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Introduction

Recent literature review shows the design of metamaterials as one of the central topics in the vibroacoustic analysis of periodic media. There are interesting subjects in the literature linked to the current investigation which is intended mainly to the design of new architectured metamaterials (i.e. lightweight, easy-to-manufacture, and low frequency stop band properties, noise and vibration reduction) [START_REF] Matlack | Composite 3dprinted metastructures for low-frequency and broadband vibration absorption[END_REF], [START_REF] Claeys | Design and validation of metamaterials for multiple structural stop bands in waveguides[END_REF].

Periodic structures create stop bands effect due to the geometrical and/or material impedance mismatches that can result in great vibroacoustic performances. In terms of material properties, there are various cases that show in-plane and out-of-plane elastic properties. For example the dynamical behaviour of a 2D periodic waveguide, which exhibits in-plane elastic properties (Young's and shear modulus) compared to out-ofplane ones, are described in terms of elastic wave propagation in [START_REF] Ouisse | A piezo-shunted kirigami auxetic lattice for adaptive elastic wave filtering[END_REF][START_REF] Collet | Floquet-bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems[END_REF]. The possibility of designing such smart materials or structures, that can partially reduce mechanical waves on certain frequency ranges, is addressed in [START_REF] Billon | Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials[END_REF][START_REF] Madeo | Modeling phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia[END_REF][START_REF] Martinsson | Vibrations of lattice structures and phononic band gaps[END_REF]. Geometrical discontinuity also plays a central role in creating stop band effects; as an example, sandwich beams with periodic auxetic core, exhibiting impedance mismatch generated by varying elastic and mass properties of the core, are able to produce stop band effects [START_REF] Ruzzene | Wave propagation in sandwich plates with periodic auxetic core[END_REF][START_REF] Qing-Tian | Wave propagation in sandwich panel with auxetic core[END_REF].More complex shapes like star shaped honey-combs can be designed to provide frequency stop band behaviour in low frequency regimes [START_REF] Meng | Band gap analysis of star-shaped honeycombs with varied poisson's ratio[END_REF].

The quasi-periodicity concept which is investigated in this paper can be interpreted as a certain degree of irregularity introduced in a periodic pattern. According to the literature, there are numerous examples of disordered periodicities and/or uncertainties in real structures, like bridges with column spans, and array of fuel tanks interconnected with each other by flexural links. The issues of the non-perfect periodicity in real structures can also be attributed to errors in manufacturing processes [START_REF] Carta | Transmission and localisation in ordered and randomly-perturbed structured flexural systems[END_REF]. The presence of defects and imperfections in geometric and constitutive properties of the structures is generally referred as disorder [START_REF] Chen | Study on band gaps of elastic waves propagating in onedimensional disordered phononic crystals[END_REF]. Numerical solutions of these types of disordered systems can lead to the need of full stochastic approaches [START_REF] Ichchou | Stochastic wave finite element for random periodic media through first-order perturbation[END_REF]. When the irregularity is localized in space (a 'defect in the periodic arrangement), phenomenon of Anderson localization may occur, evidencing that the vibration propagation in a structure is not entirely regular and that could be impeded by the irregularities, giving rise on the average to an exponential decay of vibration level [START_REF] Pierre | Localization of vibrations by structural irregularity[END_REF][START_REF] Hodges | Vibration isolation from irregularity in a nearly periodic structure: theory and measurements[END_REF]. They also demonstrates an example of a string with regular and irregular spacing of added masses in order to use it as a sort of passive vibration control.

On the other hand, the imperfections can be engineered and used as design parameters to tailor the dynamic behaviour. Among others, sequences of impedance mismatches built on numerical series like Fibonacci, Thu-Morse or Rudin Shapiro can be considered as design templates for the engineered irregularity [START_REF] Velasco | Elastic waves in quasiperiodic structures[END_REF].

Hou et al., [START_REF] Hou | Acoustic wave propagating in one-dimensional fibonacci binary composite systems[END_REF], stated that robust quasi-periodic design may offer new vibroacoustic properties to the structures. This robust design refers to the investigation of the transmission properties and the frequency spectra of a Fibonacci composite material with different thickness ratio of two layers. Similarly Aynaou et al. investigated theory of acoustic wave propagation on 1D phononic band gap structures made of slender tube loops pasted together with slender tubes of finite length following Fibonacci sequence [START_REF] Aynaou | Propagation and localization of acoustic waves in fibonacci phononic circuits[END_REF]. In another example similar topological configuration of Fibonacci and Thue-Morse sequences are investigated with an experimental observation of the phononic scattering band structure in 1D quasi-periodic systems [START_REF] King | Acoustic band gaps in periodically and quasiperiodically modulated waveguides[END_REF]. A 1D bar is designed using Fibonacci sequence for stop band distribution and prestress effects by [START_REF] Gei | Wave propagation in quasiperiodic structures: stop/pass band distribution and prestress effects[END_REF][START_REF] Pisano | Fibonacci's liber abaci: a translation into modern english of the book of calculation[END_REF].

