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Received 6 January 2004; revised 9 March 2004; accepted 17 May 2004; published 3 September 2004.

[1] A statistical interpolation method is evaluated for routine production of ozone three-
dimensional fields over western Europe. These fields are used for initializing short-term
ozone forecasts issued from a chemistry-transport model. We mainly address two
questions: (1) To what extent can the use of surface ozone observation data improve the
description of ozone fields relative to raw simulations? (2) Does the use of ozone analysis
improve short-term forecasts of the troposphere’s chemical composition? The method
consists of combining ozone simulations with surface ozone measurements. The resulting
analyses are compared with independent observations in a statistical way over a long
period of time (four consecutive summers). The improvement of the root-mean-square
(RMS) error of the analyses relative to the raw simulations is �30%. The short-term
(1–2 days in advance) ozone forecasts are improved on average (by �1 ppb of RMS
error) if ozone analyses are used for initialization. The improvement is almost lost after a
lead time of 36 hours. However, in cases where a model error propagates throughout the
model domain, the improvement can be much larger (�10 ppb). We analyze one such
case. INDEX TERMS: 0345 Atmospheric Composition and Structure: Pollution—urban and regional

(0305); 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; 0368

Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry; 3337

Meteorology and Atmospheric Dynamics: Numerical modeling and data assimilation; KEYWORDS: air

pollution, ozone forecast, data assimilation
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1. Introduction

[2] Air quality forecasting is a challenging scientific
problem that has recently, in the last 20 years, received a
high priority in many industrialized countries because of the
increasing consciousness of the effect of pollutant emissions
on health and the environment. Several chemistry-transport
models (CTMs) have been developed in order to better
understand the laws driving the chemistry and transport of
air pollutants and to forecast exceedances of their informa-
tion and alert thresholds. Such models cover spatial scales
from regional (e.g., for Los Angeles, Lu et al. [1997a,
1997b]; for Atlanta, Cardelino et al. [2001]; for Milan,
Silibello et al. [1998]; and for Paris, Vautard et al. [2001])
to continental (for Europe, Schmidt et al. [2001], Hass et al.
[1997], and Mosca et al. [1998]). They require an array of
variables as input data (emissions, initial and boundary
conditions, meteorology. . .) that are in most cases quite
uncertain and, in some, difficult to collect in real time. As a
consequence, comparisons between forecasts and observa-

tions (routine surface and a few airborne measurements) still
show important discrepancies for ozone and for its precur-
sors. Recently, five Eulerian air pollution forecasting sys-
tems running over Europe have been compared by Tilmes et
al. [2002].
[3] Since the work of Lorenz [1963], we know that the

meteorological system is chaotic. This means that errors
resulting from initial field uncertainties grow with time and
eventually dominate the forecast error after a few days.
Therefore the implementation of numerical weather predic-
tion (NWP) requires the specification of accurate initial
conditions. The problem of determining best initial fields
has become of great practical importance in meteorology
and has been the subject of many studies for �40 years
[Daley, 1991, 1997]. It has been shown that these weather
forecast errors can be greatly reduced using data assimila-
tion algorithms. These algorithms consist of combining
outputs of a numerical model with some observation data
by taking advantage of consistency constraints with laws of
time evolution and physical properties. The results of data
assimilation are called ‘‘analyses.’’
[4] The routine production of analyzed meteorological

fields was first performed using a series of statistical linear
interpolations (references are given by Talagrand [1997]).
During the last decade, advanced data assimilation schemes
have been proposed. For instance, the four-dimensional
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variational (4D-VAR) assimilation scheme is described by
Lewis and Derber [1985] and Talagrand and Courtier
[1987]. In this scheme, initial conditions of the model
forecast are adjusted to optimize predicted output fields
relative to observations over a period of time. Other
advanced techniques based on the Kalman-Levy filter
[Kalman, 1960; Kalman and Bucy, 1961] have also been
developed [Ghil and Malanotte-Rizzoli, 1991; Evensen,
1994].
[5] As the photochemical system highly depends on

