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Abstract Bilevel optimization problems embed the optimality conditions of
a sub-problem into the constraints of another optimization problem. We intro-
duce the concept of near-optimality robustness for bilevel problems, protecting
the upper-level solution feasibility from limited deviations at the lower level.
General properties and necessary conditions for the existence of solutions are
derived for near-optimal robust versions of generic bilevel problems. A duality-
based solution method is defined when the lower level is convex, leveraging the
methodology from the robust and bilevel literature. Numerical results assess
the efficiency of the proposed algorithm and the impact of valid inequalities
on the solution time.
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1 Introduction

Bilevel optimization problems embed the optimality conditions of a sub-problem
into the constraints of another one. They can model various decision-making
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problems such as Stackelberg or leader-follower games, market equilibria, or
pricing and revenue management. A review of methods and applications of
bilevel problems is presented in [1]. In the classical setting of bilevel problems,
when optimizing their objective function, the upper level anticipates an op-
timal reaction of the lower level to its decisions. However, in many practical
cases, the lower level can make near-optimal decisions [2]. An important issue
in this setting is the definition of the robustness of the upper-level decisions
with respect to near-optimal lower-level solutions.

For example, in some engineering applications [3,4,5], the decision-maker
optimizes an outcome over a dynamical system (modelled as the lower level).
For stable systems, the rate of change of the state variables decreases as the
system converges towards a minimum of its potential function. If the system
is stopped before reaching the minimum, the designer of the system would
require that the upper-level constraints be feasible for near-optimal lower-level
solutions.

The concept of bounded rationality initially proposed in [6], sometimes
referred as ε-rationality [7], defines an economic and behavioural interpreta-
tion of a decision-making process where an agent aims to take any solution
associated with a “satisfactory” objective value instead of the optimal one.

Protecting the upper level from a violation of its constraints by deviations
of the lower level is a form of robust optimization, as a protection of some con-
straints against uncertain parameters of the problem. Therefore, we use the
terms “near-optimal robustness” and “near-optimal robust bilevel problem” or
NORBiP in the rest of the paper.

The introduction of uncertainty and robustness in games has been ap-
proached under different angles in the literature. In [8], the authors prove the
existence of robust counterparts of Nash equilibria under standard assump-
tions for simultaneous games without the knowledge of probability distribu-
tions associated with the uncertainty. In [9], the robust version of a network
congestion problem is developed. Users are assumed to make decisions under
bounded rationality, leading to a robust Wardrop equilibrium. A column gen-
eration scheme is designed to build path candidates. Robust versions of bilevel
problems modelling specific Stackelberg games have been studied in [10,11],
using robust formulations to protect the leader against non-rationality or par-
tial rationality of the follower. A stochastic version of the pessimistic bilevel
problem is studied in [12], with the random variable being realized after the
upper level and before the lower level. The authors then derive lower and up-
per bounds on the pessimistic and optimistic versions of the stochastic bilevel
problem as MILPs, leveraging an exact linearization by assuming the upper-
level variables are all binary. In the model developed in this paper, we derive
an exact MILP reformulation while not relying on the assumption of pure
binary upper-level variables. The models developed in [13] and [14] explore
different forms of bounded or partial rationality of the lower level in bilevel
optimization, where the lower level either makes a decision using an imperfect
algorithm or may deviate from their optimal value in a way that hurts the ob-
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jective of the upper level. By defining the uncertainty in terms of a deviation
from optimality of the lower level, our formulation offers a novel interpretation
of robustness for bilevel problems and Stackelberg games.

Solving bilevel problems under limited deviations of the lower-level re-
sponse was introduced in [2] under the term “ε-approximation” of the pes-
simistic bilevel problem. The authors focus on the independent case, i.e. cases
where the lower-level feasible set is independent of the upper-level decision.
Problems in such settings are shown to be simpler to handle than the depen-
dent case and can be solved in polynomial time when the lower-level problem
is linear under the optimistic and pessimistic assumptions. A custom algo-
rithm is designed for the independent case, solving a sequence of non-convex
non-linear problems relying on global optimization solvers. We consider bilevel
problems involving upper- and lower-level variables in the constraints and ob-
jective functions at both levels, thus more general than the independent “ε-
approximation” from [2]. Unlike the independent case, the dependent bilevel
problem is NP-hard even when the constraints and objectives are linear. Since
this variant consists in protecting the upper-level feasibility against the un-
certainty of near-optimal solutions of the lower-level, we next use the terms
near-optimal robustness and near-optimal robust bilevel problem (NORBiP)
to qualify this extension.

The main contributions of the paper are:

1. The definition and formulation of the dependent near-optimal robust bilevel
problem, resulting in a generalized semi-infinite problem and its interpre-
tation as a special case of robust optimization applied to bilevel problems.

2. The study of duality-based reformulations of NORBiP where the lower-
level problem is convex conic or linear in Section 3, resulting in a finite-
dimensional single-level optimization problem.

3. An extended formulation for the linear-linear NORBiP in Section 4, lin-
earizing the bilinear constraints of the single-level model using disjunctive
constraints.

4. A solution algorithm for the linear-linear NORBiP in Section 5 using the
extended formulation and its implementation with several variants.

The paper is organized as follows. In Section 2, we define the concepts
of near-optimal set and near-optimal robust bilevel problem. We study the
cases of convex and linear lower-level problems in Section 3 and Section 4
respectively. In these cases, the near-optimal robust bilevel problem can be
reformulated in a single level. A solution algorithm is provided and computa-
tional experiments are conducted for the linear case in Section 5, comparing
the extended formulation to the compact bilinear one and studying the im-
pact of valid inequalities. Finally, in Section 6 we draw some conclusions and
highlight research perspectives on near-optimal robustness.
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2 Near-optimal set and near-optimal robust bilevel problem

In this section, we first define the near-optimal set of the lower level and
their extensions to near-optimal robust bilevel problems. Next, we illustrate
the concepts on an example and highlight several properties of general near-
optimal robust bilevel problems before focusing on the convex and linear cases
in the following sections.
The generic bilevel problem is classically defined as:

min
x

F (x, v) (1a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (1b)
x ∈ X (1c)
v ∈ argmin

y∈Y
{f(x, y) s.t. gi(x, y) ≤ 0 ∀i ∈ [[ml]]}. (1d)

The upper- and lower-level objective functions are noted F, f : X ×Y 7→ R
respectively. Constraint (1b) and gi(x, y) ≤ 0∀i ∈ [[ml]] are the upper- and
lower-level constraints respectively. In this section, we assume that Y = Rnl

in order that the lower-level feasible set can be only determined by the gi
functions. The optimal value function φ(x) is defined as follows:

φ : Rnu → {−∞} ∪ R ∪ {+∞}
φ(x) = min

y
{f(x, y) s.t. g(x, y) ≤ 0}. (2)

To keep the notation succinct, the indices of the lower-level constraints gi
are omitted when not needed as in Constraint (2). Throughout the paper, it
is assumed that the lower-level problem is feasible and bounded for any given
upper-level decision.

