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Abstract

Following (Kolpakov et al., 2013; Gawrychowski and Manea, 2015), we con-
tinue the study of α-gapped repeats in strings, defined as factors of the form
uvu with |uv| = |u| + |v| ≤ α|u|. Our main result is the O(αn) bound on
the number of maximal α-gapped repeats in a string of length n, previously
proved to be O(α2n) in (Kolpakov et al., 2013). For a closely related notion
of maximal δ-subrepetition (maximal factors of exponent between 1 + δ and
2), our result implies the O(n/δ) bound on their number, which improves
the bound of (Kolpakov et al., 2010) by a log n factor.

We also prove an algorithmic time bound O(αn + S) (S size of the out-
put) for computing all maximal α-gapped repeats. Our solution, inspired by
(Gawrychowski and Manea, 2015), is different from the recently published
proof by (Tanimura et al., 2015) of the same bound. Together with our
bound on S, this implies an O(αn)-time algorithm for computing all maxi-
mal α-gapped repeats.

Keywords: combinatorics on words, algorithms on strings, combinatorial
algorithms, time complexity, repeats, gapped repeats, subrepetitions

1. Introduction

Notation and basic definitions. Let w = w[1]w[2] . . . w[n] = w[1 . . n] be an
arbitrary word. The length n of w is denoted by |w|. For any 1 ≤ i ≤ j ≤ n,
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the word w[i] · · ·w[j] is called a factor of w and denoted by w[i . . j]. Note
that notation w[i . . j] denotes two entities: a word and its occurrence starting
at position i in w. To underline the second meaning, we will sometimes use
the term segment. Speaking about the equality between factors can also be
ambiguous, as it may mean that the factors are identical words or the same
segment (i.e. the same occurrence). If two factors u and v are identical
words, we call them equal and denote this by u = v. To express that u and
v are the same segment, we use the notation u ≡ v. For any i = 1 . . . n, the
factor w[1 . . i] (resp. w[i . . n]) is a prefix (resp. suffix) of w. By positions
on w we mean indices 1, 2, . . . , n of letters in w. For any segment v ≡ w[i . . j]
of w, positions i and j are called respectively start position and end position
of v and denoted by beg(v) and end(v) respectively. Let u, v be two segments
of w. Segment u is contained in v iff beg(v) ≤ beg(u) and end(u) ≤ end(v).
Letter w[i] is contained in v iff beg(v) ≤ i ≤ end(v).

A positive integer p is called a period of w if w[i] = w[i+ p] for each i =
1, . . . , n− p. Clearly, a word can have several periods. We denote by per(w)
the smallest period of w and define the exponent of w as exp(w) = |w|/per(w).
A word is called periodic if its exponent is at least 2. Occurrences of periodic
words are called repetitions.

Repetitions, squares, runs. Patterns in strings formed by repeated factors
are of primary importance in word combinatorics [1] as well as in various ap-
plications such as string matching algorithms [2, 3], molecular biology [4], or
text compression [5]. The simplest and best known example of such patterns
is a factor of the form uu, where u is a nonempty word. Such repetitions are
called squares. Squares have been extensively studied. While the number of
all square occurrences can be quadratic (consider word an), it is known that
the number of primitively-rooted squares is O(n log n) [3], where a square uu
is primitively-rooted if the exponent of u is not an integer greater than 1. An
optimal O(n log n)-time algorithm for finding all primitively-rooted squares
was proposed in [6] (see also [7, 8, 9]).

Repetitions can be seen as a natural generalization of squares. A repeti-
tion in a given word is called maximal if it cannot be extended by at least one
letter to the left nor to the right without changing (increasing) its minimum
period. More precisely, a repetition r ≡ w[i . . j] in w is called maximal if it
satisfies the following conditions:

1. w[i− 1] 6= w[i− 1 + per(r)] if i > 1,

2. w[j + 1− per(r)] 6= w[j + 1] if j < n.

2



For example, word cababaaa has two maximal repetitions: ababa and aaa.
Maximal repetitions are usually called runs in the literature. Since any rep-
etition is contained in some run, the set of all runs can be considered as a
compact encoding of all repetitions in the word. This set has many useful
applications, see, e.g., [10]. For any word w, we denote by R(w) the number
of maximal repetitions in w and by E(w) the sum of exponents of all maximal
repetitions in w. The following statements are proved in [11].

Theorem 1. max|w|=n E(w) = O(n).

Corollary 1. max|w|=nR(w) = O(n).

A series of articles (e.g., [12, 13, 14, 15, 16, 17, 18]) focused on more precise
upper bounds on E(w) and R(w) trying to obtain the best possible constant
factor behind the O-notation. A breakthrough in this direction was recently
made in [19] (preliminary version in [20]) where the so-called “runs conjec-
ture”R(w[1..n]) < n was proved. To the best of our knowledge, the currently
best upper bound R(w[1..n]) ≤ 22

23
n on R(w) for binary words w is shown

in [21].
On the algorithmic side, an O(n)-time algorithm for finding all runs in

a word of length n was proposed in [11] for the case of constant-size alpha-
bet. Another O(n)-time algorithm, based on a different approach, has been
proposed in [19]. The O(n) time bound holds for (polynomially-bounded)
integer alphabets as well, see, e.g., [19]. However, for the case of unbounded-
size alphabets where characters can only be tested for equality, the lower
bound Ω(n log n) on computing all runs has been known for a long time [22].
It is an interesting open question (raised over 20 years ago in [23]) whether
the O(n) bound holds for an unbounded linearly-ordered alphabet. The best
known bound for this problem is currently O(n · α(n)) [24] (here α(·) is the
inverse of the Ackermann function), improving on [25, 26].

Gapped repeats and subrepetitions. Another natural generalization of squares
and runs are factors of the form uvu where u and v are nonempty words.
We call such factors gapped repeats. For a gapped repeat uvu, the left (resp.
right) occurrence of u is called its left arm (resp. right arm), and v is called
its gap. The period of this gapped repeat is |u|+ |v|. For a gapped repeat π,
we denote the length of its arms by c(π) and its period by p(π). Note
that p(π) is not necessarily equal to per(π) but per(π) ≤ p(π). Note also
that gapped repeats with distinct periods can have the same start and end
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positions in the word, i.e. they can occur in the same segment in the word.
For example, in string cabacaabaa, segment abacaaba corresponds to two
gapped repeats having arms a and aba and periods 7 and 5 respectively.
Gapped repeats having different periods but forming the same segment are
considered distinct. This means that in order to specify a gapped repeat
it is generally not sufficient to specify its segment. Let u′ and u′′ be equal
factors such that end(u′) + 1 < beg(u′′). Then we denote by (u′, u′′) the
gapped repeat with left arm u′ and right arm u′′. Let l = |u′| = |u′′|. Note
that, since u′ = u′′, then for any i, j such that 1 ≤ i ≤ j ≤ l we have
u′[i . . j] = u′′[i . . j]. We will call factors u′[i . . j] and u′′[i . . j] corresponding
factors for the repeat (u′, u′′).

For any real α > 1, a gapped repeat π is called α-gapped if p(π) ≤ αc(π).
The maximality of gapped repeats is defined similarly to that of repetitions:
a gapped repeat (w[i′ . . j′], w[i′′ . . j′′]) in w is called maximal if it satisfies
both of the following conditions:

1. w[i′ − 1] 6= w[i′′ − 1] if i′ > 1,

2. w[j′ + 1] 6= w[j′′ + 1] if j′′ < n.