The current work is based on the analysis of quasi-periodic 2D structures. A deterministic approach is taken into account to introduce a two directional Thue-Morse sequence for creating a quasi-periodic meta-material to improve the vibroacoustic performances.

In the literature there are various examples of 1D quasi-periodic systems for the dynamic analysis; on the contrary, 2D quasi-periodic systems are very rare. Some sequences are intrinsically ready to be used for 2D cases as the Thue-Morse, while others like Fibonacci are well adapted to the 1D cases.

In this paper, two dimensional lattices are built with the conventional finite element method (FEM) to comply with the Thue-Morse sequence in order to explore the opportunities offered in terms of reduction of the forced response in some frequency bands [START_REF] Timorian | Investigation for the analysis of the vibrations of quasiperiodic structures[END_REF][START_REF] Timorian | Band diagram and forced response analysis of periodic and quasi-periodic panels[END_REF]. Specifically, the work presents modified versions of star-shaped concave unit cells.

The tailored quasi-periodicity is defined by invoking a bi-directional Thue-Morse Morphism sequence on the meta-material. The geometrical impedance mismatch results in asymmetry and follows a combination of two different star-shape elements by variation of different corner angles. The main target of the study is the design of structural stop band/filters in order to isolate maximum vibration level in some frequency ranges.

The contents of this paper is structured as follows. In section 2, quasi-periodic structure is presented. Section 3 introduces the Wave Finite Element Models: dispersion analysis. On the contrary, in section 4, experimental results are validated. Section 5 describes the structural dynamic analysis using Finite Element models. A closing section summarise the conclusion of this work.

Quasi-periodic structures

In this paper the focus is on the application to 2D domains of the Thue-Morse sequence for introducing irregularity in both directions. In this section a possible approach is presented to analyse the vibration performances of quasi-periodic 2D structures.

Quasi-periodic structure section contains three sub-sections. The first one is dedicated to the cells description, followed by the second sub-section that introduces the Thue-Morse Morphism sequence, while the third sub-section concludes with the periodic sequence.

Cells

The waveguide is a star-shaped lattice. The meta-material is made of two different unit cells (A and B). Fig. 1 shows the geometry of the two cells inspired from [START_REF] Chang | Elastic wave propagation of twodimensional metamaterials composed of auxetic star-shaped honeycomb structures[END_REF].

The difference between the two unit cells is in the angles α, which defines the corner opening in the concave shape.

Unit cells A and cell B have a side of 22 mm, and the internal core with star shape is 20 × 20mm 2 . The thickness of the base plate is 3 mm and the wall thickness of the cells is 1mm. Cell A has an angle α A = 30 • and cell cell B has an angle α B = 20 • . The angles are variables of the sequences according to the generating order of the developed 

Thue-Morse Morphism sequence

The Thue-Morse sequence is based on binary arrays. Starting from a 1D example, the sequence can be derived by a function s from the set of binary sequences to itself by replacing every A in a 1D sequence with AB and every B with BA [START_REF] Berstel | Combinatorics on words: Christoffel words and repetitions in words[END_REF]:

s(x, y) = s(x)s(y). (1) 
Eq.1 defines a map s for all strings x, y. Defining the Thue-Morse morphism s(A) = AB, leads to the relations for increasing the quasi-periodicity pattern in one direction. The associated sequence starts with A then AB, ABBA, ABBABAAB, and so on, [START_REF] Allouche | The ubiquitous prouhet-thue-morse sequence[END_REF].

Considering the sequence in 2D, the first order starts from a 2 × 2 matrix containing [A, B; B, A] which is equivalent to the second order s 2 (A). In the next steps, second order matrix is translated to the right, left, and diagonal directions in order to built s 3 (A) and so on. A loop is generated to translate the same order to the right and left with the opposite entries and similar entries to the diagonal direction to fulfil the pattern of the Thue-Morse sequence. The orders are detailed as follows: 

s(A) = AB s 2 (A) = s(s(A)) = AB | BA s 3 (A) = s(s(s(A)) = ABBA | BAAB

Wave and finite element models: dispersion analysis

This section is divided into two subparts. The first one is related to the analysis of the behaviour of infinite periodic 2D lattices by computing the dispersion curves of unit cells, for full cell-A and full cell-B configurations, depicted in Fig. 4. The second is dedicated to other infinite periodic 2D lattices by computing the dispersion curve of alternated (mixed periodic) A-B depicted in Fig. 6, that consists of periodic lattice.

