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Abstract

We present a method for blind recovery of net-
work made out of a tree of 1D homogeneous
waveguides with the same physical characteris-
tics using reflectogram and transferogram(s).
Keywords: Inverse problem, Topology recover-
ing, Quantum graph, Reflectometry, Wire anal-
ysis

1 Introduction

We consider an unknow quantum graph G (see
[2]) equipped with a wave operator along its
branches and some transmission conditions on
its nodes connecting together the quantities eval-
uated on the branches. Our graph is a rooted
tree graph, where all branches are oriented from
a root-point Inp to end-points Outk (k = 1...K).
We will consider a maximum of two consecutive
nodes between Inp and any Outk and at least a
node in G.

We will now explain how a wave V propa-
gates along the graph G :

• On each branch of G the wave satisfiy an
homogeneous wave’s equation

∂2
ttV − c2∂2

xxV = 0,

where t denotes the time and x the ab-
scissa along the considered branch. The
celerity c of the waves is supposed to be a
known constant.

• Following Kirchhoff’s rules, V is continu-
ous on G and at each node J

∂xV |ej0 (J) =

jK∑
jk=j1

∂xV |ejk (J),

where ejk are the branches connected to
J , with ej0 the branch closest to Inp.

• On Inp, we have an impedance boundary
condition

∂tV (Inp, t)− c
Zu

Zc
∂xV (Inp, t) = (∂tu)(t)

where the constant Zu and u ∈ H1
loc(R)

are known. The unknown characteristic
impedance Zc is supposed to be constant.

• At each Outk we have an impedance con-
dition

∂tV + c
Zk

Zc
∂xV = 0,

where Zk is an unknown constant.

2 Graph recovery problem

Reflectometry and transferometry methods can
be applied to any practical electrical or acous-
tic network. The reflectogram is the following
Steklov operator :

u(t) 7→ R(t) := V (Inp, t),

whereas transferograms are operators for k =
1...K:

u(t) 7→ Tk(t) := V (Outk, t).

We suppose that we can control u. With a
known celerity c and the input load Zu, the re-
flectogram and optionally some transferograms,
we want to recover G that is to say to determine

• the number of nodes and end-points, and
their ordering (topology),

• the lenght `j of all branches,

• the end-points load Zk,

• the characteristic impedance Zc.

3 Injectivity

There can exists several quantum graph with
the same reflectogram, so we will make two hy-
pothesis. Firstly, no scatterer (node or end-
points) have the same distance from Inp, to en-
sure they can be dissociated. Secondly, no Zk

is equal to Zc to ensure waves are reflected on
the end-point. We will suppose that Zk > Zc is
always statisfied.



4 Scattering

We can choose the excitation signal u such it
is a peak function (sole local maximum). It
propagates at celerity c along a branch until it
meets a scatterer. R is the sum of attenuated
u-shaped peaks, i-e of the form

∑
p Spu(t − tp)

where where each (tp, Sp) - called echo - corre-
sponds to the duration and the amplitude atten-
uation of a propagation of u in G through trans-
missions T and reflections Γ looping on Inp. Tk

is similarly generated, with propagations from
Inp to Outk. An echo amplitude Sp gives the
nature of its contained scatterers (order for a
node, load for an end-point), its abscissa the
path length between the observation point (Inp
for R and Outk for Tk) and the scatterer.

The algorithm presented in [1] identifies echoes
in a complex reflectogram and associates them
with unknown scatterers in G, giving their na-
ture and location. It runs iteratively, dispelling
ambiguities from peaks overlaping and accumu-
lated reflections.

But this method requires knowledge of Zc

and supposes that Zc = Zu (no reflections at
Inp). It can be enhanced by the use of transfer-
ograms.

5 Algorithm

5.1 Recovering Zc

We simply recover Zc from the reflectogram at
origin where we see an echo (called mismatch
echo) of amplitude Tu = (1 − Γu) with Γu =
(Zu − Zc)(Zu + Zc). Of course if Zc = Zu then
the mismatch peak is null.

5.2 Recovering the first node

The first echo observe in R after the mismatch
echo have for abscissa 2`0/c and for amplitude
Tu(1 + Γu)Γ0 with Γ0 = (2/m0−1) where m0 is
the order of the first node J0. We thus recover
`0 and m0.

5.3 Using the transferograms

If the amplitude of the first echo (t1, S1) of Tk is
above 4Tu(Γ0 + 1)/3, then Outk is directly con-
nected to J0. Thus we have S1 = Tu(2/m0)(1 +
Γk) with Γk = (Zk − Zc)(Zk + Zc), so we re-
cover Zk. The length of the J0 to Outk branch is
(ct1−`0). If S1 is under Tu(Γ0+1), a node exists
between J0 and Outk. This recovered topology

can remove branch location ambiguities for an
unknown scatterer with the reflectogram.

5.4 Using the reflectogram

We use the algorithm developed in [1] to con-
tinue the analysis of R. We changed the pro-
cedure to use informations from the transfero-
grams, and adapt to Zu 6= Zc. Indeed, we need
to apply a Tu(1−Γu) factor to all R echoes am-
plitude and to consider reflexions on Inp when
discriminating between echoes.

This method achieves an error-free topology
reconstruction if some technical hypothesis on
u are fullfiled. `j are retrieved with an accu-
racy decreasing when farther from Inp (relative
error under 5% from 350 simulations), as are
Zc (under 0.1%) and Zk (under 10%). Better
determination is possible by optimizing the all
lengths ˜̀ and all loads Z̃ vectors such that they
minimize the functional

J(`,Z) =

∫ 8`max/c

0

|R(t)−R`,Z(t)|2

3`max/c + t2
dt

where `max is the maximum `j from previous
steps and R`,Z the simulated reflectogram us-
ing the recovered topology with ` and Z. We
look for the minimum of J with Newton’s algo-
rithm, initializing ˜̀ and Z̃ with the previously
recovered values.

6 Applications

This algorithm can be used for recovering un-
known electrical networks, with one reflectom-
etry device and optionnal transferometry tran-
scievers on end-points. Removing the condition
on Zu makes the algorithm more resilient to
real-life implementation limitations.
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