In other words, a gapped repeat π is maximal if its arms cannot be extended
to the left nor to the right by one letter without breaking its period p(π).
As observed in [27], any α-gapped repeat is contained either in a (unique)
maximal α-gapped repeat with the same period, or in a (unique) maximal
repetition with a period that is a divisor of the repeat’s period. For ex-
ample, in the above string cabacaabaa, the gapped repeat (ab)aca(ab) is
contained in the maximal repeat (aba)ca(aba) with the same period 5. In
string cabaaabaaa, the gapped repeat (ab)aa(ab) of period 4 is contained
in the maximal repetition abaaabaaa of period 4. Since all maximal repeti-
tions can be computed efficiently in O(n) time (see above), the problem of
computing all α-gapped repeats in a word can be reduced to the problem of
finding all maximal α-gapped repeats.

Several variants of the problem of computing gapped repeats have been
studied earlier. In [28], it was shown that all maximal gapped repeats
with a gap length belonging to a specified interval can be found in time
O(n log n + S), where n is the word length and S is output size. In [29],
an algorithm was proposed for finding all gapped repeats with a fixed gap
length d running in time O(n log d + S). In [27], it was proved that the
number of maximal α-gapped repeats in a word of length n is bounded by
O(α2n) and all maximal α-gapped repeats can be found in O(α2n) time for
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the case of integer alphabet. A new approach to computing gapped repeats
was proposed in [30, 31] and more recently in [32]. In particular, in [30] it was
shown that the longest α-gapped repeat in a word of length n over an integer
alphabet can be found in O(αn) time. In a recent paper [33], an algorithm
was proposed for finding all maximal α-gapped repeats in O(αn + S) time
where S is the output size, for a constant-size alphabet. The algorithm uses
an approach previously introduced in [34].

Recall that repetitions are segments of exponent at least 2. Another way
to approach gapped repeats is to consider segments with exponent smaller
than 2, but (strictly) greater than 1. Clearly, such a segment corresponds
to a gapped repeat π = uvu with per(π) = p(π) = |u| + |v|. We call such
factors (segments) subrepetitions. More precisely, for any δ, 0 < δ < 1,
by a δ-subrepetition we mean a factor z that satisfies 1 + δ ≤ exp(z) < 2.
Again, the notion of maximality straightforwardly applies to subrepetitions
as well: maximal subrepetitions are defined exactly in the same way as maxi-
mal repetitions. The relationship between maximal subrepetitions and max-
imal gapped repeats was clarified in [27]. Directly from the relationship, a
maximal subrepetition π in a string w corresponds to a maximal gapped
repeat satisfying p(π) = per(π). For example, in word aabababcababac,
the maximal subrepetition abababcababa = abababc12/7 of period 7 corre-
sponds to the maximal gapped repeat (ababa)bc(ababa) of period 7. Fur-
thermore, a maximal δ-subrepetition corresponds to a maximal 1

δ
-gapped

repeat. However, there may be more maximal 1
δ
-gapped repeats than maxi-

mal δ-subrepetitions. One reason for that is that one maximal subrepetition
may correspond to several maximal gapped repeats with different periods.
Thus, in the above example, maximal subrepetition abababcababa contains
three maximal gapped repeats: (ababa)bc(ababa), (aba)babcab(aba), and
(a)bababcabab(a). Another reason is that a maximal gapped repeat may
occur inside a repetition and not a subrepetition: e.g. word aabababb con-
tains a maximal repetition ababab that corresponds to a maximal gapped
repeat (ab)ab(ab).

Some combinatorial results on the number of maximal subrepetitions in
a string were obtained in [35]. In particular, it was proved that the number
of maximal δ-subrepetitions in a word of length n is bounded by O(n

δ
log n).

In [27], an O(n/δ2) bound on the number of maximal δ-subrepetitions in
a word of length n was obtained. Moreover, in [27], two algorithms were
proposed for finding all maximal δ-subrepetitions in the word running re-
spectively in O(n log logn

δ2
) time and in O(n log n + n

δ2
log 1

δ
) expected time,
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over the integer alphabet. In [34], it is shown that all subrepetitions with
the largest exponent (over all subrepetitions) in an overlap-free string can be
found in O(n) time for a constant-size alphabet.

Our results. Throughout the paper we assume a constant-size alphabet. In
this work we improve the results of [27] on maximal gapped repeats: we prove
an O(αn) bound on the number of maximal α-gapped repeats in a word of
length n (Section 3). We show that this bound is asymptotically tight. The
same bound has recently been proved independently in [32] using a different
method based on techniques from [27]. From our bound, we additionally
derive anO(n/δ) bound on the number of maximal δ-subrepetitions occurring
in a word, which improves the bound of [35] by a log n factor. Then, based on
the algorithm of [30], we obtain an asymptotically optimal O(αn) time bound
for computing all maximal α-gapped repeats in a word (Section 4). Note that
this bound also follows from [33] that presents an O(αn + S) algorithm for
computing all maximal α-gapped repeats. Here we present an alternative
algorithm with the same bound that we obtained independently of [33, 32].

2. Preliminaries

In this section we state a few propositions that are used later in the paper.
The following fact is well-known (see, e.g., [36, Proposition 2]).

Proposition 1. Any period p of a word w for which |w| ≥ 2p is divisible by
per(w), the smallest period of w.

Let ∆ be some natural number. A period p of some word w is called a
∆-period if p is divisible by ∆. The minimum ∆-period of w, if it exists,
is denoted by p∆(w). The word w is called ∆-periodic if |w| ≥ 2p∆(w).
It is clear that any ∆-periodic word is also periodic. Proposition 1 can be
generalized in the following way.

Proposition 2. Any ∆-period p of a word w for which |w| ≥ 2p is divisible
by p∆(w).

Proof. By Proposition 1, period p is divisible by per(w), so p is divisible
by lcm(per(w),∆). On the other hand, lcm(per(w),∆) is a ∆-period of w.
Thus, p∆(w) = lcm(per(w),∆), and p is divisible by p∆(w) as stated. �
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Consider an arbitrary word w = w[1 . . n] of length n. Note that any
repetition r in w can be extended to a unique maximal repetition r′ with the
same minimum period. We call r′ the extension of r.

Let r be a repetition in the word w. We call any factor of w of length
per(r) that is contained in r a cyclic root of r. For cyclic roots we have the
following property, proved e.g. in [27, Proposition 2].

Proposition 3. Two cyclic root u′, u′′ of a repetition r are equal if and only
if beg(u′) ≡ beg(u′′) (mod per(r)).

3. Number of maximal repeats and subrepetitions

In this section, we obtain an improved upper bound on the number of
maximal gapped repeats and subrepetitions in a string w. Following the
general approach of [27], we split all maximal gapped repeats into three cat-
egories according to the periodicity properties of repeats: periodic, semiperi-
odic and ordinary repeats. Bounds for periodic and semiperiodic repeats are
directly borrowed from [27], while for ordinary repeats, we obtain a better
bound. Since the number of α-gapped repeats can be bounded by the num-
ber of dαe-gapped repeats, we assume without loss of generality that α = k
for a natural number k.

We describe now the three types of maximal gapped repeats.

Periodic repeats. We say that a maximal gapped repeat uvu is periodic if
its arms u are periodic strings (i.e. of exponent at least 2). The set of all
periodic maximal α-gapped repeats in w is denoted by PPα. The following
bound on the size of PPα was obtained in [27, Corollary 6].

Lemma 1. |PPk| = O(kn) for any integer k > 1.

Semiperiodic repeats. A maximal gapped repeat uvu is called prefix (respec-
tively, suffix) semiperiodic if the arms u of this repeat are not periodic, but
have a periodic prefix (respectively, suffix) whose length is at least half
the arm length. For example, the repeat ababaabacccababaaba with arms
ababaaba is prefix semiperiodic since its arms have the periodic prefix ababa.
A maximal gapped repeat is semiperiodic if it is either prefix semiperiodic or
suffix semiperiodic. The set of all semiperiodic α-gapped maximal repeats is
denoted by SPα. In [27, Corollary 8], the following bound was obtained on
semiperiodic maximal α-gapped repeats.

