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In this paper we discuss how focusing on inquiry-based learning may contribute to the development 

of mathematical literacy in the early grades. We analyze a grade 2 lesson with play-coins with a 

particular view on what it means for students to have a critical orientation. 
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Introduction 

The work reported in this paper is part of a longitudinal study on mathematical and scientific 

literacy and inquiry-based learning in two Norwegian primary schools. The project group consisted 

of university didacticians from both the mathematics and the science sections of the teacher 

education department working together with teachers at the two schools. At the start of the project, 

the students were in grade 1. The data analyzed in this paper was collected when the students were 

at the start of second grade, at ages 6- and 7-years old. Using data from an IBL-inspired lesson with 

students at their start of second grade, we explore affordances for students’ critical meeting with 

mathematics in a ‘realistic’ context. While a lot has been said and written about literacy in general 

and also the particular topic of mathematical literacy, what mathematical literacy constitutes in the 

earlier grades has been less discussed (e.g., Askew, 2015, p. 708). In this paper our research 

question is: Which opportunities do students have to be critical in mathematics in a second-grade 

classroom, and how can an IBL approach foster this? 

Literature review 

The use of more inquiry-based learning has been launched as a way to make mathematics and 

science more relevant to students, preparing them for an uncertain future where the ability to ask 

questions, to reason, explore, explain and develop a creative and critical mind is seen as essential 

(e.g., Maaß & Artigue, 2013). Also for early years mathematics inquiry-based activities has been 

launched as beneficial to develop critical and creative thinking (e.g. Skoumpourdi, 2017). Through 

working inquiry-based, teachers will expand their teaching repertoire and will also be better able to 

meet different types of students, including students who struggle with mathematics. Inquiry-based 

learning has been shown to be effective in rich and real-life contexts and may have a positive effect 

on students who otherwise perform poorly (Kogan & Laursen, 2013). Through context-based 

approaches, students gain insight into meaningful use of mathematics and this results in improving 

students' motivation and attitudes towards learning, which in turn affects academic achievement 

(Bruder & Prescott, 2013). In this way, IBL appears as a framework that is productive in terms of 

building mathematical literacy. There is no universally agreed upon definition of inquiry-based 

learning. Core elements of IBL include developing a questioning mind and a scientific attitude. In 
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the EU funded Primas project (Maaß & Reitz-Koncebovski, 2013), aspects related to students, 

teachers, classroom culture, valued outcomes and learning environment were identified and 

summarized, see Figure 1. 

 

Figure 1. The multifaceted understanding of IBL (Maaß & Reitz-Koncebovski, 2013, p. 8) 

Whereas mathematical literacy has been propagated by policy makers and educational authorities, 

the term is not well defined within the scientific literature. Terms like numeracy and quantitative 

literacy have been used, more or less synonymously with mathematical literacy, without any 

determinate definition of what the term entails (Geiger, Goos, & Forgasz, 2015). Niss and Jablonka 

(2014) pointed out that researchers from non-English speaking countries may have reservations 

towards the use of the term based on the fact that it is not easily translated and lack counterparts in 

many languages, including German and the Scandinavian languages. For the PISA assessments, 

OECD made a working definition that has been slightly amended through the years. In its latest 

version it reads 

Mathematical literacy is an individual’s capacity to formulate, employ and interpret mathematics 

in a variety of contexts. It includes reasoning mathematically and using mathematical concepts, 

procedures, facts and tools to describe, explain and predict phenomena. It assists individuals to 

recognize the role that mathematics plays in the world and to make the well-founded judgements 

and decisions needed by constructive, engaged and reflective citizens. (OECD, 2017, p. 4) 

An aspect that is downplayed by this definition is the critical aspect. Some authors see the 

development of a critical disposition as a primary aspect of mathematical literacy. In the model 

developed by Goos, Geiger and Dole (2014) a critical orientation is seen as an overarching element. 