When, for a feasible upper-level decision, the solution to the lower-level prob-
lem is not unique, the bilevel problem is not well defined and further assump-
tions are required [1]. In the optimistic case, we assume that the lower level
selects the optimal solution favouring the upper level and the optimal solution
disfavouring them the most in the pessimistic case. We refer the reader to
[15, Chapter 1] for further details on these two approaches. The near-optimal
set of the lower level Z(x; δ) is defined for a given upper-level decision x and
tolerance δ as:

Z(x; δ) = {y | g(x, y) ≤ 0, f(x, y) ≤ φ(x) + δ}.

A Near-Optimal Robust Bilevel Problem, NORBiP, of parameter δ is defined
as a bilevel problem where the upper-level constraints are satisfied for any
lower-level solution z in the near-optimal set Z(x; δ).
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min
x,v

F (x, v) (3a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (3b)
f(x, v) ≤ φ(x) (3c)
g(x, v) ≤ 0 (3d)
Gk(x, z) ≤ 0 ∀z ∈ Z(x; δ) ∀k ∈ [[mu]] (3e)
x ∈ X . (3f)

Each k constraint in (3b) is satisfied if the corresponding constraint set in (3e)
holds and is therefore redundant, since v ∈ Z(x; δ). However, we mention Con-
straint (3b) in the formulation to highlight the structure of the initial bilevel
problem in the near-optimal robust formulation.

The special case Z(x; 0) is the set of optimal solutions to the original lower-
level problem, NORBiP with δ = 0 is therefore equivalent to the pessimistic
bilevel problem as formulated in [2]:

f(x, y) ≤ φ(x) ∀y ∈ Z(x; 0).

For δ < 0, Z(x; δ) is the empty set, in which case Problem (3) is equivalent to
the original optimistic bilevel problem while the set Z(x;∞) corresponds to
the complete lower-level feasible set, assuming the lower-level optimal solution
is not unbounded for the given upper-level decision x.

Unlike the constraint-based pessimistic bilevel problem presented in [2], the
upper-level objective F (x, v) depends on both the upper- and lower-level vari-
ables, but is only evaluated with the optimistic lower-level variable v and not
with a worst-case near-optimal solution. This implies the upper level chooses
the best optimistic decision which protects its feasibility from near-optimal
deviations. One implication for the modeller is that a near-optimal robust
problem can be constructed directly from a bilevel instance where the objec-
tive function often depends on the variables of the two levels. Alternatively,
the near-optimal robust formulation can protect both the upper-level objective
value and constraints from near-optimal deviations of the lower level using an
epigraph formulation introducing an additional variable:

min
x,v,τ

τ (4a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (4b)
f(x, v) ≤ φ(x) (4c)
g(x, v) ≤ 0 (4d)
F (x, z) ≤ τ ∀z ∈ Z(x; δ) (4e)
Gk(x, z) ≤ 0 ∀z ∈ Z(x; δ) ∀k ∈ [[mu]] (4f)
x ∈ X . (4g)
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The two models define different levels of conservativeness and risk. Indeed:

opt(1a-1d) ≤ opt(3a-3f) ≤ opt(4a-4g),

with opt(P ) the optimal value of problem P . Both near-optimal robust formu-
lations can be of interest to model decision-making applications. It can also be
noted that Problem 3 includes the special case of opposite objectives between
the two levels, i.e. problems for which F (x, v) = −f(x, v). The two models
offer different levels of conservativeness and risk and can both be of interest
when modelling decision-making situations.

Constraint (3e) is a generalized semi-infinite constraint, based on the ter-
minology from [16]. The dependence of the set of constraints Z(x; δ) on the
decision variables leads to the characterization of Problem (3) as a robust
problem with decision-dependent uncertainty [17]. Each constraint in the set
(3e) can be replaced by the corresponding worst-case second-level decision zk
obtained as the solution of the adversarial problem, parameterized by (x, v, δ):

zk ∈ argmax
y

Gk(x, y) (5a)

s.t. f(x, y) ≤ φ(x) + δ (5b)
g(x, y) ≤ 0. (5c)

Finally, the near-optimal robust bilevel optimization problem can be expressed
as:

min
x,v

F (x, v) (6a)

s.t. f(x, v) ≤ φ(x) (6b)
g(x, v) ≤ 0 (6c)
0 ≥ max

y
{Gk(x, y) s.t. y ∈ Z(x; δ)} ∀k ∈ [[mu]] (6d)

x ∈ X . (6e)

In the robust optimization literature, models can present uncertainty on
the constraints and/or on the objective function [18]. In bilevel optimization,
the first case corresponds to NORBiP, where the impact of near-optimal lower-
level solutions on the upper-level constraints is studied. The second case corre-
sponds to the impact of near-optimal lower-level decisions on the upper-level
objective value.

We next prove that the model including uncertainty on the objective,
named Objective-Robust Near-Optimal Bilevel Problem (ORNOBiP), is a spe-
cial case of NORBiP.
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ORNOBiP is defined as:

min
x∈X

sup
z∈Z(x;δ)

F (x, z) (7a)

s.t. Z(x; δ) = {y s.t. g(x, y) ≤ 0, f(x, y) ≤ φ(x) + δ}. (7b)

In contrast to most objective-robust problem formulations, the uncertainty set
Z depends on the upper-level solution x, qualifying Problem (7) as a problem
with decision-dependent uncertainty.

Proposition 1 ORNOBiP is a special case of NORBiP.

Proof The reduction of the objective-uncertain robust problem to a constraint-
uncertain robust formulation is detailed in [19]. In particular, Problem (7) is
equivalent to:

min
x,τ

τ

s.t. x ∈ X
τ ≥ F (x, z) ∀z ∈ Z(x, δ),

this formulation is a special case of NORBiP. ut

The pessimistic bilevel optimization problem defined in [20] is both a spe-
cial case and a relaxation of ORNOBiP. For δ = 0, the inner problem of
ORNOBiP is equivalent to finding the worst lower-level decision with respect
to the upper-level objective amongst the lower-level-optimal solutions. For any
δ > 0, the inner problem can select the worst solutions with respect to the
upper-level objective that are not optimal for the lower level. The pessimistic
bilevel problem is therefore a relaxation of ORNOBiP.
We illustrate the concept of near-optimal set and near-optimal robust solution
with the following linear bilevel problem, represented in Fig. 1.

min
x,v

x (8)

s.t. x ≥ 0

v ≥ 1− x

10

v ∈ argmax
y
{y s.t. y ≤ 1 +

x

10
}.