Lemma 2 ([27]). |SPk| = O(kn) for any integer k > 1.
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Ordinary repeats. Maximal gapped repeats which are neither periodic nor
semiperiodic are called ordinary. The set of all ordinary maximal α-gapped
repeats in the word w is denoted by OPα. In the rest of this section, we
prove that the cardinality of OPα is O(αn).

To estimate the number of ordinary maximal k-gapped repeats, we use the
following idea from [36]. We represent a maximal repeat π ≡ (u′, u′′) in OPk
by a triple (i, j, c) where i = beg(u′), j = beg(u′′) and c = c(π) = |u′| = |u′′|.
We view such triples as points in a three-dimensional space. Obviously, π
is uniquely defined by values i, j and c, therefore two different repeats from
OPk can not be represented by the same point.

For any two points (i′, j′, c′), (i′′, j′′, c′′) we say that point (i′, j′, c′) covers
point (i′′, j′′, c′′) if i′ ≤ i′′ ≤ i′ + c′/6, j′ ≤ j′′ ≤ j′ + c′/6, c′ ≥ c′′ ≥ 2c′

3
. A

point is covered by a repeat π if it is covered by the point representing π. By
V [π] we denote the set of all points covered by a repeat π. Then we show
that no point can be covered by two different repeats from OPk.

Lemma 3. Two different repeats from OPk cannot cover the same point.

Proof. By contradiction let π1 ≡ (u′1, u
′′
1), π2 ≡ (u′2, u

′′
2) be two different

repeats from OPk covering the same point (i, j, c). Denote c1 = c(π1), c2 =
c(π2), p1 = per(π1), p2 = per(π2). Note that beg(u′′1) − beg(u′1) = p1 and
beg(u′′2) − beg(u′2) = p2. Without loss of generality, we assume c1 ≥ c2.
From c1 ≥ c2, c1 ≥ c ≥ 2c1

3
, and c2 ≥ c ≥ 2c2

3
we have c1 ≥ c2 ≥ 2c1

3
, i.e.

c2 ≤ c1 ≤ 3c2
2

. Note that w[i] is contained in both u′1, u
′
2, i.e. these left

arms overlap. Therefore, if p1 = p2, then the left arms u′1, u
′
2 must coincide

due to the maximality of these repeats, and then the repeats π1 and π2

must coincide as well. Thus, p1 6= p2. Denote ∆ = |p1 − p2| > 0. From
beg(u′1) ≤ i ≤ beg(u′1) + c1/6 and beg(u′′1) ≤ j ≤ beg(u′′1) + c1/6 we have

(j − i)− c1/6 ≤ p1 ≤ (j − i) + c1/6.

Analogously, we have

(j − i)− c2/6 ≤ p2 ≤ (j − i) + c2/6.

Thus ∆ ≤ (c1 + c2)/6, which, together with the inequality c1 ≤ 3c2
2

, implies
∆ ≤ 5c2

12
.

First consider the case when one of the arms u′1, u
′
2 is contained in the

other, i.e. u′2 is contained in u′1 since c1 ≥ c2. In this case, u′′1 contains some
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factor û′′2 corresponding to the factor u′2 in u′1. Thus beg(u′′2)− beg(u′2) = p2,
beg(û′′2)− beg(u′2) = p1 and u′′2 = û′′2 = u′2, so that

|beg(u′′2)− beg(û′′2)| = ∆,

and then ∆ is a period of u′′2 for which ∆ ≤ 5
12
c2 = 5

12
|u′′2|. Thus, u′′2 is

periodic, which contradicts that π2 is not periodic.
Now consider the case when u′1, u

′
2 are not contained in one another.

Denote by z′ the overlap between u′1 and u′2. Let z′ be a suffix of u′l and a
prefix of u′r where l, r = 1, 2, l 6= r. Then u′′l contains a suffix z′′ corresponding
to the suffix z′ in u′l, and u′′r contains a prefix ẑ′′ corresponding to the prefix z′

in u′r. Then z′′ = ẑ′′ = z′. Thus beg(z′′)−beg(z′) = pl and beg(ẑ′′)−beg(z′) =
pr and z′′ = ẑ′′ = z′, so that

|beg(z′′)− beg(ẑ′′)| = |pl − pr| = ∆,

therefore ∆ is a period of z′′ and ẑ′′, and so ∆ is a period of z′. Note that in
this case

beg(u′l) < beg(u′r) ≤ i ≤ beg(u′l) + cl/6,

therefore 0 < beg(u′r)− beg(u′l) ≤ cl/6. Thus

|z′| = cl − (beg(u′r)− beg(u′l)) ≥
5

6
cl ≥

5

6
c2.

From ∆ ≤ 5
12
c2 and c2 ≤ 6

5
|z′| we obtain ∆ ≤ |z′|/2. Thus, z′ is a periodic

suffix of u′l such that |z′| ≥ 5
6
|u′l|, i.e. πl is either suffix semiperiodic or

periodic which contradicts πl ∈ OPk and ends the proof. �

Denote by Qk the set of all points (i, j, c) for which 1 ≤ i, j, c ≤ n and
i < j ≤ i+ (3

2
k + 1

4
)c.

Lemma 4. Any point covered by a repeat from OPk belongs to Qk.

Proof. Let a point (i, j, c) be covered by some repeat π ≡ (u′, u′′) from
OPk. Denote c′ = c(π). Note that w[i] and w[j] are contained respectively
in u′ and u′′ and n > c′ ≥ c ≥ 2c′

3
> 0, so inequalities 1 ≤ i, j, c ≤ n and

i < j follow. Note also that

j ≤ beg(u′′) + c′/6 = beg(u′) + per(π) + c′/6 ≤ i+ kc′ + c′/6,

therefore, taking into account c′ ≤ 3c
2

, we have j ≤ i+ (3
2
k+ 1

4
)c. This shows

that (i, j, c) belongs to Qk as stated. �
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From Lemmas 3 and 4, we obtain

Lemma 5. |OPk| = O(nk).

Proof. Assign to each point (i, j, c) the weight ρ(i, j, c) = 1/c3. For any
finite set A of points, we define

ρ(A) =
∑

(i,j,c)∈A

ρ(i, j, c) =
∑

(i,j,c)∈A

1

c3
.

Let π be an arbitrary repeat from OPk represented by the point (i′, j′, c′).
Then

ρ(V [π]) =
∑

i′≤i≤i′+c′/6

∑
j′≤j≤j′+c′/6

∑
2c′/3≤c≤c′

1

c3

>
c′2

36

∑
2c′/3≤c≤c′

1

c3
.

Using an estimation of sums by integrals (as in [27]), one can deduce that∑
2c′/3≤c≤c′

1
c3
≥ 5

32
1
c′2

for any c′. Thus, for any π from OPk

ρ(V [π]) >
1

36

5

32
= Ω(1).

Therefore, ∑
π∈OPk

ρ(V [π]) = Ω(|OPk|). (1)

Note also that

ρ(Qk) ≤
n∑
i=1

∑
i<j≤i+( 3

2
k+ 1

4
)c

n∑
c=1

1

c3

< n(
3

2
k +

1

4
)c

n∑
c=1

1

c3
< 2nk

n∑
c=1

1

c2
< 2nk

∞∑
c=1

1

c2
=
nkπ2

3
.

Thus,
ρ(Qk) = O(nk). (2)
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By Lemma 4, any point covered by a repeat from OPk belongs to Qk. On
the other hand, by Lemma 3, no point of Qk can be covered by two repeats
from OPk. Therefore, ∑

π∈OPk

ρ(V [π]) ≤ ρ(Qk).

Thus, using (1) and (2), we conclude that |OPk| = O(nk) as expected. �

Eventually, putting together Lemma 1, Lemma 2, and Lemma 5, we ob-
tain that, for any integer k ≥ 2, the number of maximal k-gapped repeats
in w is O(nk). As mentioned above, the bound straightforwardly general-
izes to the case of real α > 1 since the number of α-gapped repeats can
be bounded by the number of dαe-gapped repeats. We conclude with the
following statement.