D'Ambrosio (2003) used the term matheracy along with literacy and technoracy as essential for the 

“providing, in a critical way, the communication, analytical, and technological instruments 

necessary for life in the twenty-first century” (p. 237). Matheracy is not about counting or 

measurements, but about thinking and philosophy, about the ability to derive, suggest hypotheses 

and draw conclusions from data. Literacy, according to D'Ambrosio, is the ability to process 

information, such as the use of spoken and written languages, of characters and gestures, of codes 

and numbers. Ole Skovsmose (1998) introduced the term mathemacy as a parallel to the way Paulo 



 

 

 

Freire has used literacy, namely by linking it to being able to function in society, and thus not only 

to number sense or basic skills in arithmetic (p. 199). To Skovsmose, mathemacy is about the 

competence to be able to function in society structured by mathematics. Against this we can ask to 

what extent mathematics education educates students to become critical citizens who can challenge 

the authorities. Askew (2015, p. 708) argued that being critical can be addressed in at least three 

ways: 1) being critical within a particular mathematical model; 2) being critical of the choice 

between mathematical models; and 3) being critical of what is modelled mathematically. Askew 

emphasized that these three forms of being critical are not to be seen as separate to each other or 

mutually exclusive, but rather “co-construct each other” (p. 709). Being critical within a particular 

mathematical model is the approach in most papers about young students, this is about reflecting on 

the chosen methods/approaches used by the students towards finding the required answers or 

results. It is less clear what being critical to the choice of mathematical model or being critical to 

what is being modelled may constitute in the lower grades. Does being critical presuppose 

mathematical knowledge to a certain degree? And which comes first, Askew asked, the 

mathematical knowledge that enables you to be critical, or the critical orientation towards practice? 

The problems posed in mathematics classes has a long tradition of being ‘made up’ to look like real 

problems, and posed to be solved by the algorithms of mathematics. On the other hand, “real-life 

problem solving is pragmatic and seeks effective solutions to particular problems, rather than the 

generality and abstraction sought in formal mathematics” (Askew, 2015, p. 709). There are, 

however, no quick fixes according to Geiger et al. (2015): “The question of how to best promote 

numeracy capabilities remains an open question. (…) there appears to be little research that outlines 

the characteristics of effective numeracy tasks or how these tasks promote student learning” (p. 

544). 

Methodology 

The data was collected as part of a seven-year longitudinal study where four groups/classes in two 

different primary schools and their teachers partake in lesson study cycles focusing on inquiry-

based approaches to mathematics and science. Each group of children with their teachers partake in 

two lesson study cycles each year, in science or mathematics, starting with the children’s first year 

in school and until they leave primary school after 7th grade. At the time of the lessons reported on 

here the students were at start of their second year at school. Skoumpourdi (2017) pointed out that 

“it is not easy for teachers to design inquiry-based activities and implement them in the classroom” 

(p. 1906). To implement new pedagogical and didactical ideas, it is beneficial for teachers to work 

collaboratively and with support from outside ‘experts’. Lesson studies in the form of planning 

lessons together and observing each other’s teaching in cyclic processes of design and redesign is a 

particular efficient way of professional development (e.g., Yang & Ricks, 2013). In our project, 

each lesson study cycle is initiated by the in-service teachers choosing a topic or teaching goal, 

building on the national curriculum, in either mathematics or science.  The research group and the 

teachers meet to develop a detailed lesson plan for the teaching. The planning meeting is audio-

recorded. One of the in service-teachers then conducts the lesson, which is video-taped, while the 

other teachers and researchers observe the lesson, using observation sheets that have been 

developed as part of the planning sessions. In addition, the teacher wears an audio-recorder, and 



 

 

 

additional audio-recorders are placed among selected groups of students. After the lesson the 

researchers and the in-service teachers meet to reflect on the lesson and redesign it. A (possibly 

different) teacher conducts a new lesson with the new redesigned lesson plan in another group/class. 

