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Abstract

Continuing past work on the modelling of coax-
ial cables, we investigate the question of the
modeling of non-perfectly conducting thin coax-
ial cables. Starting from 3D Maxwell’s equa-
tions, we derive, by asymptotic analysis with
respect to the (small) transverse dimension of
the cable, a simplified effective 1D model. This
model involves a fractional time derivatives that
accounts for the so-called skin effects in highly
conducting regions.
Keywords: Maxwell’s equations, Coaxial ca-
bles, Asymptotic analysis

Statement of the problem

Figure 1: Section the coaxial cable. Σ+ and Σ−
are the outer and inner boundary of S.

Denoting δ > 0 a small parameter, we consider
a family of (thin) domains Ωδ = Gδ

(
Ω
)
where

Gδ : (x1, x2, z) −→ (δx1, δx2, z).

and Ω is the disjoint union of a conducting do-
main Ωc and a dielectric one Ωd,

Ωc = C × R, Ωd = S × R,

where C = C+ ∪ C−, C+ corresponding to the
outer metallic shield and C− to the inner metal-
lic wire and S is non-simply connected, see Fig-
ure 1. Accordingly, we have, with obvious nota-
tion

Ωδ = Ωδ
d ∪ Ωδ

c.

We are interested in the solution (Eδ, Hδ) of 3D
Maxwell’s equation in Ωδ : εδ ∂tE

δ + σδ Eδ − curl Hδ = jδ,

µδ ∂tH
δ + curl Eδ = 0,

(1)

with zero initial data. In Ωδ
c, (εδ, µδ) are con-

stant equal to (εc, µc) and jδ = 0. In Ωδ
d, (εδ, µδ)

do not depend on z and are obtained by a scal-
ing in the transverse variable xT = (x1, x2) of
fixed distributions in the reference domain Ωd,
for instance

εδ(xT , z) = ε(xT /δ).

The source term jδ is defined similarly, moreover
it is compactly supported, it has no longitudinal
component and is divergence free. The conduc-
tivity is weak in the dielectric Ωδ

d, but very high
in Ωδ

c. More precisely

σδ(xT , z)=

{
δ−4σc in Ωδ

c,

δ σ(xT /δ), in Ωδ
d.

(2)

Note that the O(δ−4) magnitude of σδ in Ωδ
c

gives rise to a skin depth in O(δ2), small with
respect to δ.

Our approach consists in obtaining the formal
behaviour of the solution for small δ. To do so,
we propose two distinct assymptotic expansions
of the solution Ωδ

d and Ωδ
c that we match using

transmission conditions. We present below our
main results.

Electromagnetic field in the dielectric
We introduce the following notations.

• ∇ for the 2D transverse gradient in xT , iden-
tified to a 3D vector with third component 0,

• SΓ := S \ Γ where Γ is a cut that makes SΓ

simply connected (see Figure 1),

• [·]Γ for the jump across Γ in the direction n,

• ∇̃ is the 2D transverse gradient in SΓ,

• ∂n is the normal derivative, and ∂τψ = ∇̃ψ ·τ
the tangential derivative.



We obtain that, for small δ and all xT ∈ Sδ,

Eδ(xT , z, t) ∼ V δ(z, t) ∇ϕe(xT /δ)

+ δ
(∫ t

0 V δ(z, s) ds
)
∇ϕr(xT /δ),

+ δ ∂zV
δ(z, t) (ϕe − ϕm)(xT /δ) ez,

Hδ(xT , z, t) ∼ Iδ (z, t) ∇ψm(xT /δ),

+ δ
(∫ t

0 ∂
1
2
t I

δ(z, s) ds
)
∇ψr(xT /δ),

+ δ ∂zI
δ(z, t) (ψe − ψm)(xT /δ) ez,

where ez = (0, 0, 1)t. Moreover:

i) The potential ϕe ∈ H1(S) satisfies,

div ε∇ϕe = 0 (S), ϕe = 0 (Σ+), ϕe = 1 (Σ−),

and the same for ϕm with µ−1 instead of ε.

ii) The potential ψm ∈ H1(SΓ) satisfies

divµ∇ψm=0 (SΓ), ∂nψm=0 (∂S),

and [ψm]Γ =1, [∂nψm]Γ =0. The same holds for
ψe with ε−1 instead of µ. Moreover∫

S
µψe =

∫
S
µψm = 0.

iii) The function ϕr ∈ H1
0 (S) is the solution of

div ε∇ϕr = − divσ∇ϕe.

iv) The function ψr ∈ H1(S) satisfies

divµ∇ψr=0 (S), µ ∂nψr=−
√
µc
σc
∂2
τψm (∂S).

v) The electric potential V δ(z, t) and current
Iδ(z, t) are 1D unknowns governed by general-
ized telegrapher’s equations: C ∂tV

δ + δ G V δ + ∂zI
δ = j,

L ∂tI
δ + δ R ∂

1
2
t I

δ + ∂zV
δ = 0,

(3)

where j(z, t) is an effective source term,

j(z, t) =

∫
S
j(xT , z, t) · ∇ϕe(xT ), (4)

and ∂
1
2
t is the square root derivative in the sense

of Caputo

∂
1
2
t u(t) =

1√
π

∫ t

0

∂τu(τ)√
t− τ

dτ.

As in [1], the capacity C, inductance L and con-
ductance G are given by:

C =

∫
S
ε
∣∣∇ϕe∣∣2, L =

∫
S
µ
∣∣∇̃ψm∣∣2, G =

∫
S
σ
∣∣∇ϕe∣∣2.

Moreover, we obtain an explicit expression for
the resistance R, which takes into account skin
effects:

R =

∫
∂S

√
µc
σc

∣∣∂τψm∣∣2. (5)

This generalizes formulas of the literature (see
[2], chapter 13) already derived in very simple
cases.

Electric field in the outer conductor

In the rescaled con-
ducting domain C+

the electromagnetic
fields are described
using tangential and
normal coordinates
(τ, ν). The penetra-
tion depth `δ of the
fields is in O(δ).

L+ being the length of Σ+, one shows that there
exists a 3D field

E+ : [0, L+]× R+ × R× R+ → R3

such that in Cδ+ × R and for small δ,

Eδ(xT (τ, ν), z, t) ∼ δ2E+(τ/δ, ν/δ2, z, t),

(and a similar property holds for the magnetic
field). The important fact is that the component
E+
z is solution of the 1D heat equation

µcσc ∂tE
+
z − ∂2

νE
+
z = 0, (6)

and thus satisfies, at the boundary ν = 0:

∂νE
+
z +
√
µcσc ∂

1
2
t E

+
z = 0.

The above equation is used when writing trans-
mission conditions across Σδ

+ × R.

This explains the appearance of ∂
1
2
t in the effec-

tive model (3).
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