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Backtracking search is a complete approach that is traditionally used to solve instances modeled as constraint satisfaction problems. The space explored during search depends dramatically on the order that variables are instantiated. Considering that a perfect variable ordering might result to a backtrack-free search (i.e., finding backdoors, cycle cutsets), finding heuristics for variable ordering has always attracted research interest. For fifteen years, constraint weighting has been shown to be a successful approach for guiding backtrack search. In this paper, we show how the popular generic variable ordering heuristic dom/wdeg can be made more robust by taking finer information at each conflict: the "current" arity of the failing constraint as well as the size of the current domains of the variables involved in that constraint. Our experimental results show the practical interest of this refined variant of constraint weighting.

I. INTRODUCTION

Backtrack search remains a classical approach for solving instances of the Constraint Satisfaction Problem (CSP). It is based on a depth-first exploration, which is conducted by instantiating variables in sequence and backtracking when dead-ends occur. For efficiently exploring the search space, a property (called local consistency) is enforced at each step of the search so as to filter the domains of the variables; typically most of the constraints guarantees the property known as (generalized) arc consistency.

The order in which variables are chosen during the depthfirst traversal of the search space is decided by a variable ordering heuristic H. At each internal node of the search tree built by the backtrack search algorithm, the next variable x is selected by H, and a value is assigned to x according to a value ordering heuristic, which can simply be the lexicographic order over the domain of x. Choosing the right variable ordering heuristic for a given constraint network is a key issue in the design of constraint solvers, since different heuristics can lead to drastically different search trees.

For a long time, the most popular (variable ordering) heuristic was dom [START_REF] Haralick | Increasing tree search efficiency for constraint satisfaction problems[END_REF] that selects variables in sequence of increasing size of domain. However, fifteen years ago, modern adaptive heuristics were introduced: they take into account information collected along the part of the search space (tree) already explored. The two first proposed generic adaptive heuristics are impact [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF] and wdeg [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF]. The former relies on a measure of the effect of any assignment, and the latter associates a counter with each constraint (and indirectly, with each variable) indicating how many times any constraint led to a domain wipe-out. Counting-based heuristics [START_REF] Pesant | Counting-based search: Branching heuristics for constraint satisfaction problems[END_REF] and activity-based search [START_REF] Michel | Activity-based search for black-box constraint programming solvers[END_REF] are two more recent additional adaptive techniques for guiding search.

Currently, the constraint weighting variant dom/wdeg that additionally takes domain sizes into account, is considered as the most robust generic heuristic, as it is used by default in many constraint solvers (e.g., Choco). It certainly remains the state-of-the-art (as a generic heuristic) even if several attempts were made to further improve it. A first idea [START_REF] Grimes | Learning to identify global bottlenecks in constraint satisfaction search[END_REF] was to learn weighting information during an initial phase in which variables are chosen at random and the search is repeatedly run to a fixed cutoff. This random probing method was intended to start the "real" search better informed after gathering information from different parts of the search space. Some other variants were also studied in [START_REF] Balafoutis | On conflict-driven variable ordering heuristics[END_REF]. By noting the constraint responsible of each value deletion (a kind of explanation), it is possible to implement different weighting strategies. For example, whenever there is a domain wipe-out on a variable x while propagating constraint c, the weight of every constraint responsible for the removal of a value of x is incremented. Another variant uses an aging mechanism, as in some SAT solvers, which periodically divides the value of all weights by a constant, thereby giving greater importance to conflicts discovered recently. Surprisingly, the "basic" dom/wdeg heuristic remained very competitive compared to such attractive variants.

A specific variant of constraint weighting was shown to be successful for job-shop scheduling problems [START_REF] Grimes | Solving variants of the job shop scheduling problem through conflict-directed search[END_REF]: by reasoning from the domain sizes associated with the variables denoting the starting times of tasks, the proposed weightingbased heuristic was shown to be better informed and to yield particularly strong performance for scheduling. Because it was observed that the efficiency of dom/wdeg may deteriorate when problem instances contain many constraints of large arity (because it loses its ability to discriminate variables), a possible approach [START_REF] Hebrard | Explanation-based weighted degree[END_REF] is to weight a conflict set rather than the entire scope of a failed constraint. Although this approach is stimulating, it is unfortunately not generic since one has to conceive a specific procedure for each type of (global) constraints.