The high-point relaxation of Problem (8), obtained by relaxing the opti-
mality constraint of the lower-level, while maintaining feasibility, is:

min
x,v

x

s.t. x ≥ 0

v ≥ 1− x

10

v ≤ 1 +
x

10
.
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The shaded area in Fig. 1 represents the interior of the polytope, which is fea-
sible for the high-point relaxation. The induced set, resulting from the optimal
lower-level reaction, is given by:

{(x, y) ∈ (R+,R) s.t. y = 1 +
x

10
}.

The unique optimal point is (x̂, ŷ) = (0, 1).

0.5 1 1.5 2

0.5

1

1.5
f(x) = -y

F(x,y) = x

E

Fig. 1 Linear bilevel problem

Let us now consider a near-optimal tolerance of the follower with δ = 0.1.
If the upper-level decision is x̂, then the lower level can take any value between
1− δ = 0.9 and 1. All these values except 1 lead to an unsatisfied upper-level
constraint problem. The problem can be reformulated as:

min
x,v

x

s.t. x ≥ 0

v ≥ 1− x

10

v ∈ argmax
y
{y s.t. y ≤ 1 +

x

10
}

z ≥ 1− x

10
∀z s.t. {z ≤ 1 +

x

10
, z ≥ v − δ}.

Fig. 2 illustrates the near-optimal equivalent of the problem with an addi-
tional constraint ensuring the satisfaction of the upper-level constraint for all
near-optimal responses of the lower level.
This additional constraint is represented by the dashed line. The optimal
upper-level decision is x = 0.5, for which the optimal lower-level reaction
is y = 1 + 0.1 · 0.5 = 1.05. The boundary of the near-optimal set is y =
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0.5 1.1 1.7

0.5

1

1.5
f(x) = -y

F(x,y) = x

E F

Fig. 2 Linear bilevel problem with a near-optimality robustness constraint

1− 0.1 · 0.5 = 0.95.

In the rest of this section, we establish properties of the near-optimal set
and near-optimal robust bilevel problems. If the lower-level optimization prob-
lem is convex, then the near-optimal set Z(x; θ) is convex as the intersection
of two convex sets:

– {y | g(x, y) ≤ 0}
– {y | f(x, y) ≤ φ(x) + δ}.

In robust optimization, the characteristics of the uncertainty set sharply
impact the difficulty of solving the problem. The near-optimal set of the lower-
level is not always bounded; this can lead to infeasible or ill-defined near-
optimal robust counterparts of bilevel problems. In the next proposition, we
define conditions under which the uncertainty set Z(x; δ) is bounded.

Proposition 2 For a given pair (x, δ), any of the following properties is suf-
ficient for Z(x; δ) to be a bounded set:

1. The lower-level feasible domain is bounded.
2. f(x, ·) is radially unbounded with respect to y.
3. f(x, ·) is radially bounded such that:

lim
r∈R,r→+∞

f(x, rs) > f(x, v) + δ ∀s ∈ S,

with S the unit sphere in the space of lower-level decisions.

Proof The first case is trivially satisfied since Z(x; δ) is the intersection of sets
including the lower-level feasible set. If f(x, ·) is radially unbounded, for any
finite δ > 0, there is a maximum radius around v beyond which any value
of the objective function is greater than f(x, v) + δ. The third case follows
the same line of reasoning as the second, with a lower bound in any direction
‖y‖ → ∞, such that this lower bound is above f(x, v) + δ. ut
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The radius of robust feasibility is defined as the maximum “size” of the
uncertain set [21,22], such that the robust problem remains feasible. In the
case of near-optimal robustness, the radius can be interpreted as the maximum
deviation of the lower-level objective from its optimal value, such that the
near-optimal robust bilevel problem remains feasible.

Definition 1 For a given optimization problem BiP , let NO(BiP ; δ) be the
optimum value of the near-optimal robust problem constructed from BiP with
a tolerance δ. The radius of near-optimal feasibility δ̂ is defined by:

δ̂ = argmax
δ

{δ s.t. NO(BiP ; δ) <∞}. (9)

It is interesting to note that the radius as defined in Definition 1 can be
interpreted as a maximum robustness budget in terms of objective value of
the lower level. It represents the maximum level of tolerance of the lower level
on its objective, such that the upper level remains feasible.

Proposition 3 The standard optimistic bilevel problem BiP is a relaxation
of the equivalent near-optimal robust bilevel problem for any δ > 0.

Proof By introducing additional variables zjk, j ∈ [[nl]], k ∈ [[mu]] in the opti-
mistic bilevel problem, we obtain:

min
x,v,z

F (x, v) (10)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]]

f(x, v) ≤ φ(x)
g(x, v) ≤ 0

x ∈ X , v ∈ Rnl , z ∈ Rnl×mu .

Problem (10) is strictly equivalent to the optimistic bilevel problem with
additional variables z that are not used in the objective nor constraints. Fur-
thermore, it is a relaxation of Problem (6), which has similar variables but
additional constraints (6d). At each point where the bilevel problem is feasi-
ble, either the objective value of the two problems are the same or NORBiP
is infeasible. ut

Proposition 4 If the bilevel problem is feasible, then the adversarial problem
(5) is feasible.

Proof If the bilevel problem is feasible, then the solution z = v is feasible for
the primal adversarial problem. ut

Proposition 5 If (x̂, ŷ) is a bilevel-feasible point, and Gk(x̂, ·) is Kk-Lipschitz
continuous for a given k ∈ [[mu]] such that:

Gk(x̂, ŷ) < 0,
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then the constraint Gk(x̂, y) ≤ 0 is satisfied for all y ∈ F (k)
L such that:

F (k)
L (x̂, ŷ) = {y ∈ Rnl | ‖y − ŷ‖ ≤ |Gk(x̂, ŷ)|

Kk
}.

Proof As Gk(x̂, ŷ) < 0, and Gk(x̂, ·) is continuous, there exists a ball Br(ŷ) in
Rnl centered on (ŷ) of radius r > 0, such that

G(x̂, y) ≤ 0 ∀y ∈ Br(ŷ).

Let us define:

r0 = argmax
r

r (11)

s.t. G(x̂, y) ≤ 0 ∀y ∈ Br(ŷ).

By continuity, Problem (11) always admits a feasible solution. If the feasible
set is bounded, there exists a point y0 on the boundary of the ball, such that
Gk(x̂, y0) = 0. It follows from Lipschitz continuity that:

|Gk(x̂, ŷ)−Gk(x̂, y0)| ≤ Kk‖y0 − ŷ‖
|Gk(x̂, ŷ)|

Kk
≤ ‖y0 − ŷ‖.

