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Abstract

The periodic structures have various applications in vibroacoustic engineering fields

since they introduce frequency band effects due to the periodic discontinuities in the

geometrical or material configurations: this can lead to increased performances. This

paper is focused on the analysis of quasi-periodic structures: instead of using strictly

repeated patterns, a certain degree of irregularity is introduced. Quasi-periodic lattices

are defined as assemblies of two different elements in two directions. The assembly

follows a Thue-Morse Morphism sequence which results in asymmetry in both direc-

tions. Numerical studies and experimental measurements on two-dimensional periodic

and quasi-periodic lattices are thus performed. First validations are carried out by

comparing the quasi-periodic lattice modelled by using finite element model with a

prototype manufactured by laser machine. The wave characteristics in quasi-periodic

lattice introduce elements of novelty for designing wider frequency stop bands in low

frequency ranges.
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1. Introduction1

Recent literature review shows the design of metamaterials as one of the central2

topics in the vibroacoustic analysis of periodic media. There are interesting subjects in3

the literature linked to the current investigation which is intended mainly to the design4

of new architectured metamaterials (i.e. lightweight, easy-to-manufacture, and low fre-5

quency stop band properties, noise and vibration reduction)[1], [2].6

Periodic structures create stop bands effect due to the geometrical and/or material7

impedance mismatches that can result in great vibroacoustic performances. In terms of8

material properties, there are various cases that show in-plane and out-of-plane elastic9

properties. For example the dynamical behaviour of a 2D periodic waveguide, which10

exhibits in-plane elastic properties (Young's and shear modulus) compared to out-of-11

plane ones, are described in terms of elastic wave propagation in [3, 4]. The possibility12

of designing such smart materials or structures, that can partially reduce mechanical13

waves on certain frequency ranges, is addressed in [5, 6, 7]. Geometrical discontinuity14

also plays a central role in creating stop band effects; as an example, sandwich beams15

with periodic auxetic core, exhibiting impedance mismatch generated by varying elas-16

tic and mass properties of the core, are able to produce stop band effects [8, 9].More17

complex shapes like star shaped honey-combs can be designed to provide frequency18

stop band behaviour in low frequency regimes [10].19

20

The quasi-periodicity concept which is investigated in this paper can be interpreted21

as a certain degree of irregularity introduced in a periodic pattern. According to the lit-22

erature, there are numerous examples of disordered periodicities and/or uncertainties in23

real structures, like bridges with column spans, and array of fuel tanks interconnected24

with each other by flexural links. The issues of the non-perfect periodicity in real struc-25

tures can also be attributed to errors in manufacturing processes [11]. The presence of26

defects and imperfections in geometric and constitutive properties of the structures is27

generally referred as disorder [12]. Numerical solutions of these types of disordered28

systems can lead to the need of full stochastic approaches [13]. When the irregularity29

is localized in space (a 'defect in the periodic arrangement), phenomenon of Anderson30
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localization may occur, evidencing that the vibration propagation in a structure is not31

entirely regular and that could be impeded by the irregularities, giving rise on the av-32

erage to an exponential decay of vibration level [14, 15]. They also demonstrates an33

example of a string with regular and irregular spacing of added masses in order to use34

it as a sort of passive vibration control.35

On the other hand, the imperfections can be engineered and used as design parameters36

to tailor the dynamic behaviour. Among others, sequences of impedance mismatches37

built on numerical series like Fibonacci, Thu-Morse or Rudin Shapiro can be consid-38

ered as design templates for the engineered irregularity [16].39

Hou et al., [17], stated that robust quasi-periodic design may offer new vibroacoustic40

properties to the structures. This robust design refers to the investigation of the trans-41

mission properties and the frequency spectra of a Fibonacci composite material with42

different thickness ratio of two layers. Similarly Aynaou et al. investigated theory of43

acoustic wave propagation on 1D phononic band gap structures made of slender tube44

loops pasted together with slender tubes of finite length following Fibonacci sequence45

[18]. In another example similar topological configuration of Fibonacci and Thue-46

Morse sequences are investigated with an experimental observation of the phononic47

scattering band structure in 1D quasi-periodic systems[19]. A 1D bar is designed using48

Fibonacci sequence for stop band distribution and prestress effects by [20, 21].49