A new reflection and redesign meeting is held after this second run-through. This is also audio-

recorded. In addition, annual interviews are conducted. Students are interviewed in groups of 3-4, 

while teachers are interviewed individually and respond to questionnaires. For this paper the data 

analyzed comes from two lessons in the lesson study cycle.  The first group of students comprised 

16 students and the second 14 students. The same teacher, who is one of the two regular teachers 

sharing these two groups, conducted both lessons. The underlying mathematical goal concerned 

addition with natural numbers up to twenty. The mathematics was introduced in a context that 

involved Norwegian coins (values 1, 5, and 10 kroner), bringing the ‘real’ world into play. We use 

the word ‘play’ here deliberately to emphasize that the real world for children is as much a world of 

playing games and not only the real adult world. At the same time, using coins relates to the adult 

world and prepares students for meetings with, and they may already relate to, money in the real 

world. Thus, the tasks were partly presented as small ’mysteries’ where the students were supposed 

to find solutions, as if solutions to real problems and not pure mathematical tasks. A particular aim 

in the design of the tasks was to focus on the different types of number of solutions a mathematical 

problem may have: one unique solution, several or infinitely many solutions, or no solution at all. 

For the students, working collaboratively, in pairs, was an explicit goal for the lesson. Students had 

access to number lines, play coins similar to Norwegian 1, 5 and 10 kroner coins, and A3-size 

sheets of paper, pencils and crayons. Each lesson was divided in three parts: 1) plenary gathering 

around the smartboard, where the topic was introduced; 2) students working in pairs with up to five 

different tasks. The tasks were printed on laminated A5-size paper sheets and handed to the students 

as they asked for it. 3) plenary session were students were asked to present their findings. Data 

sources used for the analysis in this paper are the audio- and video-recordings and transcripts of the 

lessons, observation sheets filled in by the authors during the lessons, and copies of the A3 sheets 

filled in by the students. The multiple data sources enhances the construct validity (Yin, 2018, p. 

43). Data analysis started by the two of us watching the video recordings together. Whenever 

anything in the video was unclear, the audio recordings were consulted, and sometimes also copies 

of the student work sheets. Together with the lesson plan and the observation sheets this gave us an 

overview of the lessons. Subsequently, the transcripts were analyzed by each of the authors with 

respect to two lines of inquiry: 1) are any of the aspects of IBL as identified by Maaß and Reitz-

Koncebovski (2013) apparent? and 2) are any of the three ways of being critical as identified by 

Askew (2015) apparent?  We then sat together to exchange scripts and discuss our findings to 

enhance inter-rater reliability. Part of this also included consulting the video- or audio recordings or 

the students work sheets whenever anything needed to be clarified. 

Findings 

All together there were six available tasks for students to work on, labelled 1a, 1b, 1c, 2a, 2b, 2c. 

All students were able to work with at least the two first ones, and some students were able to finish 

all tasks. We arrange our findings according to the tasks, with an analysis of student answers to the 

first four tasks. The students started out on task 1a), that had a unique solution, namely: Jens has 



 

 

 

four coins in his pocket. The value of the coins are 17 kroner. Which coins is it? In the conversation 

below we see an example where the students have already solved the mathematical problem by 

representing the answer with play-coins but without writing or drawing. The teacher asks them to 

write and draw the answer, and the calculation. They found a short plenary talk where the teacher 

reminded the class that they should collaborate and use the available resources when needed, as 

something that disturbed them:  

24 Student 2: We are already finished with these coins. We managed to find out  before 

you began with your talking-thing 

30 Teacher: But, you, can’t you say how you were thinking, and write it? Draw coins, 

write the addition? Write the answer! 

In this interaction with the teacher the students have a solution, and rather than giving the students 

an opportunity to explain their thinking with the play coins, they are encouraged to make a written 

record on paper. The teacher does ask them to draw the coins, while in the video it is clear that the 

students have used the play-coins to solve the problem. We see here that there is some discrepancy 

between the students’ and the teacher’s ideas about how to solve the problem. This can be 

interpreted as the students being critical within the mathematical model, the first of Askew’s (2015) 

three ways of being critical. 