Gk(x̂, y) ≤ Gk(x̂, y0) ∀y ∈ Br0(ŷ), therefore all lower-level solutions in the set

F (k)
L (x̂, ŷ) = {y ∈ Rnl s.t. ‖y − ŷ‖ ≤ |Gk(x̂, ŷ)|

Kk
}

satisfy the k-th constraint. ut

Corollary 1 Let (x̂, ŷ) be a bilevel-feasible solution of a near-optimal robust
bilevel problem of tolerance δ, and

FL(x̂, ŷ) =
mu⋂
k=1

F (k)
L (x̂, ŷ),

then Z(x; δ) ⊆ FL(x̂, ŷ) is a sufficient condition for near-optimal robustness
of (x̂, ŷ).

Proof Any lower-level solution y ∈ FL(x̂, ŷ) satisfies all mu upper-level con-
straints, thus Z(x; δ) ⊆ FL(x̂, ŷ) is a sufficient condition for the near-optimality
robustness of (x̂, ŷ). ut

Corollary 2 Let (x̂, ŷ) be a bilevel-feasible solution of a near-optimal robust
bilevel problem of tolerance δ, R be the radius of the lower-level feasible set
and Gk(x̂, ·) be Kk-Lipschitz for a given k, then the k-th constraint is robust
against near-optimal deviations if:

|Gk(x̂, ŷ)| ≤ KkR.

Proof The inequality can be deduced from the fact that ‖y − ŷ‖ ≤ R. ut

Corollary 2 can be used when the lower level feasible set is bounded to verify
near-optimal robustness of incumbent solutions.
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3 Near-optimal robust bilevel problems with a convex lower level

In this section, we study near-optimal robust bilevel problems where the lower-
level problem (1d) is a parametric convex optimization problem with both a
differentiable objective function and differentiable constraints. If Slater’s con-
straint qualifications hold, the KKT conditions are necessary and sufficient
for the optimality of the lower-level problem and strong duality holds for the
adversarial subproblems. These two properties are leveraged to reformulate
NORBiP as a single-level closed-form problem.

Given a bilevel solution (x, v), the adversarial problem associated with con-
straint k can be formulated as:

max
y

Gk(x, y) (12a)

s.t. g(x, y) ≤ 0 (12b)
f(x, y) ≤ f(x, v) + δ. (12c)

Even if the upper-level constraints are convex with respect to y, Problem (12)
is in general non-convex since the function to maximize is convex over a convex
set. First-order optimality conditions may induce several non-optimal critical
points and the definition of a solution method needs to rely on global opti-
mization techniques [23,24].

By assuming that the constraints of the upper-level problem Gk(x, y) can
be decomposed and that the projection onto the lower variable space is affine,
the adversarial problem:

Gk(x, y) ≤ 0⇔ Gk(x) +HT
k y ≤ qk, (13)

is convex. The k-th adversarial problem is then expressed as:

max
y
〈Hk, y〉 (14a)

s.t. gi(x, y) ≤ 0 ∀i ∈ [[ml]] (αi) (14b)
f(x, y) ≤ f(x, v) + δ (β) (14c)

and is convex for a fixed pair (x, v). Satisfying the upper-level constraint in
the worst-case requires that the objective value of Problem (14) is lower than
qk − Gk(x). We denote by Ak and Dk the objective values of the adversarial
problem (14) and its dual respectively. Dk takes values in the extended real set
to account for infeasible and unbounded cases. Proposition 4 holds for Problem
(14). The feasibility of the upper-level constraint with the dual adversarial
objective value as formulated in Constraint (15) is, by weak duality of convex
problems, a sufficient condition for the feasibility of a near-optimal solution.
If Slater’s constraint qualifications hold, it is also a necessary condition [25]
by strong duality:

Ak ≤ Dk ≤ qk −Gk(x). (15)
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The generic form for the single-level reformulation of the near-optimal robust
problem can then be expressed as:

min
x,v,α,β

F (x, v) (16a)

s.t. G(x) +Hv ≤ q (16b)
f(x, v) ≤ φ(x) (16c)
g(x, v) ≤ 0 (16d)
Dk ≤ qk −Gk(x) ∀k ∈ [[mu]] (16e)
x ∈ X , (16f)

where (α, β) are certificates of the near-optimality robustness of the solution.
In order to write Problem (16) in a closed form, the lower-level problem (16c-
16d) is reduced to its KKT conditions:

∇vf(x, v)−
ml∑
i=1

λi∇vgi(x, v) = 0 (17a)

gi(x, v) ≤ 0 ∀i ∈ [[ml]] (17b)
λi ≥ 0 ∀i ∈ [[ml]] (17c)
λigi(x, v) = 0 ∀i ∈ [[ml]]. (17d)

Constraint (17d) derived from the KKT conditions cannot be tackled directly
by non-linear solvers [26]. Specific reformations, such as relaxations of the
equality constraints (17d) into inequalities or branching on combinations of
variables (as developed in [27,28]) are often used in practice.

We focus in the rest of this section on bilevel problems such that the lower level
is a conic convex optimization problem. Unlike the convex version developed
above, the dual of a conic optimization problem can be written in closed form.

min
y
〈d, y〉 (18)

s.t. Ax+By = b

y ∈ K

where 〈·, ·〉 is the inner product associated with the space of the lower-level vari-
ables. This class encompasses a broad class of convex optimization problems
of practical interest [29, Chapter 4], while the dual problem can be written in
a closed-form if the dual cone is known, letting us derive a closed-form single-
level reformulation. K is considered to be a proper cone in the sense of [25,
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Chapter 2]. The k−th adversarial problem is given by:

max
y
〈Hk, y〉 (19a)

s.t. By = b−Ax (19b)
〈d, y〉+ r = 〈d, v〉+ δ (19c)
y ∈ K (19d)
r ≥ 0 (19e)

where r is a slack variable used to formulate the near-optimality constraint in
standard form. With the following change of variables:

ŷ =

[
y
r

]
B̂ =

[
B 0

]
d̂ =

[
d 1
]
Ĥk =

[
Hk

0

]
K̂ = {(y, r), y ∈ K, r ≥ 0}.