The current work is based on the analysis of quasi-periodic 2D structures. A determin-50

istic approach is taken into account to introduce a two directional Thue-Morse sequence51

for creating a quasi-periodic meta-material to improve the vibroacoustic performances.52

In the literature there are various examples of 1D quasi-periodic systems for the dy-53

namic analysis; on the contrary, 2D quasi-periodic systems are very rare. Some se-54

quences are intrinsically ready to be used for 2D cases as the Thue-Morse, while others55

like Fibonacci are well adapted to the 1D cases.56

In this paper, two dimensional lattices are built with the conventional finite ele-57

ment method (FEM) to comply with the Thue-Morse sequence in order to explore the58

opportunities offered in terms of reduction of the forced response in some frequency59

bands[22, 23]. Specifically, the work presents modified versions of star-shaped con-60

cave unit cells.61
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62

The tailored quasi-periodicity is defined by invoking a bi-directional Thue-Morse Mor-63

phism sequence on the meta-material. The geometrical impedance mismatch results in64

asymmetry and follows a combination of two different star-shape elements by variation65

of different corner angles. The main target of the study is the design of structural stop66

band/filters in order to isolate maximum vibration level in some frequency ranges.67

The contents of this paper is structured as follows. In section 2, quasi-periodic struc-68

ture is presented. Section 3 introduces the Wave Finite Element Models: dispersion69

analysis. On the contrary, in section 4, experimental results are validated. Section70

5 describes the structural dynamic analysis using Finite Element models. A closing71

section summarise the conclusion of this work.72

2. Quasi-periodic structures73

In this paper the focus is on the application to 2D domains of the Thue-Morse74

sequence for introducing irregularity in both directions. In this section a possible ap-75

proach is presented to analyse the vibration performances of quasi-periodic 2D struc-76

tures.77

Quasi-periodic structure section contains three sub-sections. The first one is ded-78

icated to the cells description, followed by the second sub-section that introduces the79

Thue-Morse Morphism sequence, while the third sub-section concludes with the peri-80

odic sequence.81

2.1. Cells82

The waveguide is a star-shaped lattice. The meta-material is made of two different83

unit cells (A and B). Fig. 1 shows the geometry of the two cells inspired from [24].84

The difference between the two unit cells is in the angles α, which defines the corner85

opening in the concave shape.86

Unit cells A and cell B have a side of 22 mm, and the internal core with star shape is87

20×20mm2. The thickness of the base plate is 3 mm and the wall thickness of the cells88

is 1mm. Cell A has an angle αA = 30◦ and cell cell B has an angle αB = 20◦. The an-89

gles are variables of the sequences according to the generating order of the developed90
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Figure 1: Meso-scale unit cell A and B preliminary design stage

sequence. Cells A and B will be arranged in a specific sequence presented in the next91

section.92

The properties of material used in the entire presented work are given in Tab. 1 Shell93

elements with free triangular mesh are used in the FE model. Each unit cell has a total94

of 28 nodes, where only 8 nodes are connected with the adjacent element along x and95

y directions. In addition each node has 6 degrees of freedom.96

97

Table 1: Material properties

Material Polymer

Modulus of elasticity(Pa) 1.68×109

Density (kg ·m−3) 818

Poisson’s ratio 0.38

Structural loss factor 2.5 %
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Figure 2: 2D mesh of cell-A and cell-B

2.2. Thue-Morse Morphism sequence98

The Thue-Morse sequence is based on binary arrays. Starting from a 1D example,99

the sequence can be derived by a function s from the set of binary sequences to itself100

by replacing every A in a 1D sequence with AB and every B with BA [25]:101

102

s(x,y) = s(x)s(y). (1)

Eq.1 defines a map s for all strings x,y. Defining the Thue-Morse morphism s(A) =AB,103

leads to the relations for increasing the quasi-periodicity pattern in one direction. The104

associated sequence starts with A then AB, ABBA, ABBABAAB, and so on, [26].105

Considering the sequence in 2D, the first order starts from a 2× 2 matrix containing106

[A,B;B,A] which is equivalent to the second order s2(A). In the next steps, second or-107

der matrix is translated to the right, left, and diagonal directions in order to built s3(A)108

and so on. A loop is generated to translate the same order to the right and left with the109

opposite entries and similar entries to the diagonal direction to fulfil the pattern of the110