More recently, a new competitive heuristic [START_REF] Habet | Conflict history based search for constraint satisfaction problem[END_REF], called CHS, has been proposed by exploiting the history of search failures. Techniques coming from reinforcement learning are used to make an exponential recency weighted average in order to estimate the evolution of the hardness of constraints throughout the search. In brief, this heuristic gives a higher reward to constraints that fail regularly over short periods.

The paper is organized as follows. After some preliminaries, we introduce classical variable ordering heuristics. Next, we show how to refine constraint weighting, and demonstrate the practical interest of our approach. Finally, we conclude.

II. PRELIMINARIES

A constraint network P is composed of a finite set of variables X , and a finite set of constraints C. Each variable x must be assigned a value from its current domain, denoted by dom(x); the initial domain of x is denoted by dom init (x). Each constraint c represents a mathematical relation over an ordered set of variables, called the scope of c, and denoted by scp(c). The arity of a constraint c is the size of its scope. The degree of a variable x is the number of constraints of C involving x.

A solution to P is the assignment of a value to each variable of X such that all constraints of C are satisfied. A constraint network is satisfiable iff it admits at least one solution. The Constraint Satisfaction Problem (CSP) is to determine whether a given constraint network is satisfiable, or not. A classical approach for solving this NP-complete problem is to perform a depth-first search with backtracking, while enforcing a property called (generalized) arc consistency [START_REF] Montanari | Network of constraints : Fundamental properties and applications to picture processing[END_REF] after each taken decision. This procedure, called Maintaining Arc Consistency (MAC) [START_REF] Sabin | Contradicting conventional wisdom in constraint satisfaction[END_REF], builds a binary search tree T : for each internal node ν of T , a pair (x, v) is selected where x is a variable and v is a value in dom(x). Then, two cases are considered: the assignment x = v (positive decision) and the refutation x = v (negative decision). In this paper, we shall be interested in the future variables of a constraint c, denoted by fut(c), which are the variables at the current node of the search tree that have not been explicitly assigned by MAC.

Backtrack search algorithms that rely on deterministic variable ordering heuristics have been shown to exhibit heavytailed behavior on both random and structured CSP instances [START_REF] Gomes | Heavy-tailed phenomena in satisfiability and constraint satisfaction problems[END_REF]. This issue can be alleviated using randomization and restart strategies, which respectively incorporate some random choices in the search process, and iteratively restart the computation from the beginning, with a different variable ordering.

III. VARIABLE ORDERING HEURISTICS

We provide in this section a quick overview of popular general-purpose search heuristics. The simple variable ordering heuristic dom [START_REF] Haralick | Increasing tree search efficiency for constraint satisfaction problems[END_REF], which selects variables in sequence of increasing size of domain, has long been considered as the most robust backtrack search heuristic. However, fifteen years ago, modern adaptive heuristics were introduced: they take into account information collected along the part of the search space (tree) already explored.

In this paper, we shall mainly focus our attention to the very popular heuristic wdeg, and its variant dom/wdeg. As a baseline, we shall also consider impact and activity, which are defined as follows:

• impact, or IBS (Impact-Based Search) selects in priority the variable with the highest impact. The impact of a variable x gives a measure about the importance of x in reducing the search space [START_REF] Refalo | Impact-based search strategies for constraint programming[END_REF]. The size of the search space of P is the product of all current domain sizes:

size(P ) = x∈X |dom(x)|
The impact I of a variable assignment x = a on P is computed as follows:

I(x = a) = 1 -size(P ) size(P )
where P = AC(P | x=a ) denotes the CN obtained after assigning x to a and enforcing (generalized) arc consistency. Note that if P leads to a failure, then

I(x = a) = 1.
It is easy to see that this heuristic can be used for value selection as well.

• activity, or ABS (Activity-Based Search) selects in priority the variable with the highest activity. The activity of a variable x is roughly measured by the number of times the domain of x is reduced during search [START_REF] Michel | Activity-based search for black-box constraint programming solvers[END_REF]. This heuristic is motivated by the key role of propagation in constraint programming and relies on a decaying sum to forget the oldest statistics progressively. The activities are initialized by making random probing in the search space. • CHS (Conflict-History Search), selects in priority variables appearing in recent failures. All failures are registered with a timestamp. More precisely, CHS maintains for each constraint c, a score q(c) and updates it at every domain wipeout with an exponential recency weighted average:

q(c) = (1 -α) × q(c) + α × r(c)
where α = 0.4 (decreasing as time goes by) and r(c) is the reward gives when a domain wipeout occurred. Reward is higher when the constraint entered frequently in conflict :