Task 1b): Jens has 17 kroner in his pocket. Which coins can that be?  This task has several 

solutions, however only a finite number using Norwegian coins.  

66 Student 1:  OK. 17 kroner. OK. One ten, one five, plus two. Like that. You can write it. 

Student 2 asks whether to write the same answer as in 1a), but Student 1 says 

70 Student 1: No, no, no. You do different ways. 

The students explore different ways to make a sum of 17 kroner from the Norwegian coins, 

realizing that there are lots of solutions.  

104 Student 2: Maybe we can fill the whole sheet only with b). 

This type of task, with several solutions, is not very common in Norwegian text-books and 

classrooms. In their conversation, Student 1 sees only one possible solution, however Student 2 

points out that there are in fact many solutions, and they continue to explore this together.  

Task 1c): There are 4 coins in the bag. Which coins can it be and how many kroner? This task 

poses the same challenges as the previous one, as there are several solutions, though only a finite 

number using Norwegian coins. Many of the students did not realize that the coins did not need to 

hold the same value in this task. Several were happy with the solution 1+1+1+1, and needed 

prompting from the teacher to realize that there were other possible solutions. Two of the students 

found several possibilities and started discussing whether there are more than already discovered. 

Further in the discussion a question arises: 

416 Student 2:  Is it allowed with minus? Because there are no more numbers. 

This can be interpreted as the student questioning the choice of model in this setting, which is the 

second way of being critical according to Askew (2015). It is not within the model or given context 

natural to consider that you add some of the coins in the pocket and subtract any. These students are 



 

 

 

in the early stages of learning addition and subtraction and so it is natural to also question which 

mathematical operation that is valid in a given situation. And indeed, considered as a purely 

mathematical problem, subtraction is also part of the additive context. 

Task 2a): Kari has 5 coins in her pocket, in total 20 kroner. Which coins does Kari have in her 

pocket? This task does not have any solutions using Norwegian coins. The students’ first reaction 

was 

468 Student 1:  OK, that is easy. No, what? 

The two students discussed it, trying out possible solutions.  

511 Student 1:  We need one … It doesn’t work 

513 Student 2:  Yes, but it has to work, Hm … 

515 Student 1: This also does not work. Definitely not this. Kari has five in her pocket … 

527 Student 1: It would have worked if there was a 2-coin. 

529 Student 2: OK. Oi, oi, oi. This is totally … Hm … Five .. 

537 Teacher:  What are you doing? 

539 Student 2: We are working with this one, with 5 coins, it is not possible to divide in 

twenty or something. Ones, too few. All of them, too little. And fivers, too 

much, and tens, too much. 

567 Student 2: Four. If we need, then,… If it was supposed to be 19, then we would have 

found the answer immediately. There should have existed 2-coins. 

Not all mathematical tasks have a solution, and quite a few mathematical tasks do not have a 

solutions within the number set you are working with; e.g. 3 – 5 does not have a solution in the 

natural numbers, 3 : 5 does not have a solution in the integers, a set of linear equations represented 

by non-identical parallel lines does not have a solution; etc. In this case this fact is discovered by 

the students, when they realize that if you had a coin with value 2 kroner then the problem could be 

solved.  Two other students, Student 3 and Student 4, also working with 2a), turned critical to the 

idea of having this type of tasks. Their relationship with the teacher is one of confidence and trust, 

allowing expression of honest opinions of frustration without being interpreted as rude or angry. 

445 Student 3: So this is a nonsense task? 

447 Teacher:  Or an impossible task? 

449 Student 3: Did you make this so that we should not be able to solve it, just sit there 

struggling and struggling? 

These students questions the teachers motivation for choosing a task that does not have a solution. 

This can be seen as the students being critical to what is being modelled mathematically, the third 

way of being critical as identified by Askew (2015). 