Thue-Morse sequence. The orders are detailed as follows:111

112

s(A) = AB113
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s2(A) = s(s(A)) = AB | BA114

s3(A) = s(s(s(A)) = ABBA | BAAB115

s4(A) = s(s(s(s(A)))) = ABBABAAB | BAABABBA116

117

Each A and B represents cell A and cell B, respectively. In the present model, 64118

combined unit cells are used: the Thue-Morse morphism map stops at s4. The designed119

quasi-periodic lattice in two direction is shown in Fig. 3.120
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Figure 3: Quasi-periodic lattice combining unit cells A and B: following Thue-Morse sequence in two direc-

tions

2.3. Periodic sequences121

For comparison purpose, two strictly periodic arrangements are also considered:122

two finite panels composed of 8×8 unit cell-A and 8×8 unit cell-B in coherence with123

the quasi-periodic case. Both periodic lattices are shown in Fig. 4124

Fig. 5 shows another periodic lattice with alternated unit cells A and B. As for the125

previous cases, the whole geometry includes 64 unit cells, in which 32 of them are126

cells A and 32 cells B.127
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Figure 4: Finite periodic lattices, right with cell A and left with cell B
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Figure 5: Periodic lattice with combined unit cell A and B in alternating pattern

3. Wave and finite element models: dispersion analysis128

This section is divided into two subparts. The first one is related to the analysis of the129

behaviour of infinite periodic 2D lattices by computing the dispersion curves of unit130

cells, for full cell-A and full cell-B configurations, depicted in Fig.4. The second is131

dedicated to other infinite periodic 2D lattices by computing the dispersion curve of132
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alternated (mixed periodic) A-B depicted in Fig.6, that consists of periodic lattice.133

134

Eigenfrequency analysis is used to compute the band diagram of periodic structures135

with first 25 Bloch modes for single cells and first 120 Bloch modes for the second136

case with combined (mixed periodic) A-B [27, 28]. Floquet Bloch (FB) method is137

used; the periodic boundary conditions are written as138

uRx = e− jkxDuLx, (2)

uRy = e− jkyDuLy, (3)

where uRx and uLx are the right and left side displacement along the x axis, and uRy and139

uLy are the displacement along the y axis, respectively. D is the length of reciprocal or140

unitary repeated element, kx and ky are the wavenumbers in the x and y directions.141
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Figure 6: FE model of the combined (mixed periodic) A-B with periodic conditions

The FE model of the combined (mixed periodic) A-B unit cell in Fig. 6 is made of four142

single A and B cells. The pattern is periodic and dispersion diagram results will be143
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compared to the Frequency Response Functions (FRFs) of the quasi-periodic pattern144

in the next sections. The parametric eigenvalue analysis is performed according to the145

edges of the first irreducible Brillouin zone Fig. 7. It starts from (Γ) towards the x146

direction to M, and from M towards y direction to K and then back to (Γ) [27].147

148
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Figure 7: First irreducible Brillouin zone

The band diagrams of cell A and cell B are reported in Fig.8. In the dispersion149

diagram all types of waves (i.e. bending, longitudinal, and shear) are considered,150

[29, 30, 31, 32].151

The analysis of cell-A shows three unidirectional frequency stop bands between 0 and152

18kHz. The first band gap with a bandwidth ∆ f = 2.6 kHz appears in 2808−5431 Hz,153

then the second one has a slight wider band ∆ f = 2.64 kHz in 7081−9725 Hz, while154

the third frequency band gap with ∆ f = 1.86 kHz is located in the frequency range in155

11480−13340 Hz.156

157

On the same frequency range, cell-B has a completely different behaviour in terms158

of band gaps, only one wide band gap with ∆ f = 1.73 kHz is observed at around159

3157−4892 Hz. The second band gap starts at 5149 Hz and ends at around 5975 Hz,160

following the third, fourth, fifth around 6896 Hz, 8623 Hz, and 9809 Hz with small161
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Figure 8: Band diagrams of infinite lattices: (left) unit cell A, (right) unit cell B

frequency stop bands.162

The dispersion diagrams shown in Fig.9 corresponds to the combined A and B cells.163

The first complete stop bands is observed in the ranges of 3000− 4500 Hz, and the164

second one is between 5000−5800 Hz. There is a slight narrow band-gap from 5800165

