-style consistency algorithms are not good options for just checking the satisfiability
of a network instance, as they present an overhead when compared to a state-of-the-art
reasoner that is tailored to this specific task. However, we also point out that they are ideal
candidates for efficiently approximating and even determining in many cases the minimal
labeling of a network instance; this becomes even more prominent if one considers the
comparatively bad pruning capability of PWC, and the even worse one of DPWC for that
matter. It should be noted that even if the state-of-the-art reasoner Minimizer is provided
with a minimal network instance (as it was usually the case in our evaluation due to
the preprocessing with ◆∪

G -consistency, see again Footnote 4 about this), it is an NP-hard
problem to decide the satisfiability of that instance, and an NP-hard problem to verify its
minimality as a consequence [30]. We emphasize again the fact that the neighbourhood-
focused singleton-style algorithms PSWC∪N and PSWCN were found to be around 30% faster
in the phase transition region than the standard algorithms PSWC∪ and PSWC respectively,
for both random and structured QCNs, whilst they were able to retain much of the good
performance characteristics in terms of unfeasible base relations elimination and satisfiability
decision of the latter. Regarding the parsimonious variants in particular, viz., `PSWC∪ and
`PSWC∪N, even though they exhibited arguably impressive performance characteristics, a
major disadvantage is that they do not yield unique closures for a same QCN (see again the
discussion in the previous section), which inhibits their theoretical study.

6 Conclusion and Future Work

We proposed singleton-style consistencies for QCNs that are applied just on the neighbourhood
of a singleton-checked constraint instead of the whole network, and attained a strength-based
hierarchy among all discussed consistencies here. Further, we proposed algorithms to enforce
our consistencies, as well as parsimonious variants thereof, that were shown to be much more
efficient in practice than the state-of-the-art algorithms for a dataset comprising random and
structured QCNs of Interval Algebra. It should be noted that are approach is generic and
applies to other calculi as well, such as the spatial calculus RCC8.

Future work consists in obtaining structure-based tractability results focused on the
neighbourhood of constraints, developing faster inference mechanisms that will only partially
singleton-check a constraint (i.e., only some of the base relations of a constraint will be
used for singleton checks), much like quick shaving [26], establishing adaptive constraint
propagators for QCNs (see [3] for instance in the context of CSPs), and looking into prioritizing
or even solely focusing on singleton checks for base relations that play a crucial role in the
computational properties of a given qualitative constraint language [24, 8]. Therefore, we
argue that our approach can drive both theoretical and practical future research and provide
a foundation for further work in the study of QCNs, which are pertinent in Symbolic AI [16].
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