K̂ is a cone as the Cartesian product of K and the nonnegative orthant. Prob-
lem (19) is reformulated as:

max
ŷ
〈Ĥk, ŷ〉

s.t. (B̂ŷ)i = bi − (Ax)i ∀i ∈ [[ml]] (αi)

〈d̂, ŷ〉 = 〈d, v〉+ δ (β)

ŷ ∈ K̂

which is a conic optimization problem, for which the dual problem is:

min
α,β,sk

〈(b−Ax), α〉+ (〈d, v〉+ δ)β (20a)

s.t. B̂Tα+ βd̂+ s = Ĥk (20b)

s ∈ −K̂∗, (20c)

with K̂∗ the dual cone of K̂. In the worst case (maximum number of non-zero
coefficients), there are (ml ·nu+nl) of these terms inmu non-linear non-convex
constraints. This number of bilinear terms can be reduced by introducing the
following variables (p, o), along with the corresponding constraints:

min
α,β,s,p,o

〈p, α〉+ (o+ δ)β (21a)

s.t. p = b−Ax (21b)
o = 〈d, v〉 (21c)

B̂Tα+ βd̂+ s = Ĥk (21d)

s ∈ −K̂∗. (21e)

The number of bilinear terms in the set of constraints is thus reduced from
nu ·ml + nl to ml + 1 terms in (21a). Problem (20) or equivalently Problem
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(21) have a convex feasible set but a bilinear non-convex objective function.
The KKT conditions of the follower problem (18) are given for the primal-dual
pair (x, λ):

By = b−Ax (22a)
y ∈ K (22b)

d−BTλ ∈ K∗ (22c)

〈d−BTλ, y〉 = 0. (22d)

The single-level problem is:

min
x,v,λ,α,β,s

F (x, v) (23a)

s.t. G(x) +Hv ≤ q (23b)
Ax+Bv = b (23c)

d−BTλ ∈ K∗ (23d)

〈d−BTλ, v〉 = 0 (23e)
〈Ax− b, αk〉+ βk (〈v, d〉+ δ) ≤ qk − (Gx)k ∀k ∈ [[mu]] (23f)

B̂Tαk + d̂βk + sk = Ĥk ∀k ∈ [[mu]] (23g)
x ∈ X , v ∈ K (23h)

sk ∈ −K̂∗ ∀k ∈ [[mu]]. (23i)

The Mangasarian-Fromovitz constraint qualification is violated at every feasi-
ble point of Constraint (23e) [30]. In non-linear approaches to complementarity
constraints [27,26], parameterized successive relaxations of the complementar-
ity constraints are used:

〈d−BTλ, v〉 ≤ ε (24a)

−〈d−BTλ, v〉 ≤ ε. (24b)

Constraints (23f) and (24) are both bilinear non-convex inequalities, the
other ones added by the near-optimal robust model are conic and linear con-
straints. Near-optimal robustness has thus only added a finite number of con-
straints of the same nature (bilinear inequalities) to the reformulation proposed
in [26]. Solution methods used for bilevel problems with convex lower-level thus
apply to their near-optimal robust counterpart.

4 Linear near-optimal robust bilevel problem

In this section, we focus on near-optimal robust linear-linear bilevel problems.
More precisely, the structure of the lower-level problem is exploited to derive
an extended formulation leading to an efficient solution algorithm.We consider
that all vector spaces are subspaces of Rn, with appropriate dimensions. The
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inner product of two vectors 〈a, b〉 is equivalently written aT b.

The linear near-optimal robust bilevel problem is formulated as:

min
x,v

cTx x+ cTy v (25a)

s.t. Gx+Hv ≤ q (25b)

dT v ≤ φ(x) (25c)
Ax+Bv ≤ b (25d)
Gx+Hz ≤ q ∀z ∈ Z(x; δ) (25e)
v ∈ Rnl

+ (25f)
x ∈ X . (25g)

For a given pair (x, v), each semi-infinite robust constraint (25e) can be refor-
mulated as the objective value of the following adversarial problem:

max
y

HT
k y (26a)

s.t. (By)i ≤ bi − (Ax)i ∀i ∈ [[ml]] (αi) (26b)

dT y ≤ dT v + δ (β) (26c)
y ∈ Rnl

+ . (26d)

Let (α, β) be the dual variables associated with each group of constraints
(26b-26c). The near-optimal robust version of Problem (25) is feasible only
if the objective value of each k-th adversarial subproblem (26) is lower than
qk − (Gx)k. The dual of Problem (26) is defined as:

min
α,β

αT (b−Ax) + β (dT v + δ) (27a)

s.t. BTα+ βd ≥ Hk (27b)
α ∈ Rml

+ β ∈ R+. (27c)

Based on Problem (4) and weak duality results, the dual problem is either
infeasible or feasible and bounded. By strong duality, the objective value of the
dual and primal problems are equal. This value must be smaller than qk−(Gx)k
to satisfy Constraint (25e). This is equivalent to the existence of a feasible dual
solution (α, β) certifying the feasibility of (x, v) within the near-optimal set
Z(x; δ). We obtain one pair of certificates (α, β) for each upper-level constraint
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in [[mu]], resulting in the following problem:

min
x,v,α,β

cTx x+ cTy v (28a)

s.t. Gx+Hv ≤ q (28b)

dT v ≤ φ(x) (28c)
Ax+Bv ≤ b (28d)

αTk (b−Ax) + βk (d
T v + δ) ≤ qk − (Gx)k ∀k ∈ [[mu]] (28e)

BTαk + βkd ≥ Hk ∀k ∈ [[mu]] (28f)
αk ∈ Rml

+ βk ∈ R+ ∀k ∈ [[mu]] (28g)
v ∈ Rnl

+ (28h)
x ∈ X . (28i)

Lower-level optimality is guaranteed by the corresponding KKT conditions:

dj +
∑
i

Bijλi − σj = 0 ∀j ∈ [[nl]] (29a)

0 ≤ bi − (Ax)i − (Bv)i ⊥ λi ≥ 0 ∀i ∈ [[ml]] (29b)
0 ≤ vj ⊥ σj ≥ 0 ∀j ∈ [[nl]] (29c)
σ ≥ 0, λ ≥ 0 (29d)

where ⊥ defines a complementarity constraint. A common technique to lin-
earize Constraints (29b-29c) is the “big-M” reformulation, introducing auxil-
iary binary variables with primal and dual upper bounds. The resulting for-
mulation has a weak continuous relaxation. Furthermore, the correct choice
of bounds is itself an NP-hard problem [31], and the incorrect choice of these
bounds can lead to cutting valid and potentially optimal solutions [32]. Other
modelling and solution approaches, such as special ordered sets of type 1
(SOS1) or indicator constraints avoid the need to specify such bounds in a
branch-and-bound procedure.
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The aggregated formulation of the linear near-optimal robust bilevel problem
is:

min
x,v,λ,σ,α,β

cTx x+ cTy v (30a)

s.t. Gx+Hv ≤ q (30b)
Ax+Bv ≤ b (30c)

dj +
∑
i

λiBij − σj = 0 ∀j ∈ [[nl]] (30d)

0 ≤ λi⊥Aix+Biv − bi ≤ 0 ∀i ∈ [[ml]] (30e)
0 ≤ σj ⊥ vj ≥ 0 ∀j ∈ [[nl]] (30f)
x ∈ X (30g)

αk · (b−Ax) + βk(d
T v + δ) ≤ qk − (Gx)k ∀k ∈ [[mu]] (30h)

ml∑
i=1

Bijαki + βkdj ≥ Hkj ∀k ∈ [[mu]], ∀j ∈ [[nl]]

(30i)

αk ∈ Rml
+ , βk ∈ R+ ∀k ∈ [[mu]]. (30j)

Problem (30) is a single-level problem and has a closed form. However,
constraints (30h) contain bilinear terms, which cannot be tackled as efficiently
as convex constraints by branch-and-cut based solvers. Therefore, we exploit
the structure of the dual adversarial problem and its relation to the primal
lower level to design a new efficient reformulation and solution algorithm.