Hz to 6000 Hz which disappears rapidly. The third one starts from 7000 Hz to 8000166

Hz which is quite wider and the fourth one with ∆ f = 2 kHz. There is also a very167

narrow one after 11000 Hz just before the next wider stop band with the ranges of168

12000−13800 Hz.169

The overall results of the combined (mixed periodic) A-B show some kind of mix170

between the dispersion diagram of single cells shown in Fig.8. Cell-A provides inter-171

esting dynamics properties with a few wide band gaps. Cell-B has more band gaps,172

but with narrow frequency width. The combination of the two in a periodic forma-173

tion provides a large number of gaps, the largest ones being almost as wide as cell-A,174

while keeping a number of gaps comparable to cell-B. In the next section, FRFs will175

be computed on finite structures, in order to first, validate the applicability of the gaps176

for real structures, and second to check whether or not a quasi-periodic arrangement177
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can provide added value for engineering applications.178
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4. Experimental measurements179

In this section, the dynamical response of the lattice is validated with experimental180

tests. The quasi-periodic panel is manufactured by laser cutting as shown in Fig.10.181

The material properties of this test-article are already responded in Tab. 1.182

Figure 10: Meta-material prototype under experimental test

For the experimental campaign the lattice has an extra flat panel part which is used183
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as boundary support (clamped) during the dynamic tests. The lattice is vertically po-184

sitioned and clamped with the fasteners shown in Fig. 10. The shaker is attached to185

the structure on the left corner that is very close to the boundary support. A white186

noise excitation source generates signal from 1 kHz to 11 kHz. The measurements are187

recorded using a laser vibro-meter at the input and output points as shown in Fig. 11.188

	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	

White noise excitation point 

Clamped boundary 

Observed response (output)

Observed response (input)Shaker

Figure 11: Manufactured meta-material with laser cutting

The first eigenfrequencies of the structure are characterised with the numerical189

modal analysis of quasi-periodic configuration to check the values of the material and190

geometrical properties.191

Fig. 12 shows a measured FRF which is measured between 0−100 Hz for the low fre-192

quency ranges. On this figure, the eigenfrequencies of the numerical model are shown193

using vertical lines. The first 3 modes are very well correlated in terms of frequency,194

which means that the low frequency behaviour of the structure is well captured by195

the FE model. In a second step, measurements are performed up to 10.9 kHz. The196

corresponding FRFs are shown in Fig. 13.197
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Three subplots represents the amplitude, phase angle and coherence. The response is198

measured at the input point.199
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Figure 13: Velocity response measured in the input point

Similarly the experimental FRF of the output reference point is in Fig. 14. It can be200

seen that there is a loss of elastic wave propagation while measuring the response in201

far fields. The coherence plot shows some falls, meaning that a background noise is202

measured in correspondence with possible band gaps. For instance the first stop band203

appears from 2.5 kHz to 5.2 kHz with a peak in the middle of the attenuation zone and204

second one from 7 kHz to 8 kHz and the last one starts after 8.2 and continues to higher205

frequencies. It should be mentioned that above 8.2 kHz the stop band effect is observed206

up to the maximum frequency which can be reached by the experimental setup.207

208
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Figure 14: Velocity response measured in the output point

5. Finite element analysis209

In this section, two periodic and one quasi-periodic lattices are considered. The first210

two periodic lattices are modelled as finite meta-materials made of cell A and cell B211

in two separate lattices. The aim is to verify whether those stop bands predicted in the212

previous section are maintained for this specific finite element configuration i.e. with a213

finite domain. Secondly the quasi-periodic meta-material in Fig. 15 is compared with214

a combined cell A and cell B (periodic lattice), and in the last subsection an FRF of a215

meta-structure (filter junction) with a pure quasi-periodic lattice is described in details.216

217
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5.1. Frequency response of meta-materials218

The numerical models are clamped on the right edges and a harmonic point force is219

applied in the region close to the fixed boundary condition in Fig. 15 with a frequency220

ranging from 0− 35kHz. The model is meshed by 1061 free tetrahedral and 840 bi-221

quadratic triangles element 6 node. Frequency range of 35 kHz is selected for all the222