meteorological conditions, any forecast model is limited
by the quality of the meteorological inputs. However, until
now, no study has shown that the photochemical system
itself is also chaotic. The chaotic behavior is discussed by
Kleinman et al. [1997], Stewart [1993, 1995], White and
Dietz [1984], Krol [1995], Honoré et al. [2000], and Honoré
[2000]. In practice, as far as photochemistry is concerned,
CTMs are not as sensitive to the initial conditions as
weather forecast models. On the basis of our experience
with the model that will be used in this article, over a
continental area like western Europe, two simulations ini-
tialized differently eventually converge after 3–5 days. The
continental photochemical system seems more sensitive to
errors in surface emissions [Menut, 2003; Schmidt and
Martin, 2003]. Nevertheless, errors in the initial state can
propagate from one day to another. The use of analyses for
initializing air quality forecasts is therefore expected to
improve these forecasts. The present article intends to
quantify this improvement.
[6] The advanced data assimilation techniques referenced

above have been recently applied in air quality modeling.
They have been demonstrated in a few cases to be efficient
for optimizing model inputs such as initial fields [Elbern
and Schmidt, 2001] and emissions [Elbern et al., 2000;
Elbern and Schmidt, 2002; van Loon et al., 2000; Mendoza-
Dominguez and Russell, 2001; Chang et al., 1996, 1997;
Gilliland and Abbitt, 2001]. Their main advantage is to
provide the best consistency between model input and
output fields. However, they are computationally intensive
and memory expensive. This is a major difficulty in
operational real-time applications for air quality diagnosis
and forecasting as well as for validation over a long period
of time.
[7] The analysis technique used in this study is based on

statistical interpolation [Daley, 1991]. Surface observations
are combined with the outputs of the CHIMERE chemistry-
transport model [Schmidt et al., 2001]. The method, called
anisotropic statistical interpolation (ASI), does not produce
fields as physically consistent as four-dimensional varia-
tional assimilation. However, it is much lighter in terms of
computational cost and implementation for operational use.
It also allows statistical validation. The ASI method has
been initially used for representing as accurately as possible
the ozone fields around the Paris area [Blond et al., 2003].
We proposed a new modeling of an anisotropic error
covariance model that allows for better interpolations than
those produced using a classical isotropic error covariance
model (especially for data taken during nighttime and
emission times). Moreover, we showed that the root-
mean-square (RMS) error of the ozone analyses at the
surface was 30–50% smaller than that of CHIMERE
simulations. The Etude et Simulation de la Qualité de

l’Air en Île de France (ESQUIF) [Menut et al., 2000]
airborne measurements have also been used to prove that
the ASI method efficiently corrects CTM fields well above
the ground within the boundary layer using only surface
measurements. The approach of the present article is actu-
ally twofold: First, we quantify the quality of analyses
obtained by the same method but at a much larger scale,
over Europe, and second, we quantify the potential
improvement of ozone forecasts over Europe using analyses
as initial conditions.
[8] The paper is organized into six sections. In section 2,

the CHIMERE model is briefly described. Section 3
describes the surface ozone observations. The mathematical
formulation of the ASI method is presented in section 4.
The evaluation of the ozone analyses and of the simulation
improvements is discussed in section 5. We summarize and
conclude the work in section 6.

2. Chemistry-Transport Model

[9] CHIMERE is a three-dimensional (3-D) Eulerian
chemistry-transport model. It has been used over several
scales, from the urban scale [Vautard et al., 2001; Menut,
2003; Beekmann and Derognat, 2003; Vautard et al., 2003a,
2003b] to the regional and continental scales [Schmidt et al.,
2001; Schmidt and Martin, 2003]. In this article, we use a
continental configuration over western Europe with a hor-
izontal resolution of 0.5� � 0.5�. The domain and grid are
represented in Figure 1.
[10] The model formulation is based on the mass conti-

nuity equation for several chemical species in every grid
cell. The time numerical solver is the TWOSTEP method
[Verwer, 1994], which is applied to integrate all processes,
including transport, chemistry, emission, and diffusion as
proposed by Schmidt et al. [2001]. The time step is 10 min.