4.1 Extended formulation

The bilinear constraints (30h) involve products of variables from the upper and
lower level (x, v) as well as dual variables of each of the mu dual-adversarial
problems. For fixed values of (x, v), mu dual adversarial sub-problems (27)
are defined. The optimal value of each k-th subproblem must be lower than
qk−(Gx)k. The feasible region of each sub-problem is defined by (30h-30j) and
is independent of (x, v). The objective functions are linear in (α, β). Following
Proposition 4, Problem (27) is bounded. If, moreover, Problem (27) is feasible,
a vertex of the polytope (30h-30j) is an optimal solution. Following these
observations, Constraints (30h-30j) can be replaced by disjunctive constraints,
such that for each k, at least one extreme vertex of the k-th dual polyhedron
is feasible. This reformulation of the bilinear constraints has to the best of
our knowledge never been developed in the literature. Let Vk be the number
of vertices of the k-th sub-problem and αlk, β

l
k be the l-th vertex of the k-th

sub-problem. Constraints (30h-30j) can be written as:

Vk∨
l=1

ml∑
i=1

αlki(b−Ax)i + βlk · (dT v + δ) ≤ qk − (Gx)k ∀k ∈ [[mu]], (31)
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where
∨N
i=1 Ci is the disjunction (logical “OR”) operator, expressing the con-

straint that at least one of the constraints Ci must be satisfied. These disjunc-
tions are equivalent to indicator constraints [33].

This reformulation of bilinear constraints based on the polyhedral descrip-
tion of the (α, β) feasible space is similar to the Benders decomposition. Indeed
in the near-optimal robust extended formulation, at least one of the vertices
must satisfy a constraint (a disjunction) while Benders decomposition consists
in satisfying a set of constraints for all extreme vertices and rays of the dual
polyhedron (a constraint described with a universal quantifier). Disjunctive
constraints (31) are equivalent to the following formulation, using set cover
and SOS1 constraints:

θlk ∈ B ∀k,∀l (32a)

ωlk ≥ 0 ∀k,∀l (32b)

(b−Ax)Tαlk + βlk(d
T v + δ)− ωlk ≤ qk − (Gx)k ∀k,∀l (32c)

Vk∑
l=1

θlk ≥ 1 ∀k (32d)

SOS1(θlk, ω
l
k) ∀k, ∀l. (32e)

In conclusion, using disjunctive constraints over the extreme vertices of
each dual polyhedron, and SOS1 constraints to linearize the complementarity
constraints leads to an equivalent reformulation of Problem (30). The finite
solution property holds even though the boundedness of the dual feasible set
is not required. This single-level extended reformulation can be solved by any
off-the-shelf MILP solver. Nevertheless, to decrease the computation time,
we have designed a specific algorithm based on necessary conditions for the
existence of a solution.

We illustrate the extended formulation with the following example.

4.2 Bounded example

Consider the bilevel linear problem defined by the following data:

x ∈ R+, y ∈ R+

G =

[
−1
1

]
H =

[
4
2

]
q =

[
11
13

]
cx =

[
1
]
cy =

[
−10

]

A =

[
−2
5

]
B =

[
−1
−4

]
b =

[
−5
30

]
d =

[
1
]
.
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The optimal solution of the high-point relaxation (x, v) = (5, 4) is not
bilevel-feasible. The optimal value of the optimistic bilevel problem is reached
at (x, v) = (1, 3). These two points are respectively represented by the blue
diamond and red cross in Fig. 3. The dotted segments represent the upper-level
constraints and the solid lines represent the lower-level constraints.

1 2 3 4 5 6 7 8

1

2

3

4

5
cxx+ cyy

dT y

Fig. 3 Representation of the bilevel problem.

1 2 3 4 5 6 7 8

1

2

3

4

5

δ = 1.0

δ = 0.5

Fig. 4 Near-optimal robustness constraints.

The (α, β) feasible space is defined as:

− 1α11 − 4α12 + β1 ≥ 4

− 1α21 − 4α22 + β2 ≥ 2

αki ≥ 0, βk ≥ 0.

This feasible space can be described as a set of extreme points and rays.
It consists in this case of one extreme point (αki = 0, β1 = 4, β2 = 2) and
4 extreme rays. The (x, v) solution needs to be valid for the corresponding
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near-optimality conditions:

β1 (v + δ) ≤ 11 + x

β2 (v + δ) ≤ 13− x.

This results in two constraints in the (x, v) space, represented in Fig. 4 for
δ = 0.5 and δ = 1.0 in dotted blue and dashed orange respectively. The radius
of near-optimal feasibility can be computed using the formulation provided in
Definition 1, a radius of δ̂ = 5 can be computed, for which the feasible domain
at the upper-level is reduced to the point x = 5, for which v = 0, represented
as a green circle at (5, 0).

4.3 Solution algorithm

The solution procedure is defined as follows based on the structure of the
extended formulation. The main goal of the algorithm is to prove infeasibility
early in the resolution process and to solve the extended formulation only in
the last step. Let P0(BiP ), P1(BiP ), FEASk((BiP ), Pno(BiP ; δ) be the high-
point relaxation, optimistic bilevel problem, dual feasibility and near-optimal
robust problem respectively. Let Ck be the list of extreme vertices of the k-th
dual adversarial polyhedron.

Algorithm 1 Near-Optimal Robust Vertex Enumeration Procedure
(NORVEP)
1: function near_optimal_bilevel(BiP, δ)
2: {Step 1: dual subproblems expansion & pre-solving}
3: for k ∈ [[mu]] do
4: Solve dual adversarial problem
5: if feask = Infeasible then
6: Terminate: k-th dual adversarial infeasible
7: else
8: Ck ← (αl

k, β
l
k)l∈Vk

9: end if
10: end for
11: {Step 2: high-point relaxation P0(BiP )}
12: if P0(BiP ) infeasible then
13: return HighPointInfeasible
14: Terminate: high-point relaxation infeasible
15: end if
16: {Step 3: optimistic relaxation P1(BiP )}
17: if P1(BiP ) infeasible then
18: Terminate: optimistic bilevel infeasible
19: end if
20: {Step 4: extended formulation Pno(BiP, (Ck)k∈[[mu]]; δ)}
21: return Terminate and return solution information
22: end function
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Each step solves a problem that must be feasible for NORBiP to also be
feasible, and terminates the algorithm without proceeding to the subsequent
steps in an infeasibility is detected.