Theorem 2. For any α > 1, the number of maximal α-gapped repeats in w
is O(αn).

Note that the bound of Theorem 2 is asymptotically tight under the
natural restriction α ≤ n. To see this, consider words wk = (0110)k. It is
easy to check that for a large enough α and k = Ω(α), wk contains Θ(α|wk|)
maximal α-gapped repeats whose arms are single-letter words. For example,
for α = 3+4` where ` = 0, 1, 2, . . ., word wk contains 1

2
(`+1)(2k−`) maximal

α-gapped repeats 01(1001)i10 with arms 0, for i ≤ `.
We now apply Theorem 2 to obtain an upper bound on the number

of maximal δ-subrepetitions. The following proposition [27, Proposition 3]
follows from the fact that each maximal δ-subrepetition defines at least one
maximal 1/δ-gapped repeat (cf. Introduction).

Proposition 4 ([27]). For 0 < δ < 1, the number of maximal δ-subrepeti-
tions in a string is no more than the number of maximal 1/δ-gapped repeats.

Theorem 2 combined with Proposition 4 immediately implies the upper
bound for maximal δ-subrepetitions stated in the following theorem. The
bound improves on the bound of [35] by a log n factor.

Theorem 3. For 0 < δ < 1, the number of maximal δ-subrepetitions in w
is O(n/δ).
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The O(n/δ) bound on the number of maximal δ-subrepetitions is asymp-
totically tight, at least on an unbounded alphabet: word ab1ab2 . . . abk of
length n = 2k contains Ω(n/δ) maximal δ-subrepetitions for δ ≤ 1/2.

4. Computing all maximal α-gapped repeats

In this section, we present an O(αn + S) algorithm for computing all
maximal α-gapped repeats in a word w of length n. The same bound has been
independently proved in [33], here we present a different solution. Together
with the O(αn) bound of Theorem 2, this yields an O(αn)-time algorithm.

To get the result, α-gapped repeats are split into two classes analyzed in
the following sections.

4.1. Computing PR-repeats

Some maximal α-gapped repeats can be located within maximal repeti-
tions (runs). For example, word cabababababaa contains maximal gapped
repeats (a)babababab(a), (aba)babab(aba) and (ababa)b(ababa) within the
run abababababa = (ab)11/2. In this section, we describe the structure of
such repeats, and in particular the structure of repeats that are periodic (see
Section 3), like the repeat (ababa)b(ababa) above. We show how those max-
imal α-gapped repeats can be extracted from the runs in the input string.
Repeats that are located within runs but are not periodic are found sep-
arately, together with other repeats (periodic or not) that are not located
within runs. This latter part is described in the next section.

Let π ≡ (u′, u′′) be a periodic gapped repeat. If the extensions of u′ and u′′

are the same repetition r then we say that r generates π and we call π a PR-
repeat (that stands for Periodic Run-generated). Other gapped repeats are
just called non-PR repeats. Later on we use the following sufficient condition
for PR-repeats.

Proposition 5. Let π ≡ (u′, u′′) be a maximal gapped repeat whose arms u′

and u′′ contain a pair of corresponding factors having the same extension r.
Then π is generated by r.

Proof. Observe that to prove the proposition, it is enough to show that
both arms u′ and u′′ are contained in r, i.e. beg(r) ≤ beg(u′) and end(r) ≥
end(u′′). By contradiction, let beg(r) > beg(u′). Then both letters w[beg(r)−
1] and w[beg(r)− 1 + per(r)] are contained in u′. Let these letters be respec-
tively j-th and (j + per(r))-th letters of u′. Then we have u′′[j] = u′[j] 6=
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u′[j + per(r)] = u′′[j + per(r)], i.e. u′′[j] 6= u′′[j + per(r)], which is a con-
tradiction to the fact that both letters u′′[j] and u′′[j + per(r)] are contained
in r. The inequality end(r) ≥ end(u′′) is proved similarly. �

All maximal PR-repeats can be easily computed according to the follow-
ing lemma.

Lemma 6. A maximal gapped periodic repeat π ≡ (u′, u′′) is generated by a
maximal repetition r if and only if p(π) is divisible by per(r) and

|r|/2 < p(π) ≤ |r| − 2 per(r),
u′ ≡ w[beg(r) . . end(r)− p(π)],
u′′ ≡ w[beg(r) + per(r) . . end(r)].

Proof. Let π be generated by r. Consider prefixes of u′ and u′′ of length
per(r). These prefixes are equal cyclic roots of r, and by Proposition 3
the difference beg(u′′) − beg(u′) = p(π) is divisible by per(r). Inequalities
|r|/2 < p(π) ≤ |r| − 2per(r) follow immediately from the definition of a
repeat generated by a repetition. To prove the last two conditions of the
lemma, it is sufficient to prove beg(u′) = beg(r) and end(u′′) = end(r). Let
beg(u′) 6= beg(r), i.e. beg(u′) > beg(r). Then both letters w[beg(u′)− 1] and
w[beg(u′′)− 1] are contained in r. Thus, since the difference (beg(u′′)− 1)−
(beg(u′)−1) = p(π) is divisible by per(r), we have w[beg(u′)−1] = w[beg(u′′)−
1] which contradicts the maximality of π. The relation end(u′′) = end(r) is
proved analogously. Thus, all the conditions of the lemma are proved. On the
other hand, if π satisfies all the conditions of the lemma then π is obviously
generated by r. �

Corollary 2. A maximal repetition r generates no more than exp(r)/2 max-
imal PR-repeats, and all these repeats can be computed from r in O(exp(r))
time.

To find all maximal α-gapped PR-repeats in a string w, we first compute
all maximal repetitions in w in O(n) time (see Introduction). Then, for each
maximal repetition r, we output all maximal α-gapped repeats generated
by r. Using Corollary 2, this can be done in O(exp(r)) time. Thus the total
time of processing all maximal repetitions is O(E(w)). Since E(w) = O(n)
by Theorem 1, all maximal α-gapped PR-repeats in w can be computed in
O(n) time.
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4.2. Computing non-PR-repeats

We now turn to the most laborious part of the algorithm: computa-
tion of maximal α-gapped non-PR-repeats. Recall that non-PR-repeats are
those which are either non-periodic, or periodic but not located within a
single run that is the extension of their arms. For example, gapped repeat
(ababa)aba(ababa) is periodic but is a non-PR-repeat because its periodic
arms ababa with minimum period 2 are not contained in a single run with
the same minimum period. Our goal is to show that all maximal α-gapped
non-PR-repeats can be found in O(αn) time. Observe that there exists a
straightforward algorithm for computing all maximal α-gapped repeats in
O(n2) time that proceeds as follows: for each period p < n, find all maximal
α-gapped repeats with period p in O(n) time by consecutively comparing
symbols w[i] and w[i+ p] for i = 1, 2, . . . , n− p.

From the results of [28], it follows that all maximal α-gapped repeats can
be found in time O(n log n + S). This, together with Theorem 2, leads to
an O(αn)-time algorithm for the case α ≥ log n. Therefore, we only have to
consider the case α < log n.