Figure 1. Continental CHIMERE CTM extension and
locations of 232 ozone monitoring stations where measure-
ments were available in summer 2002. Open circles, solid
squares, and solid triangles denote urban, rural, and suburban
surface monitoring stations, respectively. Crosses show
monitoring stations whose characteristics are unknown.
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Vertical discretization consists of six layers going from the
surface up to 700 hPa with a first layer fixed at 50-m high.
Therefore the model contains the whole boundary layer in
anticyclonic conditions over western Europe. The emissions
are derived from the European Monitoring and Evaluation
Programme (EMEP) [Mylona, 1999] annual totals, modu-
lated in time and volatile organic compound (VOC)
speciation by Generation of European Emission Data for
Episodes Project (GENEMIS) [1994] profiles. The biogenic
emissions database is described by Derognat et al. [2003].
The land use data are derived from the National Institute of
Public Health and the Environment (RIVM) database
[van de Velde et al., 1994]. Following the concept of
chemical operators, a reduced chemical mechanism has
been derived from the original one [Lattuati, 1997]. It
describes 116 reactions with 44 gaseous species. Photolytic
rates are modulated by cloudiness [Vautard, 2001]. Bound-
ary concentrations for the continental setup are fixed for
14 species. These species have a long lifetime and are
relevant to photo-oxidant formation. Their concentrations
are taken from a climatology of monthly mean data pro-
duced by the global Model for Ozone and Related Chemical
Tracers (MOZART) CTM [Horowitz et al., 2003]. More
details about the CTM are given by Schmidt et al. [2001]
and Vautard et al. [2003a, 2003b] and by the Laboratoire de
Météorologie Dynamique on the Web site http://euler.lmd.
polytechnique.fr/chimere.
[11] The CTM is forced by the European Centre for

Medium-Range Weather Forecasts (ECMWF) meteorolog-
ical short-range forecasts. These data have a time resolution
of 3 hours and are linearly interpolated to 1-hour intervals.
They include temperature, pressure, wind, humidity, and
cloudiness fields. Their horizontal resolution is 0.25� �
0.25�. Vertically, the model uses 10 layers following hybrid
sigma-pressure levels for summer 1999 and 18 levels for
summers 2000, 2001, and 2002.
[12] For the purpose of this article, we performed long-

term simulations and ozone analyses over all of the sum-
mers from 1999 to 2002 from May to September. In the
process of validation of analyzed ozone fields, the statistical
error covariance model is built from testing data over 1999
and used for verification over the other years. The series of
initial-value experiments have been performed over the year
2002. In this case, we evaluate the improvement of forecasts
initialized with analyses relative to raw forecasts.

3. Observations

[13] Measurements of ground-level ozone are collected
from several European air quality monitoring agencies.
These agencies are listed in Table 1. The distribution of
monitoring sites is shown in Figure 1. Three types of ozone
monitoring sites are used: urban stations, suburban stations,
and rural stations. The typology and discrimination of these
sites are defined by European standards.
[14] From all available sites, 232 European ones were

selected for the analysis experiment. In order to have
stations that are representative for ozone of an area of the
size of a grid cell, our choice is as follows. First, all
available rural sites are retained. Second, where possible,
we fill large areas with no observations with suburban
stations, and if not, urban stations located in small or

medium-size towns. This work has been done with the
assistance of experienced agency staff. In this way, we
avoid the largest representativeness biases. More informa-
tion about these biases is given by Schmidt et al. [2001]. We
assume in the following that observations are unbiased from
the instrumental and representativeness points of view.
However, we also assume that the used observations may
contain random errors or noise.

4. Anisotropic Statistical Interpolation
(ASI Method)

[15] We now briefly recall the anisotropic statistical
interpolation method that is used here to produce three-
dimensional ozone analyses over western Europe. This
method has been previously used to produce ozone analyses
over the Paris area using a regional version of CHIMERE
and some surface ozone observations. It has been compared
to the classical isotropic statistical interpolation and to the
kriging method applied on observations alone. Therefore
the reader is referred to Blond et al. [2003] and Blond
[2002] for further details and discussion about the method
and for references to other existing skilled analysis algo-
rithms (e.g., kriging [see also Wackernagel et al., 2004],
thin plate splines [Ionescu et al., 2000], and the Bayesian
melding approach [Fuentes and Raftery, 2001]).
[16] The aim is to provide an estimate Zt,h

a (s) of a field
concentration value Zt,h(s) at any location s, on day t (t = 1,
2, . . . , T ) and at hour h (h = 1, 2, . . . , 24). For this purpose,
we have a set of K spatially distributed measurement values
Yt,h
o (sk), where k = 1, 2, . . ., K and sk is the location of the