FRFs to check how the various cases behave in the higher frequencies.223

224

The response is observed in dark blue spot location in Fig. 15. Fig. 16 shows225

an FRF for the three types of lattices. Two of them are fully periodic with cell A226

and cell B and the third one is quasi-periodic lattice. It can be seen from the plots227

that the predicted band gaps in the dispersion diagram of periodic lattices (Fig. 8)228

have similarities with the FRFs of the finite counter parts. There are basically three229

full band gaps, which are associated with the resonant and Bragg type band gaps. As230

there is no theoretical definition too generic to classify the types of band gaps in this231

dispersion diagram, however at least the first are resonant band gaps. Fig. 16 provides232
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four band gaps marked as (BG1, BG2, BG3, and BG4). In BG1 the response are almost233

the same for all the cases, A, B and quasi-periodic arrangement (maybe even random234

arrangement of A and B) provides similar results.235

BG2 has almost the same width for the 3 cases. It is the largest one but possesses a236

localised mode in the middle for the case A. The quasi-periodic is as large as case B237

but starts lower in frequency.238

In BG3 the band gap is visible only in case A, very narrow on quasi-periodic but not239

visible as in case B. BG4 almost same width for case A and quasi-periodic, the quasi-240

periodic fall starts before than case A, no band gap for case B. In conclusion quasi-241

periodic can be seen as a good compromise between case A and case B.242
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Figure 16: FRF of the two periodic and a quasi-periodic lattices

243

So, after analysing the data sets it seems that all periodic and quasi-periodic lattices244

have specific performances in terms of band gaps. In the next step, the combined (pe-245

riodic) A-B case is compared to the quasi-periodic arrangement. The FRFs are shown246
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in Fig. 17. The two lattices are similar in terms of in-plane dimension and volume247

fraction.248

The responses provided in Fig. 17 in terms of velocity amplitude show similar dy-249

namic effects with a slight difference. Only small difference can be observed as an250

higher depth around 15-dB for quasi-periodic one in blue line compared to strictly251

periodic in red line. The second difference is due to the wider frequency stop bands252

around 11− 19 kHz. The quasi-periodic curve has lower peaks starting from 16 kHz253

and continues up to higher frequencies around 25 kHz. In conclusion both designs have254

almost similar dynamic effects with a slight difference. The generated combination of255

quasi-periodicity in the lattice could give reduced response in the attenuation level of256

frequency range 3.5−5 kHz compared with the regular periodic combinations. It also257

has a similar band gap wide in the medium frequency range 11− 19 kHz, with lower258

attenuation level and peaks after 25 kHz.259
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Figure 17: FRF of the periodic and quasi-periodic lattices
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5.2. Frequency response of a meta-structure261

In order to illustrate the applicability of the quasi-periodic arrangement for wave fil-262

tering, a meta-structure that filters the elastic wave propagation from one component263

to another is proposed. The meta-structure is located at the interface between two flat264

bare panels. The connection between the met-material and two bare panels are made265

by linking the side branches of the meta-material lattice with the side walls of the bare266

panels in right and left sides respectively. The cross section area of the meta-material267

branches are 1 ·3mm2, in total there are 16 links, 8 connections in the right and 8 con-268

nections in the left with the bare panels. Two cases are investigated. First, the dynamic269

response in terms of square velocity amplitude over all nodes of the panels, is com-270

puted. Secondly, four specific frequencies are selected and the response is checked to271

visualise the elastic energy transfer from one side of the panel to the other side. A272

harmonic point force is applied in the transverse direction on the first component and273

the response is computed in the first and second components of Fig. 18.274
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Figure 18: Geometrical model of the meta-structure

Fig. 19 shows the structural response of the meta-structure. The orange curve cor-276

responds to the RMS (Root Mean Squared) response, in terms of velocity amplitude277

of the first component of the meta-structure where the point load is applied. When278

the elastic wave energy starts propagating, it is totally confined in the first component,279
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thanks to the meta-material that blocks some frequency bands in order to not transfer280

to the neighbouring flat panel.281

0 0.5 1 1.5 2 2.5 3 3.5
Frequency (Hz) 104

-400

-350

-300

-250

-200

-150

-100

-50

0

R
M

S 
V

el
oc

ity
 (A

m
pl

itu
de

 -d
B

)