Eigenfrequency analysis is used to compute the band diagram of periodic structures with first 25 Bloch modes for single cells and first 120 Bloch modes for the second case with combined (mixed periodic) A-B [START_REF] Brillouin | Wave propagation in periodic structures: electric filters and crystal lattices[END_REF][START_REF] Mace | Modelling wave propagation in two dimensional structures using finite element analysis[END_REF]. Floquet Bloch (FB) method is used; the periodic boundary conditions are written as

u Rx = e -jk x D u Lx , (2) 
u Ry = e -jk y D u Ly ,

where u Rx and u Lx are the right and left side displacement along the x axis, and u Ry and u Ly are the displacement along the y axis, respectively. D is the length of reciprocal or unitary repeated element, k x and k y are the wavenumbers in the x and y directions. The first complete stop bands is observed in the ranges of 3000 -4500 Hz, and the second one is between 5000 -5800 Hz. There is a slight narrow band-gap from 5800 Hz to 6000 Hz which disappears rapidly. The third one starts from 7000 Hz to 8000 Hz which is quite wider and the fourth one with ∆ f = 2 kHz. There is also a very narrow one after 11000 Hz just before the next wider stop band with the ranges of 12000 -13800 Hz.

The overall results of the combined (mixed periodic) A-B show some kind of mix between the dispersion diagram of single cells shown in Fig. 8. Cell-A provides interesting dynamics properties with a few wide band gaps. Cell-B has more band gaps, but with narrow frequency width. The combination of the two in a periodic formation provides a large number of gaps, the largest ones being almost as wide as cell-A, while keeping a number of gaps comparable to cell-B. In the next section, FRFs will be computed on finite structures, in order to first, validate the applicability of the gaps for real structures, and second to check whether or not a quasi-periodic arrangement 

Experimental measurements

In this section, the dynamical response of the lattice is validated with experimental tests. The quasi-periodic panel is manufactured by laser cutting as shown in Fig. 10.

The material properties of this test-article are already responded in Tab. 1. 

White noise excitation point

Clamped boundary Observed response (output) Observed response (input) Shaker

Finite element analysis

In this section, two periodic and one quasi-periodic lattices are considered. The first two periodic lattices are modelled as finite meta-materials made of cell A and cell B in two separate lattices. The aim is to verify whether those stop bands predicted in the previous section are maintained for this specific finite element configuration i.e. with a finite domain. Secondly the quasi-periodic meta-material in Fig. 15 is compared with a combined cell A and cell B (periodic lattice), and in the last subsection an FRF of a meta-structure (filter junction) with a pure quasi-periodic lattice is described in details. 

Point load on z direction

Fixed boundary conditions

Observed response point

Point load on transverse direction 

Frequency response of meta-materials

The numerical models are clamped on the right edges and a harmonic point force is applied in the region close to the fixed boundary condition in Fig. 15 with a frequency ranging from 0 -35kHz. The model is meshed by 1061 free tetrahedral and 840 biquadratic triangles element 6 node. Frequency range of 35 kHz is selected for all the FRFs to check how the various cases behave in the higher frequencies.

The response is observed in dark blue spot location in Fig. 15. Fig. 16 shows an FRF for the three types of lattices. Two of them are fully periodic with cell A and cell B and the third one is quasi-periodic lattice. It can be seen from the plots that the predicted band gaps in the dispersion diagram of periodic lattices (Fig. 8) have similarities with the FRFs of the finite counter parts. There are basically three full band gaps, which are associated with the resonant and Bragg type band gaps. As there is no theoretical definition too generic to classify the types of band gaps in this dispersion diagram, however at least the first are resonant band gaps. Fig. 16 provides four band gaps marked as (BG1, BG2, BG3, and BG4). In BG1 the response are almost the same for all the cases, A, B and quasi-periodic arrangement (maybe even random arrangement of A and B) provides similar results.

BG2 has almost the same width for the 3 cases. It is the largest one but possesses a localised mode in the middle for the case A. The quasi-periodic is as large as case B but starts lower in frequency.

In BG3 the band gap is visible only in case A, very narrow on quasi-periodic but not visible as in case B. BG4 almost same width for case A and quasi-periodic, the quasiperiodic fall starts before than case A, no band gap for case B. In conclusion quasiperiodic can be seen as a good compromise between case A and case B. 

I.

Operative deformed mode at frequency 2.54 kHz II.