kth monitoring station. We also use a prior estimate of the
concentration field Zt,h

b (s), which is often called the ‘‘first-
guess’’ or the ‘‘background’’ field. In this setting, Zt,h

a (s),
which is called the ‘‘analysis,’’ is given by

Za
t;h sð Þ ¼ Zb

t;h sð Þ þ
XK
k¼1

lk
t;h sð Þ Yo

t;h skð Þ � Zb
t;h skð Þ

h i
: ð1Þ

[17] The lt,h
k (s) are weighting functions that have to be

determined. The background fields Zt,h
b are the hourly ozone

fields simulated by the CTM over western Europe in the
lowest layer.
[18] In order to obtain an unbiased estimated field, we

need first to remove biases from the first guess and the
observations before applying the analysis algorithm. The
observation biases are assumed to be zero (see section 3).
The first-guess bias is modeled as given by Blond et al.
[2003] using a linear regression between bias and CTM
ozone concentration average, separately for each hour h of
the day. The bias is also estimated for each s.
[19] The optimized weighting functions blt,hk (s) are then

obtained by minimizing the mean square analysis error, e.g.,
E[Zt,h

a (s) � Zt,h(s)]
2. E[ ] denotes the expectation calculated

here as the time average. The minimization problem leads to
a linear system involving (1) covariances of the background
error ct,h

b (sk, sl), (2) covariances of the observation error
ct,h
o (sk, sl), and (3) their cross-covariance function. Since the
causes of errors in the first guess and in the observations are
presumably independent, the cross-covariance is assumed to
be zero. Moreover, we assume that observation errors of
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two distinct monitoring stations are uncorrelated, i.e.,
ct,h
o (sk, sl) = st,h

2o(sk)dkl. Here, dkl is the delta function (dkl =
0 if k 6¼ l and dkl = 1 if k = l ). Finally, the optimized
weighting functions are the solutions of the following
system (8k = 1, 2, . . . , K ):

XK
l¼1

bll
t;h sð Þ cbt;h sk; slð Þ þ s2ot;h skð Þdkl

h i
¼ cbt;h sk; sð Þ: ð2Þ

[20] The computation of the weighting functions requires
the preliminary knowledge of the covariances of the back-
ground errors and the variances of the observation errors,
st,h
2o(sk). The error covariance model consists of distinct

models for correlations and for variances. The background
error correlation rh

b(sk, sl) is modeled as a function of the
ozone concentration correlation, r O3½ �

h (sk, sl). This model
assumes that CTM error correlations are higher when the
two locations frequently belong to the same ozone pattern
and lower when they do not. In practice, the background
error correlation is estimated by a least squares fit of
available innovation correlation coefficients, rh

i (sk, sl), plot-
ted versus the corresponding correlation coefficients of
observed ozone values r O3½ �

h (sk, sl). An exponential fit is
carried out (see equation (4)). However, as the ozone
concentration correlations cannot be computed for sites

where no measurements are available, we use the correla-
tion computed on simulated ozone concentrations. In the
same way, the innovation variance sh

2i(s) is modeled as a
linear function of the ozone concentration variance s2 O3½ �

h (s)
(see equation (5)). Here, sh

2i is the sum of the background
error variance, sh

2b = ch
b(0), and the observation error

variance, sh
2o, and rh

b(0) is the ratio of sh
2b to sh

2b + sh
2o.

Therefore term st,h
2o(sk) in equation (2) can easily be esti-

mated from rh
b(0) and sh

2i.
[21] Finally, the background error covariance model is

written

cbh sk; slð Þ ¼ sih skð Þsih slð Þrbh sk; slð Þ; ð3Þ

with

rbh sk; slð Þ ¼ eh 1þ 1� r O3½ �
h sk; slð Þ

h i
=bh

n o

� exp � 1� r O3½ �
h sk; slð Þ

h i
=bh

n o
; ð4Þ

s2ih sð Þ ¼ ahs
2 O3½ �
h sð Þ þ bh; ð5Þ

where �1 � r O3½ �
h (sk, sl) � 1. Here, ah, bh, eh, and bh are the

regression coefficients. These coefficients are computed at
each hour h.