Mean Vz
2  input component

Mean Vz
2  output component

2.54 kHz
6 kHz

7.3 kHz

19 kHz

Figure 19: FRF of the meta-structure

The frequency stop bands starts from 2.5 kHz and it continues up to 6 kHz. After a282

short peak around 6− 7 kHz the level of attenuation drops down back and continues283

to higher frequencies up to 19 kHz. It also follows two other small full stop bands284

from 20− 24 kHz, and around 28− 33 kHz. Ultimately, the quasi-periodic interface285

creates stop band effects and reduces the elastic wave propagation in above-mentioned286

frequency ranges when the wave energy crosses the filter junction.287

288

In the second case, four points of the selected frequency bands are observed with op-289

erational deflections. The first point is at the beginning of the first frequency stop band290

at 2.54 kHz, following the second, third, and fourth at 6 kHz, 7.3 kHz, and 19 kHz291
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respectively. As in Fig. 18, the excitation point is on the right panel and the receiving292

panel is left one. Fig. 20 shows operative deformed modes. It can be observed from293

the Fig. 20 that the energy is partially transported by the meta-material to the other side294

(second bare panel) in the low frequency band gap. On the contrary as the frequency295

increases, within the second band gaps start edge at 6 kHz, energy is transferred par-296

tially to the left panel. In the third operative deformed mode at 7.3 kHz the energy does297

not pass the meta-material and the second bare panel becomes stall without vibrating.298

Same behaviour is happening to the fourth mode at 19 kHz.299

300

Fig. 21 shows contour of iso-surface of the meta-structure for three specific frequen-301

cies. The iso-surface shows the wave front by blue lines that crosses the meta-material.302

The colour bar in the right hand side of each iso-surface curve shows the velocity am-303

plitude for the first frequency step f = 35 Hz, second frequency step f = 70 Hz and304

the start point of first frequency stop band at around f = 2520 Hz.305

306

It can be seen from Fig. 21 that the contour of iso-surface propagates as the wave307

front starts migrating by crossing the meta-material and continues to the end of meta-308

structure. For the second case at frequency 70 Hz, wave energy get circular shapes and309

crosses the meta-material again. When the frequency range reaches 2520 Hz, the total310

induced energy is confined in the right panel with a partial cross over the meta-material311

and stops propagating almost in the half length of the meta-material and the left panel312

(i.e. stop band effects are evident.313

314
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	 I. Operative deformed mode at frequency 2.54 kHz 

II. Operative deformed mode at frequency 6 kHz 

III. Operative deformed mode at frequency 7.3 kHz 

IV. Operative deformed mode at frequency 19 kHz 

Figure 20: Operative modes of the meta-structure in four frequencies[5].
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Figure 21: Iso-surface of three selected response frequencies
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A comparison between the numerical models and the measurements is made in Fig.315

22. Two band gaps can be seen in the plot for both numerical and experimental cases.316

The first band gap between 2.5 and 5 kHz is almost similar in terms of width for both317

cases but with a low fall for the experimental part. The second band gap which starts318

from 8.1 kHz and continues to higher frequencies over 10.9 is similar too, for both319

cases. As it can be seen the second band gap in the experimental measurement has320

again low fall compared to the numerical one. The different depth of numerical and321

experimental band gaps can be function of many concurrent parameters. For exam-322

ple, for very response amplitude in the experimental measurements, the measured data323

are strongly influenced by the fundamental noise. On the contrary, the computed re-324

duction of the structural response is simply a function of the numerical approximations.325
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Figure 22: Comparison of numerical and experimental FRFs
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6. Concluding remarks327

This paper proposes an analysis of meta-materials and meta-structures for vibroacous-328

tic applications. The modelling strategy provides key factors to increase the order of329

quasi-periodicity in two directions in order to create lattices based on quasi-periodic330

sequence.331

332

Numerical simulations are done using FE analysis both for dispersion diagram and333

harmonic response analyses. According to the results of numerical analysis the pre-334

dicted stop bands in the dispersion diagram of infinite lattice matches to the response335

of experimental measurements. Experimental measurement is considered mainly to336

validate the numerical results obtained by the developed model. The possibility of ob-337

serving frequency stop bands in the lattice is carried out by post processing of FRFs338

for lower, medium and high frequencies. White noise excitation response shows that339

the degree of consistency between the numerical and experimental results are highly340

predicted. The velocity amplitudes and coherence plots shows that even though with a341

different excitation the results are comparable in terms of validation.342

343

In the last section the structural dynamic behaviour of quasi-periodic lattice is com-344