r(c) = 1 #Conflicts -Conflict(c) + 1
#Conflicts is the total number of conflicts and Conflict(c) stores the last #Conflicts value where c led to a failure. The conflict history score (chv) of a variable x which will be used in selecting the branching variable is given by:

chv(x) = c∈C : x∈scp(c)∧|fut(c)|>1 q(c) + δ |dom(x)|
where δ is a positive real number close to 0 that avoid random selection at the beginning of search. Thus, the branching will be oriented according to the degree of the variables. To introduce wdeg and dom/wdeg, we need to describe the way constraint propagation is run each time a decision is taken by the backtrack search algorithm. Algorithm 1 describes Algorithm 1: propagate(P = (X , C): CN): Boolean

1 Q ← C 2 while Q = ∅ do 3 pick and delete c from Q 4 X evt ← filter(c) // X evt is the subset of scp(c) with reduced domains 5 if ∃x ∈ X evt | dom(x) = ∅ then 6 incrementWeight VER (c) 7 return false // global inconsistency 8 foreach c ∈ C | c = c and X evt ∩ scp(c ) = ∅ do 9 Q ← Q ∪ {c }
10 return true a basic propagation scheme based on the use of a queue of constraints. Other schemes exists in the literature, but this is not an important issue for introducing constraint weighting. This algorithm is then applied at the beginning of the search and systematically each time a decision is taken. Initially the queue Q contains the whole set of constraints of the constraint network. Then, each constraint c in Q is picked in turn and a filtering process is applied from c: typically, this is for enforcing arc-consistency by calling Function filter(c) at Line 4. The call to this function returns a subset of variables of the scope of c, denoted by X evt , whose domains have been modified (i.e., such that at least one value has been removed from these domains). By means of X evt , we can update Q so as to ensure constraint propagation is run until a fixed point is reached. If ever the domain of one variable of X evt becomes empty, it simply means that a conflict occurred (a dead-end has been identified) and so, a backtrack is required. This is triggered by the returned Boolean value false, after having called the function incrementWeight VER with the culprit constraint (responsible of the domain wipeout) passed as a parameter. In the initial paper [START_REF] Boussemart | Boosting systematic search by weighting constraints[END_REF], the principle of constraint weighing is very simple: the weight of the culprit constraint c, denoted by c.weight, is incremented by 1, as shown in Algorithm 2 (here, VER written as a superscript at Line 6 of Algorithm 1 corresponds to 2004). To summarize, each constraint c admits a weight, initially set to 1, which is incremented whenever a domain wipeout occurs while filtering c. The heuristics wdeg and dom/wdeg are defined as follows:

• wdeg selects in priority the future variable with the highest 'weighted degree'. Each variable x is given a weighted degree, which is the sum of the weights over all constraints involving x and at least another future variable. For each future variable x, the score of x according to wdeg is:

c∈C : x∈scp(c)∧|fut(c)|>1 c
.weight • dom/wdeg selects in priority the future variable with the smallest ratio 'current domain size to weighted degree'.

For each future variable x, the score of x according to dom/wdeg is:

|dom(x)| c∈C : x∈scp(c)∧|fut(c)|>1 c
.weight To break ties, which correspond to sets of variables that are considered as equivalent by the heuristic, one can use a second criterion (e.g., the dynamic degree of each variable). However, for adaptive heuristics, it is usual to use lexico, meaning that the first encountered variable with the best score is selected.

IV. REFINING WEIGHTED DEGREES

The heuristic dom/wdeg is very simple to be implemented while being quite robust. However, this is not exactly the version that is implemented in the constraint solver AbsCon. Indeed, it was observed experimentally that it was more effective to consider only the future variables involved in a culprit constraint. Technically, instead of associating a global weight c.weight with each constraint c, one can introduce a local weight c.weight[x] to be associated with each variable x in scp(c). Hence, when a conflict occurs, instead of incrementing the weight c.weight of the culprit constraint, one can decide to increment the local weight c.weight[x] of each future variable involved in scp(c). Because each variable has now its specific weight in each constraint, the score of a future variable x becomes: Constraint weighting is now given by Algorithm 3 that describes the function called at Line 6 of Algorithm 1. To distinguish between the 2004 version and the AbsCon version, we shall refer to the heuristics of the 2004 initial paper with wdeg 2004 and dom/wdeg 2004 .