(i) Preliminaries

Assume that α < log n. For this case, we proceed with a modification
of the algorithm of [30]. We compute all maximal α-gapped non-PR-repeats
π in w for which c(π) ≥ log n. To do so, we divide w into blocks of ∆ =
(log n)/4 consecutive symbols of w. Without loss of generality, we assume
that n = 2k∆, i.e. w contains exactly 2k blocks. A word x of length 2l∆ where
0 ≤ l ≤ k−1 is called a basic factor of w if x = w[i∆+1 . . (i+2l)∆] for some i.
Such an occurrence w[i∆ + 1 . . (i+ 2l)∆] of x starting at a block frontier will
be called aligned. A basic factor x of length 2l∆, where 1 ≤ l ≤ k − 1,
is called superbasic if x = w[q2l∆ + 1 . . (q + 1)2l∆] for some q. Similar to
basic factors, an occurrence of a superbasic factor x starting at the frontier
between two consecutive tuples of 2l blocks (i.e. at a position (i2l∆ + 1)
for some l) is also called aligned. Aligned and unaligned occurrence of
basic and superbasic factors are illustrated in Figure 1. Note that w contains
O(n) aligned occurrences of basic factors and O( n

logn
) aligned occurrences of

superbasic factors.
Let z ≡ w[q2l∆+1 . . (q+1)2l∆] be an aligned occurrence of a superbasic

factor of length 2l∆ in w. For τ = 0, 1, . . .∆−1, an occurrence w[q2l∆ + 1 +
τ . . (q2l+2l−1)∆+τ ] of a basic factor of length 2l−1∆ is called τ -associated (or
simply associated) with z. Note that any basic factor occurrence τ -associated
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aligned occurrence
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unaligned occurrence
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Figure 1: Basic and superbasic factors

with z is entirely contained in z and is uniquely defined by the word z and τ .
Thus, z has no more than ∆ associated occurrences of basic factors.

To continue, we need one more definition: for 1 ≤ i, j ≤ n, denote by
LCP(i, j) the length of the longest common prefix of w[i . . n] and w[j . . n],
and by LCS(i, j) the length of the longest common suffix of w[1 . . i] and
w[1 . . j].

Let π ≡ (u′, u′′) be a maximal gapped repeat in w for which c(π) ≥ log n =
4∆. Note that in this case, the left arm u′ contains at least one aligned
occurrence of superbasic factor. Consider aligned occurrences of superbasic
factors of maximal length contained in u′. Note that u′ can contain either
one or two adjacent such occurrences. Let z be the leftmost of them. Remark
that in this case, we have the following restrictions imposed on u′:

beg(z)− |z| < beg(u′) ≤ beg(z),
end(z) ≤ end(u′) < end(z) + 2|z|. (3)

Thus, c(π) < 4|z|. Consider factor z′′ in u′′ corresponding to z in u′. Note
that z′′ can be non-aligned. Consider in z′′ the leftmost aligned basic factor
y′′ of length |z′′|/2. Observe that beg(z′′) ≤ beg(y′′) < beg(z′′) + ∆ and y′′ is
entirely contained in z′′. Let y′ be the factor of z corresponding to factor y′′ in
z′′. It is easily seen that y′ is an occurrence of a basic factor associated with z,
and π is uniquely defined by z, y′ and y′′. Thus, any maximal gapped repeat
π for which c(π) ≥ log n is uniquely defined by a triple (z, y′, y′′), where z is
an aligned occurrence of some superbasic factor, y′ is an occurrence of some
basic factor associated with z, and y′′ is an aligned occurrence of the same
basic factor. From now on, we say in such case that π is defined by the triple
(z, y′, y′′).

Observe that π ≡ (u′, u′′) can be retrieved from (z, y′, y′′) using LCP and
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LCS functions as follows:

beg(u′) = beg(y′)− LCS(beg(y′)− 1, beg(y′′)− 1),
end(u′) = end(y′) + LCP(end(y′) + 1, end(y′′) + 1),
beg(u′′) = beg(y′′)− LCS(beg(y′)− 1, beg(y′′)− 1),

end(u′′) = end(y′′) + LCP(end(y′) + 1, end(y′′) + 1).

(4)

Assume additionally that π is an α-gapped repeat for α > 1. Then, on the
one hand, taking into account inequalities (3) and c(π) < 4|z|, we have

end(y′′) ≤ end(u′′) = end(u′) + per(π) < end(z) + 2|z|+ αc(π)

< end(z) + 2|z|+ 4α|z| < end(z) + 6α|z| = end(z) + 12α|y′′|.

On the other hand, beg(y′′) ≥ beg(u′′) > end(u′) ≥ end(z). Thus, for any
triple (z, y′, y′′) defining a maximal α-gapped repeat in w, the occurrence y′′

is contained in the segment w[end(z)+1 . . end(z)+12α|y′′|] of length 12α|y′′|
to the right of z. We denote this segment by I(z).

(ii) High-level description of the computation of non-PR-repeats

The computation of non-PR-repeats is described in the rest of this section.
Before going into detail, we give a high-level description of this part.

The main idea of the algorithm is to consider all triples (z, y′, y′′) which
can define maximal α-gapped non-PR-repeats and, for each such triple, to
check if it actually defines such a repeat, which is then computed and output.
All the triples (z, y′, y′′) are considered in a natural way: for each aligned
occurrence z of a superbasic factor and each occurrence y′ of a basic factor
associated with z, we consider all aligned occurrences y′′ of the same basic
factor in segment I(z). The main difficulty in the algorithm is to enumerate
all aligned occurrences y′′ efficiently. In order to overcome this difficulty, we
use precomputed linked lists alignocc contained all aligned occurrences of
basic factors in the left-to-right order. In order to compute the lists alignocc,
we first compute all basic and superbasic factors by naming occurrences of
the same factor by a unique name, using the suffix tree of the whole word.
Then, again with the suffix tree, we identify all occurrences of basic factors
associated with aligned occurrences of superbasic factors. Finally, for each
basic factor y we insert all aligned occurrences of y to the list alignocc(y).
We now proceed to a detailed description.
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(iii) Naming basic factors on a suffix tree and computing their associated
occurrences

We now describe how this computation is implemented. First we con-
struct the suffix tree of the input string w. Suffix tree is a classical data
structure of size O(n) that can be built in O(n) time for a constant-size al-
phabet (see e.g. [4, 9]). A suffix tree can be preprocessed in O(n)-time to
support retrieving LCP(i, j) for any i, j in constant time (see e.g. [4]). Sim-
ilarly, we precompute w to support LCS(i, j) for any i, j in constant time.
Then we compute all basic factors of w including superbasic factors. This
computation is performed by naming all the basic factors, i.e. assigning to
each aligned occurrence of a basic factor a name of this factor. The most con-
venient way to name basic factors is to assign to a basic factor y of length 2l

a pair (l, i), where i is the start position of the leftmost aligned occurrence
of y in w. Note that since we have only n/∆ distinct start positions i, the
size of the two-dimensional array required for working with these pairs is
O(n). To perform the required computation, we first mark in the suffix tree
each node labeled by a basic factor by the name of this factor (in the case
when this node is implicit we make it explicit). To this end, for each node v
of the suffix tree we compute the value minleaf (v) which is the smallest leaf
number divisible by ∆ in the subtree rooted in v if such a number exists.
This can be easily done in O(n) time during a bottom-up traversal of the
tree. Then, each suffix tree edge (u, v) for which the string depth of u is less
than 2l, the string depth of v is not less than 2l, and minleaf (v) is defined is
treated in the following way: if the string depth of v is 2l, node v is marked
by name (l,minleaf (v)), otherwise a new node of string depth 2l is created
within edge (u, v) and marked by name (l,minleaf (v)). We call the obtained
tree marked suffix tree. Since we have O(n) distinct basic factors, the marked
suffix tree contains no more than O(n) additionally inserted nodes. Thus,
this tree has O(n) size and is built in O(n) time.