Table 1. List of European Organizations Involved in the PIONEER Project

Country Organizationa Location

France AASQA des Bouches-du-Rhône, du Var et du Vaucluse (AIRMARAIX) Provence-Alpes-Côte d’azur
AASQA en Île-de-France (AIRPARIF) Île-de-France
AASQA en Languedoc-Roussillon (AIR LANGUEDOC-ROUSSILLON) Languedoc Roussillon
AASQA en Poitou-Charentes (ATMO-POITOU-CHARENTES) Poitou-Charentes
AASQA en Bourgogne (ATMOSFAIR) Bourgogne
AASQA de l’Etang de Berre et l’Ouest Bouches-du-Rhône (AIRFOBEP) Provence-Alpes-Côte d’azur
AASQA en Auvergne (ATMOAUVERGNE) Auvergne
AASQA de la région Centre (LIGAIR) Région Centre
AASQA des Pays de la Loire (AIR PAYS DE LA LOIRE) Pays de La Loire
AASQA en Picardie (ATMO-PICARDIE) Picardie
AASQA en Champagne-Ardennes (ATMO-CHAMPAGNE-ARDENNES) Champagne-Ardenne
Comité pour le contrôle de la pollution atmosphérique

dans le Rhône et la région lyonnaise (COPARLY)
Rhône-Alpes

AASQA sur les départements de Savoie, de Haute-Savoie et
de l’Ain (AirDes2Savoies)

Rhône-Alpes

Association pour le contrôle et la préservation de l’air
dans la région grenobloise (ASCOPARG)

Rhône-Alpes

Association de mesure de la pollution atmosphérique
sur Saint Etienne et le Département de la Loire (AMPASEL)

Rhône-Alpes

AASQA dans la Drôme et l’Ardèche (ASQUADRA) Rhône-Alpes
Surveillance de la pollution de l’air de Roussillon et ses environs (SUPAIRE) Rhône-Alpes

France AASQA en Bretagne (AIRBREIZH) Bretagne
AASQA en Aquitaine (AIRAQ) Aquitaine
Observatoire de la qualité de l’air en Haute Normandie (AIR NORMAND) Haute-Normandie
Association pour la mise en œuvre du réseau d’étude,

de mesure et d’alerte pour la prévention de la pollution
atmosphérique dans la zone de Lille-Roubaix-Tourcoing (AREMA)

Nord-Pas-de-Calais

AASQA Flandre–Côte d’Opale (OPALAIR) Nord-Pas-de-Calais
Observatoire régional de l’air en Midi-Pyrénées (ORAMIP) Midi-Pyrenées
AASQA en Alsace (ASPA) Alsace

Germany Umweltbundesamt (UBA)
Switzerland Swiss Agency for the Environment, Forests and Landscape

Nationales Beobachtungsnetz für Luftfremdstoffe (NABEL/SAEFL)
Netherlands Landelijk Meetnet Luchtkwaliteit (LML)
Italy Agenzia Regionale Prevenzione e Ambiente (ARPA) Emilia-Romagna
United Kingdom Department of the Environment, Transport and the Regions (DETR)
Czech Republic Czech Hydrometeorological Institute
Spain Generalitat de Catalunya (GENCAT)

aAASQA, Association agréée pour la surveillance de la qualité de l’air.
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[22] This background error covariance is used to correct
ozone concentrations throughout the model layers although
only surface observations are used to build it. During the
afternoon, in a well-mixed boundary layer, the correlation
between low-altitude and high-altitude ozone is elevated,
both in the model and in reality. Thus we expect ozone
model errors to be highly correlated as well. More details
about the use of the same error covariance model for the
whole of the 3-D model domain are given by Blond et al.
[2003].

5. Results

[23] In this section, we first evaluate the ozone analyses
by comparing them with independent observations. Then,
we use the ozone analyses to initialize the forecast model
and discuss the resulting improvement of the short-term
forecasts.