Even if dom/wdeg slightly outperforms dom/wdeg 2004 (this is shown in Section V), one may regret that constraint weighting remains very simplistic and does not differentiate between constraints. For instance, characteristics like the arity of the constraints and the state of the domains of the participant variables are totally ignored as the increment is static (i.e., 1). This is why we propose to refine constraint weighting by exploiting such information. More specifically, we introduce four variants in Algorithm 4 as follows:

• ia is the variant in which the 'initial' arity of the constraints is used. • ca is the variant in which the 'current' arity (i.e., the number of future variables) of the constraints is used. • id is the variant in which the (size of the) initial domains of the future variables is used. • cd is the variant in which the (size of the) current domains of the future variables is used. • ca.cd combines both current arity and current domains. These different variants are described by Algorithm 4.

V. EXPERIMENTAL RESULTS

We have conducted a first experiment with all available CSP series (82) from the XCSP3 [START_REF] Boussemart | XCSP3: an integrated format for benchmarking combinatorial constrained problems[END_REF] archive (http://xcsp.org), which contains 9, 243 CSP instances (referred to as ALL). We have also conducted two additional experiments by considering the instances from the main CSP track at the 2017 XCSP3 competition (COMP-17 composed of aim, AllInterval, bdd, Bibd, Blackhole, bmc, bqwh, Cabinet, CarSequencing, ColouredQueens, composed, CostasArray, CoveringArray, Crossword, CryptoPuzzle, DeBruijnSequence, DiamondFree, Domino, driverlogw, Dubois, ehi, Fischer, geometric, gp10, GracefulGraph, Hanoi, Haystacks, jnh, Kakuro, Knights, KnightTour, Langford, LangfordBin, lard, MagicHexagon, MagicSequence, MagicSquare, MarketSplit, mdd, MultiKnapsack, Nonogram, NumberPartitioning, Ortholatin, Pb, pigeonsPlus, Primes, PropStress, QuasiGroup, QueenAttacking, Queens, QueensKnights, qwh, RadarSurveillance, rand, RectPacking, reg, Renault, RenaultMod, Rlfap, RoomMate, Sadeh, Sat, SchurrLemma, SocialGolfers, SportsScheduling, Steiner3, StripPacking, Subisomorphism, Sudoku, SuperQueens, SuperSadeh, SuperTaillard, Travel-lingSalesman, Wwtpp) and 2018 XCSP3 competition (COMP-18 composed of Bibd, CarSequencing, ColouredQueens, Crossword, Dubois, Eternity, frb, GracefulGraph, Haystacks, LangfordBin, MagicHexagon, MisteryShopper, Pb, Quasi-Group, Rlfap, SocialGolfers, SportsScheduling, StripPacking, Subisomorphism). These instances have been launched on a cluster equipped with 2.66 GHz Intel Xeon and 32 GB RAM nodes. The constraint solver used for our experiments is AbsCon where our new constraint weighting variants and CHS have been implemented. The timeout was set to 20 minutes. In Table I, the new constraint weighting variants proposed in that paper are compared with the classical wdeg and dom/wdeg heuristics (2004 and AbsCon versions). The comparison is given by the number of solved instances (within 1, 200 seconds) as well as by several time metrics: the cumulated CPU time (c. time) computed from instances solved by all methods, and the cumulated CPU times (by1, by2, by10) computed from all instance by considering for unsolved instances a 'solving' time equal to x × 1, 200 for x = 1, x = 2 and x = 10, respectively. Numbers given in bold face correspond to the best obtained results. In Table I, we can observe that classical heuristics are outperformed by the new variants. Notably, the variant ca.cd is clearly the best one as it allows us to solve 18% more instances than the best classical heuristic dom/wdeg AbsCon (119 vs 101). Such results are confirmed by Table II In Table III, we provide some details about specific series. Due to lack of space, we decided to only keep c. time as time metric because we find it to be the most relevant one. For the lack of clarity, some series have been discarded from this table because we obtained rather similar results whatever the heuristic is used. However, note that these series are taken into account when displaying the total number of solved instances (last line of the table). For the remaining series, we also discarded 'easy' instances, which are CSP instances solved by all heuristics by less than 10 seconds. In each row, the highest number of solved instances is written in bold, except when all heuristics solve the same instances, in which case the c.time is given in bold. Once again, we can observe that wdeg ca.cd is the best variant.

