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We present a method for blind recovery of network made out of a tree of 1D homogeneous waveguides with the same physical characteristics using reflectogram and transferogram(s).

Recovering underlying graph for networks of 1D waveguides by reflectometry and transferometry

Geoffrey Beck We consider an unknow quantum graph G (see [START_REF] Kuchment | Quantum graphs I. Some basic structures Waves in Random Media[END_REF]) equipped with a wave operator along its branches and some transmission conditions on its nodes connecting together the quantities evaluated on the branches. Our graph is a rooted tree graph, where all branches are oriented from a root-point Inp to end-points Out k (k = 1...K).

We will consider a maximum of two consecutive nodes between Inp and any Out k and at least a node in G.

We will now explain how a wave V propagates along the graph G :

• On each branch of G the wave satisfiy an homogeneous wave's equation

∂ 2 tt V -c 2 ∂ 2 xx V = 0,
where t denotes the time and x the abscissa along the considered branch. The celerity c of the waves is supposed to be a known constant.

• Following Kirchhoff's rules, V is continuous on G and at each node

J ∂ x V | e j 0 (J) = j K j k =j 1 ∂ x V | e j k (J),
where e j k are the branches connected to J, with e j 0 the branch closest to Inp.

• On Inp, we have an impedance boundary condition

∂ t V (Inp, t) -c Z u Z c ∂ x V (Inp, t) = (∂ t u)(t)
where the constant Z u and u ∈ H 1 loc (R) are known. The unknown characteristic impedance Z c is supposed to be constant.

• At each Out k we have an impedance condition

∂ t V + c Z k Z c ∂ x V = 0,
where Z k is an unknown constant.

Graph recovery problem

Reflectometry and transferometry methods can be applied to any practical electrical or acoustic network. The reflectogram is the following Steklov operator :

u(t) → R(t) := V (Inp, t),
whereas transferograms are operators for k = 1...K:

u(t) → T k (t) := V (Out k , t).
We suppose that we can control u. With a known celerity c and the input load Z u , the reflectogram and optionally some transferograms, we want to recover G that is to say to determine

• the number of nodes and end-points, and their ordering (topology),

• the lenght j of all branches,

• the end-points load Z k ,

• the characteristic impedance Z c .

Injectivity

There can exists several quantum graph with the same reflectogram, so we will make two hypothesis. Firstly, no scatterer (node or endpoints) have the same distance from Inp, to ensure they can be dissociated. Secondly, no Z k is equal to Z c to ensure waves are reflected on the end-point. We will suppose that Z k > Z c is always statisfied.

We can choose the excitation signal u such it is a peak function (sole local maximum). It propagates at celerity c along a branch until it meets a scatterer. R is the sum of attenuated u-shaped peaks, i-e of the form p S p u(t -t p ) where where each (t p , S p ) -called echo -corresponds to the duration and the amplitude attenuation of a propagation of u in G through transmissions T and reflections Γ looping on Inp. T k is similarly generated, with propagations from Inp to Out k . An echo amplitude S p gives the nature of its contained scatterers (order for a node, load for an end-point), its abscissa the path length between the observation point (Inp for R and Out k for T k ) and the scatterer. The algorithm presented in [START_REF] Beck | Reconstruction of an unknown electrical network from their reflectogram by an iterative algorithm based on local identification of peaks and inverse scattering theory[END_REF] identifies echoes in a complex reflectogram and associates them with unknown scatterers in G, giving their nature and location. It runs iteratively, dispelling ambiguities from peaks overlaping and accumulated reflections.

But this method requires knowledge of Z c and supposes that Z c = Z u (no reflections at Inp). It can be enhanced by the use of transferograms.

Algorithm

Recovering Z c

We simply recover Z c from the reflectogram at origin where we see an echo (called mismatch echo) of amplitude

T u = (1 -Γ u ) with Γ u = (Z u -Z c )(Z u + Z c ). Of course if Z c = Z u then the mismatch peak is null.

Recovering the first node

The first echo observe in R after the mismatch echo have for abscissa 2 0 /c and for amplitude

T u (1 + Γ u )Γ 0 with Γ 0 = (2/m 0 -1)
where m 0 is the order of the first node J 0 . We thus recover 0 and m 0 .

Using the transferograms

If the amplitude of the first echo (t 1 , S 1 ) of T k is above 4T u (Γ 0 + 1)/3, then Out k is directly connected to J 0 . Thus we have

S 1 = T u (2/m 0 )(1 + Γ k ) with Γ k = (Z k -Z c )(Z k + Z c ), so we re- cover Z k . The length of the J 0 to Out k branch is (ct 1 -0 ). If S 1 is under T u (Γ 0 +1
), a node exists between J 0 and Out k . This recovered topology can remove branch location ambiguities for an unknown scatterer with the reflectogram.

Using the reflectogram

We use the algorithm developed in [START_REF] Beck | Reconstruction of an unknown electrical network from their reflectogram by an iterative algorithm based on local identification of peaks and inverse scattering theory[END_REF] to continue the analysis of R. We changed the procedure to use informations from the transferograms, and adapt to Z u = Z c . Indeed, we need to apply a T u (1 -Γ u ) factor to all R echoes amplitude and to consider reflexions on Inp when discriminating between echoes.

This method achieves an error-free topology reconstruction if some technical hypothesis on u are fullfiled. j are retrieved with an accuracy decreasing when farther from Inp (relative error under 5% from 350 simulations), as are Z c (under 0.1%) and Z k (under 10%). Better determination is possible by optimizing the all lengths and all loads Z vectors such that they minimize the functional

J( , Z) = 8 max/c 0 |R(t) -R ,Z (t)| 2 3 max /c + t 2 dt
where max is the maximum j from previous steps and R ,Z the simulated reflectogram using the recovered topology with and Z. We look for the minimum of J with Newton's algorithm, initializing and Z with the previously recovered values.

Applications

This algorithm can be used for recovering unknown electrical networks, with one reflectometry device and optionnal transferometry transcievers on end-points. Removing the condition on Z u makes the algorithm more resilient to real-life implementation limitations.
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