To assign to each aligned occurrence w[i . . i+ 2l− 1] of a basic factor the
name of this factor, we perform a depth-first top-down traversal of the marked
suffix tree. During the traversal we maintain an auxiliary array basancestor:
at the first visit of a node marked by a name (l,m) we set basancestor[l] to
m, and at the second visit of this node we reset basancestor[l] to undefined.
While during the traversal we get to a leaf i divisible by ∆, for each l =
0, 1, . . . , k−1 we identify w[i . . i+ 2l−1] as an occurrence of the basic factor
named by (l, basancestor[l]). Note that this traversal is performed in O(n)
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time.
Then, we compute all occurrences of basic factors associated with aligned

occurrences of superbasic factors. This is done again during a depth-first top-
down traversal of the marked suffix tree. During the traversal, we maintain
the same auxiliary array basancestor. Assume that during the traversal
we get to a leaf labelled by a position q2p∆ + 1 + τ , where q is odd and
0 ≤ τ < ∆. Then for each l = 0, 1, . . . , p − 1 for which basancestor[l]
is defined, we identify w[q2p∆ + 1 + τ . . (q2p + 2l)∆ + τ ] as an occurrence
of the basic factor named (l, basancestor[l]), which is τ -associated with the
superbasic factor occurrence w[q2p∆ + 1 . . (q2p + 2l+1)∆]. Observe that this
traversal is performed in O(n) time as well.

(iv) Computing lists of aligned occurrences of basic factors

Let y be a ∆-periodic basic factor (cf Section 2). Note that y is also
periodic, and then any occurrence of y in w is a repetition. By Proposition 1,
the period per(y) is a divisor of p∆(y). Given the value p∆(y), we can compute
in constant time the extension r of any occurrence y′ of a ∆-periodic basic
factor y as follows:

beg(r) = beg(y′)− LCS(beg(y′)− 1, beg(y′) + p∆(y)− 1),

end(r) = end(y′) + LCP(beg(y′) + 1, beg(y′)− p∆(y) + 1).

Using Proposition 2, it is easy to show that any set of all aligned occurrences
of y having the same extension is a sequence of occurrences, where the differ-
ence between start positions of any two consecutive occurrences is equal to
p∆(y), i.e. the start positions of all these occurrences form a finite arithmetic
progression with common difference p∆(y). We will call such a set a series
of occurrences. The following fact can be easily proved.

Proposition 6. Let y′, y′′ be two consecutive aligned occurrences of a basic
factor y in w. Then |beg(y′)− beg(y′′)| ≤ |y|/2 if and only if y is ∆-periodic,
y′ and y′′ are contained in the same series of occurrences, and, moreover,
|beg(y′)− beg(y′′)| = p∆(y).

At the next step of the algorithm, in order to effectively select appropriate
occurrences y′′ in the checked triples (z, y′, y′′), for each basic factor y we
construct a linked list alignocc(y) of all aligned occurrences of y in the left-
to-right order in w. If y is not ∆-periodic, each item of alignocc(y) consists
of only one aligned occurrence of y defined, for example, by its start position
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(we will call such items ordinary). If y is ∆-periodic, each item of alignocc(y)
contains a series of aligned occurrences of y. If a series of aligned occurrences
of y consists of only one occurrence, we will consider the item of alignocc(y)
for this series as ordinary, otherwise, if a series of aligned occurrences of y
consists of at least two occurrences, the item of alignocc(y) for this series
will be defined, for example, by start positions of leftmost and rightmost
occurrences in the series and the value p∆(y) (such item will be called an
s-item). The following fact follows from Proposition 6.

Proposition 7. Let y′, y′′ be two consecutive aligned occurrences of a basic
factor y in w. Then |beg(y′) − beg(y′′)| ≤ |y|/2 if and only if y′ and y′′

are contained in the same s-item of alignocc(y) and, moreover, |beg(y′) −
beg(y′′)| = p∆(y).

Proposition 7 implies that if two aligned occurrences y′, y′′ of a basic fac-
tor y are contained in distinct items of alignocc(y) then |beg(y′)− beg(y′′)| >
|y|/2. Therefore, we have the following consequence of the proposition.

Corollary 3. Let y be a basic factor of w. Then for any segment v in w,
the list alignocc(y) contains O(|v|/|y|) items having at least one occurrence
of y contained in v.

To construct the lists alignocc, we insert for each i = 1, 2, . . . , n and each
l = 0, 1, . . . , k − 1 consecutively the occurrence y′ ≡ w[i . . i+ 2l − 1] of some
basic factor y to the appropriate list alignocc(y) as follows. Consider the last
item in the current list alignocc(y). Let it be an ordinary item consisting of
an occurrence y′′ of y starting at position j. Denote δ = i− j. Consider the
following two cases for δ. Case 1: δ > |y|/2. Then, by Proposition 7, y′′ and
y′ are contained in distinct items of alignocc(y), and in this case we insert
y′ to alignocc(y) as a new ordinary item. Case 2: δ ≤ |y|/2. In this case,
by Proposition 7, y′′ and y′ are the first two occurrences of the same series
of occurrences of y and, moreover, δ = p∆(y). Let r be the extension of the
occurrences of this series. It is easy to see that

end(r) = end(y′) + LCP(end(y′′) + 1, end(y′) + 1),

i.e. end(r) can be computed in constant time. From the values beg(y′′),
end(r) and p∆(y), we can compute in constant time the start position of
the last occurrence of y in the considered series of occurrences and thereby
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identify completely this series. Thus, in this case we replace the last item
of alignocc(y) by the identified series of occurrences of y. Now let the last
item in alignocc(y) be a series of occurrences. Then, if y′ is not contained
in this series, we insert y′ to alignocc(y) as a new ordinary item. Thus, each
occurrence of a basic factor in w is processed in constant time, and the total
time for construction of lists alignocc is O(n).

Furthermore, in order to optimize the selection of appropriate occurrences
y′′ in the checked triples (z, y′, y′′), for each pair (z, y′) where z is an aligned
occurrence of a superbasic factor and y′ is an occurrence of some basic factor
y associated with z, we compute a pointer firstocc(z, y′) to the first item in
alignocc(y) containing at least one occurrence of y to the right of z. For
these purposes, we use auxiliary lists factends(i) defined for each position i
in w. Lists factends(i) consist of pairs (z, y′) and are constructed at the stage
computation of occurrences associated with aligned occurrences of superba-
sic factors: each time we find a new occurrence y′ associated with an aligned
occurrence z of a superbasic factor, we insert the pair (z, y′) into the list
factends(end(z)+1). After construction of lists alignocc, we compute consec-
utively for each i = 1, 2, . . . , n pointers firstocc(z, y′) for all pairs (z, y′) from
the list factends(i). During the computation, we save in each list alignocc(y)
the last item pointed to before (this item is denoted by lastpnt(y)). To
compute firstocc(z, y′), we go through the list alignocc(y) from lastpnt(y)
(or from the beginning of alignocc(y) if lastpnt(y) does not exist) until we
find the first item containing at least one occurrence of y to the right of the
position i. The found item is pointed to by firstocc(z, y′) and becomes a new
item lastpnt(y). Since the total size of lists alignocc and factends is O(n),
the total time for computing firstocc(z, y′) is also O(n).

(v) Main step: computing large repeats

At the main stage of the algorithm, in order to process each pair (z, y′),
note that all occurrences y′′ contained in I(z) such that the triple (z, y′, y′′)
defines a maximal α-gapped repeat are located in the fragment of alignocc(y)
consisting of all items having at least one occurrence of y contained in I(z).
We call this fragment a checked fragment. Thus, we consider all items of
the checked fragment by going through this fragment from the first item
which can be found in constant time by the value firstocc(z, y′). For each
considered item, we check triples (z, y′, y′′) for all occurrences y′′ from this
item as follows.

Let the considered item be an ordinary item consisting of only one occur-
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rence y′′. Recall that gapped repeat (u′, u′′) defined by the triple (z, y′, y′′)
can be computed in constant time by formulas (4). Thus, if (u′, u′′) is an
α-gapped repeat satisfying conditions (3), we output it.