Figure 1 shows a scatterplot allowing us to compare the overall respective behavior of dom/wdeg AbsCon and wdeg ca.cd . For our comparison, we used the set COMP-17+18 containing instances coming from both the 2017 and 2018 XCSP instances (main CSP track). Each dot in this figure represents a CSP instance. The coordinates of this dot are defined by: on the horizontal axis, the CPU time (in seconds) required to solve the instance with dom/wdeg AbsCon and on the vertical axis, the CPU time required to solve the instance with wdeg ca.cd . One can observe that more instances are located at the bottom-right side of the figure, meaning that wdeg ca.cd is usually more efficient. Also, note the presence of many dots along the right border, indicating that these instances have not been solved (within 1, 200 seconds) by the classical heuristic dom/wdeg AbsCon . The same trend can be observed in Figure 2, when comparing CHS and wdeg ca.cd , even if results are closer. When comparing these two heuristics on the overall set of instances (ALL), the c. time of wdeg ca.cd is decreased by 32% and 59 additional instances are solved.

The cactus plot in Figure 3 shows the performance of all popular generic heuristics and wdeg ca.cd on COMP-17+18. It displays the number of solved instances (on horizontal axis) per unit of time (on the vertical axis). On the left of the figure, we can find the least effective heuristics, namely, impact, activity, wdeg 2004 and dom/wdeg 2004 that behave rather similarly. In the middle of the figure, we have wdeg AbsCon and dom/wdeg AbsCon , as implemented (and used by default) in AbsCon. Finally, CHS and wdeg ca.cd are clearly the most efficient heuristics since they are situated on the right. Figure 4 focuses on constraint weighting variants (comparing very classical heuristics with our new best variant ca.cd). Clearly, wdeg ca.cd appears to be the most robust heuristic based on constraint weighting. 

VI. CONCLUSION

In this paper, we have revisited constraint weighting that is known to be a robust generic approach to guide backtrack search. By refining the way weights of constraints (and variables) are updated by taking into account both constraint arities and sizes of variable domains, we show how the popular heuristic dom/wdeg can be improved. We think that dom/wdeg ca.cd is the most robust generic (variable ordering) heuristic to be used for solving instances of constraint satisfaction problems.

Algorithm 2 : 1 Algorithm 3 : 1 Algorithm 4 :

 21314 incrementWeight 2004 (c: Constraint) 1 c.weight ← c.weight + incrementWeight AbsCon (c: Constraint) 1 foreach x ∈ fut(c) do 2 c.weights[x] ← c.weights[x] + incrementWeight refined (c: Constraint) 1 foreach x ∈ fut(c) )|×(1+|dom(x)|) 13 c.weights[x] ← c.weights[x] + increment

  c∈C : x∈scp(c)∧|fut(c)|>1 c.weight[x] for wdeg and: |dom(x)| c∈C : x∈scp(c)∧|fut(c)|>1 c.weight[x] for dom/wdeg.

Fig. 1 .

 1 Fig. 1. Comparing dom/wdeg AbsCon and wdeg ca.cd [COMP-17+18]

Fig. 2 .

 2 Fig. 2. Comparing CHS and wdeg ca.cd [COMP-17+18]

Fig. 3 .Fig. 4 .

 34 Fig. 3. Comparing popular heuristics and wdeg ca.cd [COMP-17+18]

  on the CSP 2017 competition instances.

TABLE II COMPARISON

 II OF HEURISTICS IN TERMS OF NUMBER OF SOLVED INSTANCES (#INST.) AND SEVERAL TIME METRICS 

			2004	AbsCon			refined		
					ia	ca	id	cd	ca.cd
		#inst.	347	359	363	368	359	367	369
		c. time	4, 792	5, 385	5, 337	5, 931	5, 940	6, 108	6, 085
	wdeg	by1	58, 625	46, 404	40, 316	38, 122	46, 543	37, 887	35, 156
		by2	100, 625	76, 404	65, 516	57, 322	76, 543	58, 287	53, 156
		by10	436, 625 316, 404	267, 116 210, 922 316, 543 221, 487 197, 156
		#inst.	345	360	362	360	348	362	366
		c. time	3, 573	4, 657	4, 549	4, 871	5, 100	4, 499	4, 240
	dom/wdeg	by1	57, 203	45, 244	36, 867	43, 929	57, 077	41, 221	38, 449
		by2	104, 003	74, 044	60, 867	72, 729	99, 077	67, 621	60, 049
		by10	478, 403 304, 444	252, 867 303, 129 435, 077 278, 821 232, 849