Operative deformed mode at frequency 6 kHz III.

Operative deformed mode at frequency 7.3 kHz IV.

Operative deformed mode at frequency 19 kHz A comparison between the numerical models and the measurements is made in Fig. 22. Two band gaps can be seen in the plot for both numerical and experimental cases.

The first band gap between 2.5 and 5 kHz is almost similar in terms of width for both cases but with a low fall for the experimental part. The second band gap which starts from 8.1 kHz and continues to higher frequencies over 10.9 is similar too, for both cases. As it can be seen the second band gap in the experimental measurement has again low fall compared to the numerical one. The different depth of numerical and experimental band gaps can be function of many concurrent parameters. For example, for very response amplitude in the experimental measurements, the measured data are strongly influenced by the fundamental noise. On the contrary, the computed reduction of the structural response is simply a function of the numerical approximations. In the last section the structural dynamic behaviour of quasi-periodic lattice is computed by FE analysis and compared with the experimental results. The results show an acceptable agreement. In another case study, the FE model of quasi-periodic lattice is embedded between two bare panels which is used as a junction filter. The induced vibration energy transfers through the junction, and it acts as a meta-material filtering property to the elastic waves due to the impedance mismatch in the star-shaped unit cells. The results of FRF in terms of RMS of velocity amplitude gives some elements of novelty to reduce maximum unwanted vibration from the host structure.

The star-shaped unit cells sequences can thus be considered as a viable starting point to the optimisation of the final configurations for designing structures with desired frequency stop-bands.
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 1 Figure 1: Meso-scale unit cell A and B preliminary design stage
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 2 Figure 2: 2D mesh of cell-A and cell-B
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 43 Figure 3: Quasi-periodic lattice combining unit cells A and B: following Thue-Morse sequence in two directions
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 545 Fig. 5 shows another periodic lattice with alternated unit cells A and B. As for the previous cases, the whole geometry includes 64 unit cells, in which 32 of them are cells A and 32 cells B.
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 678 Figure 6: FE model of the combined (mixed periodic) A-B with periodic conditions

Figure 9 :

 9 Figure 9: Band diagram of combined A-B lattice

  178

Figure 10 :

 10 Figure 10: Meta-material prototype under experimental test

Figure 11 :

 11 Figure 11: Manufactured meta-material with laser cutting

Fig. 12 Figure 12 :

 1212 Fig. 12 shows a measured FRF which is measured between 0 -100 Hz for the low frequency ranges. On this figure, the eigenfrequencies of the numerical model are shown using vertical lines. The first 3 modes are very well correlated in terms of frequency, which means that the low frequency behaviour of the structure is well captured by the FE model. In a second step, measurements are performed up to 10.9 kHz. The corresponding FRFs are shown in Fig. 13.
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 13 Figure 13: Velocity response measured in the input point
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 14 Figure 14: Velocity response measured in the output point

Figure 15 :

 15 Figure 15: Quasi-periodic lattice, numerical model setup for FRF analysis

Figure 16 :

 16 Figure 16: FRF of the two periodic and a quasi-periodic lattices

  . The two lattices are similar in terms of in-plane dimension and volume fraction.The responses provided in Fig.17in terms of velocity amplitude show similar dynamic effects with a slight difference. Only small difference can be observed as an higher depth around 15-dB for quasi-periodic one in blue line compared to strictly periodic in red line. The second difference is due to the wider frequency stop bands around 11 -19 kHz. The quasi-periodic curve has lower peaks starting from 16 kHz and continues up to higher frequencies around 25 kHz. In conclusion both designs have almost similar dynamic effects with a slight difference. The generated combination of quasi-periodicity in the lattice could give reduced response in the attenuation level of frequency range 3.5 -5 kHz compared with the regular periodic combinations. It also has a similar band gap wide in the medium frequency range 11 -19 kHz, with lower attenuation level and peaks after 25 kHz. lattice combined A,B Thue-Morse sequence Strictly periodic lattice combined A,B alternative sequence
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 17 Figure 17: FRF of the periodic and quasi-periodic lattices
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 1819 Figure 18: Geometrical model of the meta-structure

Figure 20 :

 20 Figure 20: Operative modes of the meta-structure in four frequencies[START_REF] Billon | Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials[END_REF].
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 21 Figure 21: Iso-surface of three selected response frequencies

Figure 22 :

 22 Figure 22: Comparison of numerical and experimental FRFs

Table 1 :

 1 Material properties

	Material	Polymer
	Modulus of elasticity(Pa) 1.68 × 10 9
	Density (kg • m -3 )	818
	Poisson's ratio	0.38
	Structural loss factor	2.5 %
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