puted by FE analysis and compared with the experimental results. The results show an345

acceptable agreement. In another case study, the FE model of quasi-periodic lattice346

is embedded between two bare panels which is used as a junction filter. The induced347

vibration energy transfers through the junction, and it acts as a meta-material filtering348

property to the elastic waves due to the impedance mismatch in the star-shaped unit349

cells. The results of FRF in terms of RMS of velocity amplitude gives some elements350

of novelty to reduce maximum unwanted vibration from the host structure.351

352

The star-shaped unit cells sequences can thus be considered as a viable starting353

point to the optimisation of the final configurations for designing structures with de-354

sired frequency stop-bands.355
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[1] K. H. Matlack, A. Bauhofer, S. Krödel, A. Palermo, C. Daraio, Composite 3d-364

printed metastructures for low-frequency and broadband vibration absorption,365

Proceedings of the National Academy of Sciences 113 (30) (2016) 8386–8390.366

[2] C. Claeys, N. G. R. Melo Filho, L. Van Belle, E. Deckers, W. Desmet, Design367

and validation of metamaterials for multiple structural stop bands in waveguides,368

Extreme Mechanics Letters 12 (2017) 7–22.369

[3] M. Ouisse, M. Collet, F. Scarpa, A piezo-shunted kirigami auxetic lattice for370

adaptive elastic wave filtering, Smart Materials and Structures 25 (11) (2016)371

115016.372

[4] M. Collet, M. Ouisse, M. Ruzzene, M. Ichchou, Floquet–bloch decomposition for373

the computation of dispersion of two-dimensional periodic, damped mechanical374

systems, International Journal of Solids and Structures 48 (20) (2011) 2837–2848.375

[5] K. Billon, I. Zampetakis, F. Scarpa, M. Ouisse, E. Sadoulet-Reboul, M. Col-376

let, A. Perriman, A. Hetherington, Mechanics and band gaps in hierarchical aux-377

etic rectangular perforated composite metamaterials, Composite Structures 160378

(2017) 1042–1050.379

[6] A. Madeo, M. Collet, M. Miniaci, K. Billon, M. Ouisse, P. Neff, Modeling380

phononic crystals via the weighted relaxed micromorphic model with free and381

gradient micro-inertia, Journal of Elasticity 130 (1) (2018) 59–83.382

28



[7] P. Martinsson, A. Movchan, Vibrations of lattice structures and phononic band383

gaps, Quarterly Journal of Mechanics and Applied Mathematics 56 (1) (2003)384

45–64.385

[8] M. Ruzzene, L. Mazzarella, P. Tsopelas, F. Scarpa, Wave propagation in sand-386

wich plates with periodic auxetic core, Journal of intelligent material systems and387

structures 13 (9) (2002) 587–597.388

[9] D. Qing-Tian, Y. Zhi-Chun, Wave propagation in sandwich panel with auxetic389

core, J Solid Mech 2 (4) (2010) 393–402.390

[10] J. Meng, Z. Deng, K. Zhang, X. Xu, F. Wen, Band gap analysis of star-shaped391

honeycombs with varied poisson’s ratio, Smart Materials and Structures 24 (9)392

(2015) 095011.393

[11] G. Carta, M. Brun, A. B. Movchan, T. Boiko, Transmission and localisation in or-394

dered and randomly-perturbed structured flexural systems, International Journal395

of Engineering Science 98 (2016) 126–152.396

[12] A.-L. Chen, Y.-S. Wang, Study on band gaps of elastic waves propagating in one-397

dimensional disordered phononic crystals, Physica B: Condensed Matter 392 (1-398

2) (2007) 369–378.399

[13] M. Ichchou, F. Bouchoucha, M. B. Souf, O. Dessombz, M. Haddar, Stochastic400

wave finite element for random periodic media through first-order perturbation,401

Computer Methods in Applied Mechanics and Engineering 200 (41-44) (2011)402

2805–2813.403

[14] C. Pierre, E. Dowell, Localization of vibrations by structural irregularity, Journal404

of sound and Vibration 114 (3) (1987) 549–564.405

[15] C. Hodges, J. Woodhouse, Vibration isolation from irregularity in a nearly peri-406

odic structure: theory and measurements, The Journal of the Acoustical Society407

of America 74 (3) (1983) 894–905.408

29
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