4.4 Valid inequalities

The extended formulation and Algorithm 1 can be applied directly. Nonethe-
less, we propose two groups of valid inequalities that can be used to tighten
the formulation.

The first group of inequalities consists of the primal upper-level constraints:

(Gx)k + (Hv)k ≤ qk ∀z ∈ [[mu]].

These constraints are necessary for the optimistic formulation but not for the
near-optimal robust formulation since they are always redundant with and
included in the near-optimal robust constraints. However, their addition can
strengthen the linear relaxation of the extended formulation and lead to faster
convergence.

The second group of inequalities is defined in [34] and based on strong
duality of the lower level. Following the computational results from the paper,
we only implement the valid for the root node:

〈λ, b〉+ 〈v, d〉 ≤ 〈A+, λ〉, (33)

where A+
i is an upper bound on 〈Ai, x〉. The computation of each upper bound

A+
i relies on solving an auxiliary problem:

max
x,v,λ

〈Ai, x〉 (34a)

s.t. Gx+Hv ≤ q (34b)
Ax+Bv ≤ b (34c)

d+BTλ ≥ 0 (34d)
x ∈ X , v ≥ 0, λ (34e)
(x, v, λ) ∈ Υ, (34f)

where Υ is the set containing all valid inequalities (33). The method proposed
in [34] relies on solving each i-th auxiliary problem once. Instead, we compute
the best bounds of the root node in an interative procedure detailed in the
following steps:

1. Solve Problem (34a) ∀i ∈ [[ml]] and obtain A+;
2. If ∃i, A+

i is unbounded, terminate;
3. Otherwise, add Constraint (33) to (34f), go to step 1.
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4. When an iteration does not improve any of the bounds, terminate and
return the last inequality with the sharpest bound.

This allows us to tighten the bound as long as improvement can be made
in one of the A+

i . If the procedure terminates with one A+
i unbounded, the

right-hand side of (33) is +∞, the constraint is trivial and cannot be improved
upon. Otherwise, each iteration improves the bound until the convergence of
A+.

A computational study of these two groups of inequalities is presented in
the next section.

5 Computational experiments

In this section, we demonstrate the applicability of our approach through
numerical experiments on instances of the linear-linear near-optimal robust
bilevel problem. We first describe the sets of test instances and the computa-
tional setup and then the experiments and their results.

5.1 Instance sets

Two sets of data are considered. For the first one, a total number of 1000 small,
200 medium and 100 large random instances are generated and characterized
as follows:

(mu,ml, nl, nu) = (5, 5, 5, 5) (small)
(mu,ml, nl, nu) = (10, 10, 10, 10) (medium)
(mu,ml, nl, nu) = (20, 10, 20, 20) (large).

All matrices are randomly generated with each coefficient having a 0.6
probability of being 0 and uniformly distributed on [0, 1] otherwise. High-point
feasibility and the vertex enumeration procedures are run after generating
each tuple of random parameters to discard infeasible instances. Collecting
1000 small instances required generating 10532 trials, the 200 medium-sized
instances were obtained with 18040 trials and the 100 large instances after
90855 trials. A second dataset is created from the 50 MIPS/Random instances
of the Bilevel Problem library [35], where integrality constraints are dropped.
All of these instances contain 20 lower-level constraints and no upper-level
constraints. For each of them, two new instances are built by moving either the
first 6 or the last 6 constraints from the lower to the upper level, resulting in 100
instances. We will refer to the first set of instances as the small/medium/large
instances and the second as the MIPS instances. All instances are available in
[36] in JLD format, along with a reader to import them in Julia programs.
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5.2 Computational setup

The configuration used in the computational experiments is described below.
Algorithm 1 is implemented in Julia [37] using the JuMP v0.21 modelling
framework [38,39]; the MILP solver is SCIP 6.0 [40] with SoPlex 4.0 as the
inner LP solver, both with default solving parameters. SCIP handles indicator
constraints in the form of linear inequality constraints activated only if a binary
variable is equal to one. Polyhedra.jl [41] is used to model the dual subprob-
lem polyhedra with CDDLib [42] as a solver running the double-description
algorithm, computing the list of extreme vertices and rays from the constraint-
based representation. The exact rational representation of numbers is used in
CDDLib instead of floating-point types to avoid rounding errors. Moreover,
CDDLib fails to produce the list of vertices for some instances when set in
floating-point mode. All experiments are performed on a consumer-end laptop
with 15.5GB of RAM and an Intel i7 1.9GHz CPU running Ubuntu 18.04LTS.

5.3 Bilinear and extended formulation

To assess the efficiency of the extended formulation, we compare its solution
time to that of the non-extended formulation including bilinear constraints
(25). The bilinear formulation is implemented with SCIP using SoPlex as the
linear optimization solver and Ipopt as the non-linear solver. SCIP handles
the bilinear terms through bound computations and spatial branching. We
test the two methods on 100 small instances. The bilinear version only man-
ages to solve the small random instances and runs out of time or memory for
all other instance sets. A time limit of 3600 seconds and a memory limit of
5000MB were fixed. The distribution of runtimes is presented in Fig. 5.

Fig. 5 Runtime of the two methods on 100 of the small instances

The extended formulation with the disjunction dominates at almost any
time the bilinear formulation that uses spatial branching. The latter runs out
of time or memory for most instances.
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5.4 Robustness of optimistic solutions and influence of δ

We solve the MIPS instances to bilevel optimality and verify the near-optimal
robustness of the obtained solutions. We use various tolerance values:

δ = max(0.05, δro)

with o the lower-level objective value at the found solution and

δr ∈ (0.01, 0.05, 0.1, 0.5, 3.0).

Out of the 100 instances, 57 have canonical solutions that are not robust to
even the smallest near-optimal deviation 0.01o. Twelve more instances that
have a near-optimal robust solution with the lowest tolerance are not near-
optimal robust when the tolerance is increased to 3o Out of the 57 instances
that are not near-optimal robust with the lowest tolerance, 40 have exactly
one upper-level constraint that is violated by near-optimal deviations of the
lower level and 17 that have more than one. Finally, we observe 31 instances
out of 100 for which the number of violated constraints changes across the
range of tolerance values. For the other 69 instances, the number of violated
upper-level constraints remains identical for all tolerance values.
Table 1 summarizes the number of infeasible instances for different values of
δ. As δ increases, so does the proportion of infeasible problems. This is due to
the increase in the left-hand side in constraints (31).