Discussion 

The multi-faceted understanding of IBL consisting of five related areas displayed in Figure 1 was 

used as a guiding map during the planning of the lesson, and the analysis shows that several 

characteristic aspects of IBL could be discerned in the lessons. The learning environment was 

characterized by problems that afforded diverse possible solution strategies, and apart from task 1a) 



 

 

 

they all had a number of possible solutions. Furthermore, the problems could be experienced as real 

for the students, and there was access to tools such as play-coins, number lines, paper and pencils. 

Explanation of solutions were encouraged, as made clear by the teacher both at the start of the 

lesson and during the students’ problem solving. The realistic restrictions to the coin-problems by 

using only Norwegian coins afforded the students opportunities to discover firstly that not all 

problems are solvable with these restrictions, secondly that if there were other coins such as a coin 

with value 2 kroner the problem could be solved, and thirdly, in the real world there is actually no 

coin in Norway with value 2 kroner. Understanding what a solution means, under what 

circumstances and limitations solutions can be found, and being able to see that changing conditions 

may lead to other solutions, is an important part of learning mathematics, and in particular an 

important part of developing a critical orientation in mathematics, e.g. as identified by Goos et al. 

(2014) and Askew (2015). Additionally, it is certainly also an important part of being able to solve 

problems in the society. This brings us closer to those aspects of learning mathematics that are 

proposed by D’Ambrosio (2003), Skovsmose (1998) and which are some of the underlying ideas 

and valued outcomes of IBL (Maaß & Reitz-Koncebovski, 2013). For some students, such as 

students 1 and 2, we observed that they had to be encouraged specifically to do writing and drawing 

by the teacher. They had already solved the problem using play-coins but not made a written record. 

Learning to communicate your solution, making your thinking visible to others in a multitude of 

ways, is an important part of building mathematical literacy. At the same time, forcing children to 

represent their answers in particular ways may distract from their learning of the mathematical 

content, and prevent them from going into deeper thinking. One risks, as D’Ambrosio (2003) 

pointed out, to emphasize manipulation of numbers and symbols rather than developing matheracy.  

We believe that this tension between steering children towards particular representations and letting 

them explore more freely, is something we have to live with. By emphasizing the importance of 

writing or drawing as representations and as means for communicating results, one risks 

downplaying the importance of other, for instance oral communication (which is also something 

one would like to foster). From the empirical data we also see that the students engaged in the 

inquiry cycle with the five E’s, engage, explore, explain, extend and evaluate while working 

collaboratively in pairs. The teacher encouraged students’ reasoning by asking students about their 

ways of thinking, both in plenary and when students were working in pairs. From the data it is 

evident that it was necessary for the teacher to prompt students to collaborate and inquire, even if 

this prompting when done in plenary was seen as ‘disturbing’ for some students, as evident from 

transcript line 24 above. Developing a classroom culture that values questioning, exploration and 

where mistakes are seen as a necessary part of learning mathematics is emphasized as important in 

IBL (Maaß & Reitz-Koncebovski, 2013) and is essential for students to develop a critical 

disposition that is essential in being mathematically literate. In our data it is evident how the teacher 

tried to achieve this, both by her innate experience as a teacher and by using the IBL oriented lesson 

plan. The start of the lesson with the students all gathered around a smart-board where the coins and 

the problems were introduced, was used to create a classroom culture of shared ownership and 

purpose, and where the students were encouraged to explore and work together. Valued outcomes in 

an IBL setting include developing critical and creative inquiring minds. This echoes some of the 

ideas proposed by D’Ambrosio (2003) and Skovsmose (1998) and also the critical orientation 



 

 

 

underlined by Goos et al. (2014). It is not straight forward to answer the question about what it 

means to be critical in a mathematics lesson, in particular at the lower grades of primary school. 

Our data shows that it is possible to identify the three ways of being critical (Askew, 2015) even in 

2nd grade, if the setting and atmosphere in the classroom is encouraging, e.g. the classroom culture 

and learning environment are as described in the IBL model. Planning a lesson using an IBL model 

like the one used here may help fostering mathematical literacy, including developing a critical 

disposition.  
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