5.1. ‘‘Leave-One-Out’’ Method

[24] A leave-one-out method (also called ‘‘data withhold-
ing’’) is used in order to evaluate objectively the quality
of ozone analyses. Sequentially, observations at a single
observation site are omitted in the ASI analysis process.
These omitted observations are then statistically compared
with the resulting analyzed field. Error statistics are given at
an hour h by the root-mean-square (RMSh) of the analysis-
minus-observation residuals and the corresponding bias
(BIASh), the correlation, etc. These error statistics are then
compared to those of the simulation-minus-observation
residuals. For the analyses, RMSh is given by

RMSh skð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT
t¼1

Za
t;h skð Þ � Y

o*
t;h skð Þ

h i2vuut ; ð6Þ

where Yt,h
o*(sk) (t = 1, . . . , T) denotes the omitted

observations.
[25] The bias is computed by

BIASh skð Þ ¼ 1

T

XT
t¼1

Za
t;h skð Þ � Y

o*
t;h skð Þ

h i
: ð7Þ

5.2. Error Statistics for Ozone Simulations and
Analyses

[26] Three-dimensional ozone analyses are produced
while applying the ASI method to the raw simulations
of CHIMERE and some surface ozone observations.
These analyses are performed for each day of summers
1999–2002 for h = 1500 UTC. The bias and error
covariance models are first computed for observed and
simulated data from summer 1999. They are afterward
used to produce the analyses for data from summers 2000,
2001, and 2002 running from 1 May to 31 August.
Therefore all of the following error statistics are calculated
from a set of data independent of the testing data. Figure 2
summarizes the error statistics obtained for summer
2001 for simulation-minus-observation and analysis-minus-
observation residuals.
[27] Figure 2a shows the bias distribution. In the case of

raw simulations the distribution is centered around 4.4 ppb.
The model tends to overestimate ozone concentrations. This

especially happens near the main source areas of primary
emissions. The nitrogen monoxide is diluted in large grid
cells, implying therefore an overestimation of ozone. This
dilution also changes the chemical regime. The atmosphere,
which is usually VOC sensitive, becomes NOx sensitive.
This change also implies an ozone overestimation. In
contrast, the distribution of analysis-minus-observation bias
is centered at 0.2 ppb. Ninety-five percent of these biases
are between �5 ppb and 5 ppb.
[28] Figure 2b shows that most raw model correlations lie

in the 0.8–0.9 range. A detailed stationwise inspection shows
that only a few monitoring stations display low correlation
(below 0.7). These stations are generally located near coastal
or mountainous areas where higher resolution is required to
correctly simulate local transport of pollutants because of
complex wind flows. Low correlations are also found for
monitoring stations located at high altitude. In these cases,
the quite low variability of the ozone concentrations observed
there is not well reproduced. This variability depends also on
phenomena that are not accounted for in the model. For
instance, intermittent intrusions of ozone-rich air masses
from the high troposphere or the stratosphere cannot be
simulated. The analysis-observation correlations mostly lie
between 0.9 and 1. Thus the ozone variability is much better
reproduced by the analyses than by the raw simulations.
High correlations are increased by �10%. Correlations over
coastal areas and low-level mountains are often increased
by �15–20%. However, correlations over mountains like
the Pyrénées and the Alps remain poor.
[29] Figure 2c presents the percentage of ‘‘good simula-

tions’’ (errors smaller than 15 ppb). We deduce that the
number of ‘‘large errors’’ is often smaller than 15% and is
5% on average. Largest errors are found over monitoring
stations often influenced by city plumes. Two situations can
occur. First, the width of the urban plume is smaller than the
model grid size and is therefore highly diluted in a coarse-
resolution simulation. Second, the direction of the urban
plume can be wrong, which is a typical error in very weak
wind conditions [Vautard et al., 2001]. In this case, high
ozone concentrations are simulated at the wrong place.
[30] Finally, Figure 2d presents the RMS error distribution.

The RMS error mean value is 10 ppb for the simulations and
6.6 ppb for the analyses. These values are consistent with
those found in previous studies [Schmidt et al., 2001; Vautard
et al., 2001]. Error statistics are also comparable with those
obtained from other chemistry-transport models [Tilmes et
al., 2002; Elbern and Schmidt, 2001; Cardelino et al., 2001].
RMS is mostly reduced in areas where the density of
observations is high. However, this is not always the case,
as is shown in section 5.3.
[31] In order to evaluate the interannual variability of the