δ 0.01 0.1 0.2 1 3 5 7 10 12
Small (/1000) 366 423 466 595 658 670 672 674 676
Medium (/200) 78 88 95 118 122 123 123 123 123

Table 1 Number of infeasible problems for various tolerance levels δ

In Fig. 6, we present the runtime difference between the canonical bilevel
problem and its near-optimal robust counterpart.

Scaling up the dimension of the tackled problems is limited not only by
time but also by memory since the formulation of the problem requires al-
locating binary variables and a disjunctive constraint over all vertices of the
dual polyhedron of each of the k ∈ [[mu]] subproblems.

These runtime profiles highlight the fact that near-optimality robustness
implemented using the extended formulation adds a significant runtime cost
to the resolution of linear-linear bilevel problems. Nonetheless, the study of
near-optimal lower-level decisions on optimistic solutions shows that these op-
timistic solutions are not robust, even for small tolerance values. This time
difference also motivates the design of Algorithm 1: since the optimistic bilevel
problem is solved in a much shorter time, it is interesting to verify its feasibility
before solving the near-optimal robust version.
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Fig. 6 Runtime cost of adding near-optimality robustness constraints.

5.5 Computational time of the algorithm

Statistics on the computation times of the two phases of Algorithm 1 for each
instance size are provided in Table 2 and Table 3.

Size mean 10% quant. 50% quant. 90% quant.
Small 0.023 0.014 0.019 0.046

Medium 1.098 0.424 0.956 2.148
MIPS 21.061 0.231 3.545 65.004

Table 2 Runtime statistics for the vertex enumeration (s).

Instance type # optimized mean 10% quant. 50% quant. 90% quant.
Small 577 0.205 0.004 0.064 0.596

Medium 106 207.399 0.797 14.451 317.624
MIPS 70 909.302 57.592 344.202 2613.404

Table 3 Runtime statistics for the optimization phase (s).

The solution time, corresponding to phase 2 of Algorithm 1, is greater
than the vertex enumeration phase, corresponding to the first phase of the
algorithm, but does not dominate it completely for any of the problem sizes.

Figure 7 shows the distribution of the upper-level objective values across
small and medium-sized instances. The number of problems solved to opti-
mality monotonically decreases when δ increases (Table 1); greater δ values
indeed make reduce the set of feasible solutions to NORBiP. The optimal val-
ues only slightly increase with δ and the lower-level objective value does not
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vary significantly with δ.

Fig. 7 Violin plots of the upper objective value distributions versus δ.

Even though more instances become infeasible as δ increases, the degra-
dation of the objective value is in general insignificant for the optimal near-
optimal robust solution compared to the optimistic solution.

5.6 Implementation of valid inequalities

In the last group of experiments, we implement and investigate the effect of
the valid inequalities defined in Section 4.4.

On the 200 medium-sized instances, adding the valid inequality (33) is
enough to prove infeasibility of 61 instances out of 68 that are infeasible but
possess a feasible high-point relaxation. On 100 large instances, adding the
valid inequality proves the infeasibility of 29 out of 45 infeasible instances for
which the high-point relaxation is feasible. For all medium and large instances,
a non-trivial valid inequality i.e. where all A+

i are finite was computed. These
results highlight the improvement of the model tightness with the addition of
the valid inequalities, compared to the high-point relaxation where primal and
dual variables are subject to distinct groups of constraints. These inequalities
thus discard infeasible instances without the need to solve the complete MILP
reformulation. In Fig. 8, the distribution of the number of iterations of the
inequality-finding procedure is presented for the medium and large instances.
For the majority of instances of both sizes (about 80% and 60% of instances
for the medium and large instances), a single iteration is sufficient to find the
best valid inequality (33). The number of iteration, however, goes up to 40 and
50 for the medium and large instances respectively (truncated on the graph
for clarity).

In Fig. 9, we compare the total runtime for MIPS and medium instances
under near-optimal robustness constraints using δ = 0.1 with and without valid
inequalities for all instances solved to optimality. The runtime for instances
with valid inequalities includes the runtime of the inequality computation.
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Fig. 8 Distribution of the number of iterations for the computation of valid inequalities.

Fig. 9 Runtime for MIPS and medium instances with and without valid inequalities.

Valid inequalities do not improve the runtime for NORBiP in either group
of instances, a result similar to the observations in [34] for instances of the
canonical bilevel linear problem without near-optimality robustness.

The inequalities based on the upper-level constraints are studied on the
small, medium and MIPS instances.

As shown in Fig. 10, the addition of primal upper-level constraints accelerates
the resolution of the MIPS and medium instances and dominates the standard
extended formulation. For the small instances, we observe smaller runtimes for
the first instances solved. This can be due to the upper-level constraints making
the linear relaxation larger by adding constraints, thus creating overhead for
smaller problems. This overhead is compensated for instances that are harder
to optimize, i.e. that require more than 0.02 seconds to solve.



Near-optimal robust bilevel optimization 29

Fig. 10 Runtime for small, medium and MIPS instances with and without upper-level
constraints.

6 Conclusion

This paper introduces near-optimal robust bilevel optimization, a specific for-
mulation of bilevel optimization where the upper level is protected from poten-
tial deviations of the lower level from optimality. From a robust optimization
perspective, the tolerance δ of the lower level on its objective value can be in-
terpreted as an uncertainty budget with the same dimension as the lower-level
objective value. The near-optimal robust formulation is a generalization of
the constraint-based pessimistic bilevel problem, and more specifically of the
dependent case where the upper- and lower-level constraints depend on both
upper- and lower-level variables. The model offers a complement to bilevel op-
timization by relaxing the assumption that the lower level is solved to exact
optimality.

A closed-form, single-level expression of NORBiP is developed for con-
vex lower-level problems, relying on the lower-level KKT conditions and dual
adversarial certificates to guarantee near-optimality robustness. In the linear
case, characterization of optimal solutions of the primal and dual adversarial
solutions are leveraged to derive an extended formulation that can be repre-
sented as a MILP with disjunctive constraints.

Numerical experiments highlight the efficiency of the extended method
compared to the compact bilinear formulation, the impact of some valid in-
equalities on both solution time and model tightness, and the influence of
near-optimality robustness on the upper-level objective and solution time.

Although the novel extended formulation relies on the specific properties
of optimal solutions to the dual adversarial problem, its application to other
problems with bilinear constraints could be of interest for future investiga-
tion. Future work will also tackle the design of solution methods to handle
more general near-optimal robust convex bilevel problems and accelerate the
resolution of linear instances based on the extended formulation.
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