TABLE III COMPARISON

 III OF HEURISTICS IN TERMS OF NUMBER OF SOLVED INSTANCES (#INST.) AND CUMULATED CPU TIME (C. TIME) [ALL]

		wdeg 2004	wdeg AbsCon	dom/wdeg 2004	dom/wdeg AbsCon	wdeg ca.cd
		#inst	c. time	#inst	c. time	#inst	c. time	#inst	c. time	#inst	c. time
	AllInterval	5	1, 094	14	397	15	20	15	845	15	20
	bdd	48	584	48	926	48	583	48	1, 028	48	952
	Bibd	30	1, 827	82	623	27	1, 019	88	967	84	209
	Blackhole	1	0	20	0	0	0	14	0	20	0
	bmc	12	3, 716	16	195	12	4, 022	16	250	16	180
	Cabinet	20	131	20	138	20	177	20	283	20	115
	CarSequencing	31	248	37	383	19	872	30	565	48	446
	ColouredQueens	0	0	1	0	0	0	0	0	1	0
	CostasArray	3	374	5	89	4	186	4	825	4	169
	CoveringArray	1	207	2	73	4	4	4	3	3	3
	Crossword	169 11, 852	157 18, 902	190	3, 631	185	4, 260	176	11, 628
	DeBruijnSequence	5	516	6	495	6	358	6	396	5	805
	DiamondFree	17	2, 205	22	349	18	3, 242	22	493	22	208
	DistinctVectors	3	891	3	32	3	1, 057	3	96	3	34
	Dubois	8	81	19	36	8	120	6	435	20	60
	frb	19	2, 417	20	2, 355	28	2, 672	29	2, 661	19	2, 547
	GracefulGraph	4	281	7	59	8	204	7	50	8	28
	Knights	7	438	7	520	7	309	7	426	5	683
	KnightTour	17	20	16	25	4	1, 299	10	37	18	16
	Langford	11	950	12	704	11	1, 082	12	1, 035	12	898
	LangfordBin	1	6	1	36	1	5	1	13	10	3
	MagicHexagon	3	89	9	67	9	7	18	10	16	7
	MagicSequence	14	819	14	2, 542	14	1, 780	14	1, 660	14	2, 137
	MagicSquare	11	626	21	407	32	163	43	58	41	150
	MarketSplit	10	396	7	1, 212	10	449	9	620	9	624
	mdd	33	3, 476	29	4, 922	32	3, 298	27	3, 604	29	4, 984
	MultiKnapsack	11	64	9	416	11	52	9	1, 066	10	86
	NumberPartitioning	38	258	38	588	15	494	29	3, 926	38	501
	Ortholatin	4	28	4	16	2	5	2	8	3	29
	Pb	3	299	4	705	3	117	4	105	6	146
	pigeonsPlus	13	3, 012	14	2, 178	15	1, 583	15	1, 466	15	1, 489
	Primes	8	60	15	80	13	209	18	94	16	239
	qcp	11	808	11	334	11	622	13	480	13	578
	QuasiGroup	4	327	4	476	5	125	6	210	5	248
	QueensKnights	9	147	9	150	5	500	6	387	8	206
	qwh	43	8, 303	43	4, 291	51	3, 487	47	5, 178	52	3, 876
	RadarSurveillance	40	1, 798	40	1, 688	40	2, 483	40	2, 348	41	1, 922
	Rlfap	6	652	7	533	6	518	7	397	7	584
	RoomMate	13	5, 457	14	5, 239	11	5, 740	14	5, 577	14	5, 167
	SocialGolfers	59	1, 744	56	2, 105	44	3, 916	51	1, 299	61	1, 207
	StripPacking	2	0	5	0	0	0	3	0	7	0
	Subisomorphism	206	2, 241	162 18, 193	204	4, 616	200	2, 380	211	2, 099
	SuperQueens	1	657	1	739	1	292	1	282	1	892
	SuperSadeh	10	163	11	245	9	225	9	612	9	182
	SuperTaillard	39	2, 258	37	1, 960	41	3, 847	37	2, 570	37	2, 386
	TravellingSalesman	18	988	18	1, 157	18	281	18	339	18	1, 262
	Wwtpp	229	5, 562	244	2, 119	243	9, 380	242	15, 269	240	2, 049
	Total	1, 465 75, 375 1, 559 84, 436 1, 486 74, 116 1, 617	72, 547	1, 694	60, 482
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