Now let the item considered in the checked fragment be a s-item. This
implies that the basic factor y is ∆-periodic, i.e y is ∆-periodic. Moreover,
from the s-item we can derive the value p∆(y). Therefore we can compute
in constant time extensions r′ and r′′ of occurrences y′ and y′′ respectively.
Denote by ρ the series of occurrences contained in the s-item. Recall that our
goal is to compute effectively all α-gapped repeats defined by triples (z, y′, y′′)
for which y′′ ∈ ρ. Observe that if r′ and r′′ are the same repetition, then by
Proposition 5 all such repeats are PR-repeats, therefore we can assume that
r′ and r′′ are distinct repetitions. Note that per(r′) = per(r′′) = per(y). Let
(u′, u′′) be an α-gapped repeat defined by a triple (z, y′, y′′) where y′′ ∈ ρ.
First, consider the case when u′ is not contained in r′, i.e. either beg(u′) <
beg(r′) or end(u′) > end(r′).

Proposition 8. If beg(u′) < beg(r′), then beg(r′) − beg(u′) = beg(r′′) −
beg(u′′).

Proof. Define γ′ = beg(r′) − beg(u′), γ′′ = beg(r′′) − beg(u′′). Assume by
contradiction γ′ > γ′′. Since repetition r′ is maximal we have

u′[γ′] ≡ w[beg(r′)− 1] 6= w[beg(r′)− 1 + per(r′)] ≡ u′[γ′ + per(r′)].

Moreover, from γ′ > γ′′ we have that both letters u′′[γ′] and u′′[γ′ + per(r′)]
are contained in the repetition r′′, and u′′[γ′] = u′′[γ′+per(r′)] since per(r′) =
per(r′′). Thus, from u′[γ′] = u′′[γ′] we obtain a contradiction u′[γ′+per(y)] 6=
u′′[γ′+per(y)]. Similarly, we obtain a contradiction u′[γ′′+per(y)] 6= u′′[γ′′+
per(y)] if it is assumed γ′ < γ′′. �

The following proposition can be proved similarly.

Proposition 9. If end(u′) > end(r′), then end(u′) − end(r′) = end(u′′) −
end(r′′).

Define

sleft = beg(y′) + (beg(r′′)− beg(r′)),

sright = beg(y′) + (end(r′′)− end(r′)).

From Propositions 8 and 9, we derive the following fact.
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Corollary 4. If beg(u′) < beg(r′) then beg(y′′) = sleft . If end(u′) > end(r′)
then beg(y′′) = sright .

Thus, for computing α-gapped repeats (u′, u′′) for which u′ is not con-
tained in r′, it is enough to consider in ρ only occurrences y′′left and y′′right with
start positions sleft and sright respectively, provided that these occurrences
exist. We check the occurrences y′′left and y′′right in the same way as we did
for occurrence y′′ in the case of ordinary item. Then, it remains to check all
occurrences from ρ except for possible occurrences y′′left and y′′right . Denote by
ρ′ = ρ \ {y′′left , y′′right} the set of all such occurrences. Assume that |r′| ≤ |r′′|,
i.e. sleft ≤ sright (the case |r′| > |r′′| is similar). In order to check all occur-
rences from ρ′, we consider the following subsets of ρ′ separately: subset ρ′1
of all occurrences y′′ such that beg(y′′) < sleft , subset ρ′2 of all occurrences
y′′ for which sleft < beg(y′′) < sright , and subset ρ′3 of all occurrences y′′ for
which sright < beg(y′′). Note that start positions of all occurrences in each
of these subsets form a finite arithmetic progression with common difference
p∆(y). Thus, we unambiguously denote all occurrences in each of the subsets
ρ′i, i = 1, 2, 3, by y′′0 , y

′′
1 , . . . , y

′′
k where y′′0 is the leftmost occurrence in the

subset ρ′i and beg(y′′j ) = beg(y′′0) + jp∆(y) for j = 1, . . . , k. Note that values
beg(y′′0) and k for each subset ρ′i can be computed in constant time.

First, consider an occurrence y′′j from ρ′1. Let π ≡ (u′, u′′) be the repeat
defined by triple (z, y′, y′′j ). Note that

per(π) = beg(y′′j )− beg(y′) = q + jp∆(y), (5)

where q = beg(y′′0)−beg(y′). Taking into account that y′ and y′′j are contained
in maximal repetitions r′ and r′′ respectively, it is easy to verify that

LCS(beg(y′)− 1, beg(y′′j )− 1) = beg(y′′j )− beg(r′′),
LCP(end(y′) + 1, end(y′′j ) + 1) = end(r′)− end(y′).

Therefore, beg(u′) = beg(r′′)− per(π) = q′ − jp∆(y), where q′ = beg(r′′)− q,
and end(u′) = end(r′). It follows that

c(π) = |u′| = end(u′)− beg(u′) + 1 = q′′ + jp∆(y),

where q′′ = end(r′) + 1− q′. Recall that for any α-gapped repeat π, we have
c(π) < per(π) ≤ αc(π). Thus, π is an α-gapped repeat if and only if

q′′ < q ≤ αq′′ + (α− 1)jp∆(y). (6)
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Moreover, u′ has to satisfy conditions (3). Thus, the triple (z, y′, y′′j ) defines
an α-gapped repeat if and only if conditions (6) and (3) are verified for j.
Note that all these conditions are linear inequalities on j, and then can be
resolved in constant time. Thus, we output all α-gapped repeats defined by
triples (z, y′, y′′) for which y′′ ∈ ρ′1 in time O(1 + S), where S is the size of
the output.

Consider now an occurrence y′′j from ρ′2. Let π ≡ (u′, u′′) be the repeat
defined by the triple (z, y′, y′′j ). Note that in this case, per(π) also satisfies
relation (5). Analogously to the previous case of set ρ′1, we obtain that
beg(u′) = beg(r′) and end(u′) = end(r′), and then c(π) = |r′|. Therefore, π
is an α-gapped repeat if and only if

|r′| < q + jp∆(y) ≤ α|r′|. (7)

Thus, in this case, we output all α-gapped repeats defined by triples (z, y′, y′′j )
for which j satisfies conditions (7) and (3). Since all these conditions can
be resolved for j in constant time, all these repeats can be output in time
O(1 + S) where S is the output size.

Finally, consider an occurrence y′′j from ρ′3. Let π ≡ (u′, u′′) be the repeat
defined by triple (z, y′, y′′j ). In this case, per(π) also satisfies relation (5).
Analogously to the case of set ρ′1, we obtain that beg(u′) = beg(r′) and
end(u′) = end(r′)− per(π) = q̂′ − jp∆(y), where q̂′ = end(r′′)− q, and then

c(π) = end(u′)− beg(u′) + 1 = q̂′′ − jp∆(y),

where q̂′′ = q̂′− beg(r′) + 1. Therefore, π is an α-gapped repeat if and only if

q̂′′ − jp∆(y) < q + jp∆(y) ≤ α(q̂′′ − jp∆(y)). (8)

Thus, in this case, we output all α-gapped repeats defined by triples (z, y′, y′′j )
for which j satisfies conditions (8) and (3). Like in the previous cases, this
can be done in time O(1 + S), where S is the output size.

Putting together all the three considered cases, we conclude that all α-
gapped repeats defined by triples (z, y′, y′′) for which y′′ ∈ ρ can be computed
in time O(1 + S) where S is the output size. Thus, in O(1 + S) time we can
process each item of the checked fragment. Therefore, since by Corollary 3
the checked fragment has O(α) items, the total time for processing pair
(z, y′) is O(α + S) where S is the total number of α-gapped repeats defined
by triples (z, y′, y′′). Since each occurrence z has no more than ∆ associated
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occurrences y′, the total number of processed pairs (z, y′) is O(n). Thus the
time complexity of the main stage of the algorithm is O(αn+S), where S is
the size of the output. Taking into account that S = O(αn) by Theorem 2,
we conclude that the time complexity of the main stage is O(αn). Thus,
all maximal α-gapped non-PR-repeats π in w for which c(π) ≥ log n can be
computed in O(αn) time. Algorithm 1 summarizes the computation of all
large maximal α-gapped non-PR-repeats.

Algorithm 1 Computing of all large maximal α-gapped non-PR-repeats

1: construct the suffix trees of the string w and the reverse string wR

2: preprocess the suffix trees of w and wR for computing LCP(i, j) and
LCS(i, j) in constant time

3: compute and name basic and superbasic factors
4: compute all occurrences of basic factors associated with superbasic fac-

tors
5: compute lists alignocc(y) of aligned occurrences of basic factors y
6: for l = 1, . . . , log(n/∆)− 1 do
7: for each aligned occurrence z ≡ w[q2l∆ + 1..(q + 1)2l∆] of superbasic

factor do
8: for each occurrence y′ of a basic factor y associated with z do
9: compute all aligned occurrences y′′ of the basic factor y which are

contained in I(z) by using list alignocc(y)
10: for each computed occurrence y′ do
11: check if triple (z, y′, y′′) defines a maximal α-gapped non-PR-

repeat and, if so, compute and output this repeat
12: end for
13: end for
14: end for
15: end for

(vi) Computing small repeats

To compute all remaining maximal α-gapped non-PR-repeats in w, i.e.
maximal α-gapped non-PR-repeats π such that c(π) < log n, note that the
length of any such repeat π is not greater than

(1 + α)c(π) < (1 + log n) log n < 2 log2 n.
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Thus, setting ∆′ = b2 log2 nc, any such repeat is contained in at least one
of the segments I ′i ≡ w[i∆′ + 1 . . (i + 2)∆′] for 0 ≤ i < n/∆′. Therefore,
all the remaining α-gapped repeats can be found by searching segments I ′i
separately. The procedure of searching for repeats in I ′i is similar to the
algorithm described above. If α ≥ log log n, searching for repeats in I ′i can
be done by the algorithm proposed in [28]. The O(|I ′i| log |I ′i| + S) time
complexity implied by this algorithm, where by Theorem 2 the output size S
is O(α|I ′i|), can be bounded here by O(α∆′). Thus, the total time complexity
for searching all segments I ′i is O(αn). In the case of α < log log n, we search
each segment I ′i for all remaining maximal α-gapped non-PR-repeats π in w
for which c(π) ≥ log |I ′i| in time O(α∆′), in the same way as we described
above for the word w. The total time for searching all segments I ′i is O(αn).
Then, it remains to compute all maximal α-gapped non-PR-repeats π in w
for which c(π) < log |I ′i| ≤ 3 log log n. Observe that the length of any such
repeat is not greater than

(1 + α)3 log log n < (1 + log log n)3 log log n ≤ 6 log2 log n.

Thus, setting ∆′′ = b6 log2 log nc, any such repeat is contained in at least one
of the segments I ′′i ≡ w[i∆′′+1 . . (i+2)∆′′] for 0 ≤ i < n/∆′′. Note that these
segments are words of length 2∆′′ over an alphabet of size σ, therefore the
total number of distinct segments I ′′i is not greater than σ2∆′′ ≤ σ12 log2 logn.
In each of the distinct segments I ′′i , all maximal α-gapped repeats can be
found by the trivial algorithm described above in O(∆′′2) = O(log4 log n)
time. Thus, maximal α-gapped repeats in all distinct segments I ′′i can be
found in O(σ12 log2 logn log4 log n) = o(n) time. We conclude that all remaining
maximal α-gapped repeats in w can be found in O(n + S) time where S is
the total number of maximal α-gapped repeats contained in all segments I ′′i .
According to Theorem 2, this number can be bounded by O(αn), and the
time for finding all the remaining maximal α-gapped repeats can be bounded
by O(αn) as well. This leads to the final result.

Theorem 4. For a fixed α > 1, all maximal α-gapped repeats in a word of
length n over a constant alphabet can be found in O(αn) time.

Note finally that since, as mentioned earlier, a word can contain Θ(αn)
maximal α-gapped repeats, the O(αn) time bound stated in Theorem 4 is
asymptotically optimal.
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5. Conclusion

Besides gapped repeats we can also consider gapped palindromes which
are factors of the form uvuR where u and v are nonempty words and uR is the
reversal of u [37]. A gapped palindrome uvuR in a word w is called maximal
if w[end(u) + 1] 6= w[beg(uR) − 1] and w[beg(u) − 1] 6= w[end(uR) + 1] for
beg(u) > 1 and end(uR) < |w|. A maximal gapped palindrome uvuR is α-
gapped if |u|+ |v| ≤ α|u| [30]. It can be shown in a way similar to the results
of this paper that for α > 1 the number of maximal α-gapped palindromes
in a word of length n is bounded by O(αn) and for the case of constant
alphabet, all these palindromes can be found in O(αn) time1.

In this paper we consider maximal α-gapped repeats with α > 1. However
this notion can be formally generalized to the case α ≤ 1. In particular,
maximal 1-gapped repeats are maximal repeats whose arms are adjacent or
overlapping. It is easy to see that such repeats form runs whose minimum
periods are divisors of the periods of these repeats. Moreover, each run in
a word is formed by at least one maximal 1-gapped repeat, therefore the
number of runs in a word is not greater than the number of maximal 1-
gapped repeats. More precisely, each run r is formed by bexp(r)/2c distinct
maximal 1-gapped repeats. Thus, if a word contains runs with exponent not
less than 4 then the number of maximal 1-gapped repeats is strictly greater
than the number of runs. However, using an easy modification of the proof
of “runs conjecture” from [19], it can be also proved that the number of
maximal 1-gapped repeats in a word is strictly less than the length of the
word.

Denoting by R(n) (respectively, R1(n)) the maximal possible number of
runs (respectively, maximal possible number of maximal 1-gapped repeats) in
words of length n, based on the fact that known words with a relatively large
number of runs have no runs with big exponents, it seems thatR(n) = R1(n).

Conjecture 1. The maximal number of runs in words of length n is equal
to the maximal number of 1-gapped repeats.

We can also consider the case of α < 1 for repeats with overlapping arms,
in particular, the case of maximal 1/k-gapped repeats where k is integer
greater than 1. It is easy to see that such repeats form runs with exponents

1Note that in [30], the number of maximal α-gapped palindromes was conjectured to
be O(α2n).
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not less than k + 1. It is known from [19, Theorem 11] that the number of
such runs in a word of length n is less than n/k, and it seems to be possible
to modify the proof of this fact for proving that the number of maximal 1/k-
gapped repeats in the word is also less than n/k = αn. These observations
together with results of computer experiments for the case of α > 1 leads to
the following conjecture.

Conjecture 2. For any α > 0, the maximal number of α-gapped repeats in
a word of length n is less than αn.

This generalization of the “runs conjecture” constitutes an interesting open
problem. Another interesting open question is whether the obtained O(n/δ)
bound on the number of maximal δ-subrepetitions is asymptotically tight for
the case of constant-size alphabet.

Another interesting question is a generalization of the upper bound to the
case of gapped repeats where the interval of possible gap lengths is specified
by arbitrary functions on the arm length. Such a generalization was recently
obtained in [38].
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LIGM Lab of Université Paris-Est, supported by a Metchnikov grant of the
French Embassy in Russia. RK was partially supported by Russian Foun-
dation for Fundamental Research (Grant 15-07-03102). GK was partially
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2016, February 17-20, 2016, Orléans, France, Vol. 47 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, pp. 39:1–39:14.

[33] Y. Tanimura, Y. Fujishige, T. I, S. Inenaga, H. Bannai, M. Takeda, A
faster algorithm for computing maximal α-gapped repeats in a string, in:
C. S. Iliopoulos, S. J. Puglisi, E. Yilmaz (Eds.), String Processing and
Information Retrieval - 22nd International Symposium, SPIRE 2015,
London, UK, September 1-4, 2015, Proceedings, Vol. 9309 of Lecture
Notes in Computer Science, Springer, 2015, pp. 124–136.

[34] G. Badkobeh, M. Crochemore, C. Toopsuwan, Computing the maximal-
exponent repeats of an overlap-free string in linear time, in: L. Calderón-
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