simulation/analysis skills, we show error statistics obtained
from four consecutive years, from 1999 to 2002, in Table 2.
In each case the analyses are produced using the error
covariance model deduced from the summer of 1999 and
the leave-one-out method. All simulations were performed
with the same emissions database. Therefore they do not take
into account the weak emission reductions, in particular, in
the road transport sector, during this period. The emission
reduction is estimated to be less than 10% in France over the
period 1990–2002 [Centre Interprofessionnel Technique
d’Etudes de la Pollution Atmosphérique (CITEPA), 2003].
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This should not significantly affect our results. In Table 2,
simulated and analyzed ozone concentrations are com-
pared to observations at 1500 UTC. We show the bias,
the RMS error, and the correlation. We also show the
fraction of good simulations (E15) and the same fraction
applied only to cases when either the forecast or the
observation exceeds 50 ppb (E15/50ppb). The latter

statistic is of particular relevance because it allows for
quantifying the CTM skills during high-ozone-pollution
events, i.e., where the population is concerned and needs
to be informed. Finally, we show the persistence, a no-skill
forecast procedure that simply assumes that the ozone will
not change in 24 hours. This latter forecast has been
performed for summer 1999.

Table 2. Mean Error Statistics Over Simulation-Minus-Observation and Analysis-Minus-Observation Residuals for 1500 UTCa

BIAS RMS COR E15 E15/50

S. A. S. A. S. A. S. A. S. A.

1999 3.2 0.1 9.8 6.5 0.75 0.88 87 95 75 88
2000 4.1 0.1 9.8 6.5 0.78 0.89 87 95 74 85
2001 4.4 0.2 10.0 6.6 0.81 0.91 86 95 75 85
2002 4.4 0.2 10.8 6.9 0.72 0.87 84 95 66 86
Persistence for 1999 6.1 13.1 0.56 77 57

aS., simulation-minus-observation; A., analysis-minus-observation. Bias and RMS errors are in ppb. COR, correlation; E15, number of ‘‘good
simulations’’ in percent. E15/50, number of good simulations in percent when the observation or the simulation data is over 50 ppb.

Figure 2. Error statistics over simulation-minus-observation (grey solid bars) and analysis-minus-
observation (black open bars) residuals for h = 1500 UTC. These statistics have been computed over
232 monitoring stations throughout western Europe. (a) Bias in ppb, (b) RMS errors in ppb,
(c) correlations, and (d) number of ‘‘good simulations’’ in percent. Mean values are written on the top of
each panel’s simulations/analyses.
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[32] We notice that persistence has the worst values for
bias, RMS error, correlation, and E15. This indicates that the
model CHIMERE is of particular relevance to forecast
ozone. The statistics for the raw simulations of CHIMERE
and for the analyses are very similar from one year to
another. However, the CHIMERE forecasts are not as good
for the year 2002 as they are for the other years. In particular,
the ozone variability is not well reproduced by the CTM.
Indeed, the mean correlation is 0.72 as opposed to 0.81 for
2001. Moreover, only 66% of the ozone values over 50 ppb
are well forecasted. Several reasons may explain these larger
CTM errors. The meteorological conditions during summer
2002 were not favorable to the development of high-ozone-
pollution events. Indeed, a series of fronts crossed western
Europe, regularly perturbing ozone diurnal formation and
sometimes generating intense convection episodes difficult
to simulate. In a cloudy or convective atmosphere, mixing

and photolysis rates may be misrepresented, leading to
enhanced errors in ozone simulation. In sections 5.3–5.6,
we focus on summer 2002 and analyze one particular
episode.

5.3. Sensitivity of the Ozone Analyses to the Density of
Observation Data

[33] A series of experiments have been performed in
order to analyze the influence of the density of observation
data on the analyses. We computed the change of the RMS
error when only 25%, 50%, 75%, or 100% of the available
observation data were used in the ozone analysis. We used a
leave-one-out method and averaged the results over all
observation sites. These experiments reveal that relative to
raw simulations, the RMS error is globally reduced by
�17%, �23%, �26%, and �28% when we increase the
number of observations.
[34] The change in the RMS error has also been studied

versus the number of observation data surrounding the
analysis point within a radius of 100 km. Figures 3a and 3b
illustrate the results obtained when 50% and 100% of the
observation data are assimilated, respectively. Figure 3a
shows that the RMS error can be quite reduced in data-
sparse areas even where no observation is available within a
radius of 100 km (the RMS improvement is between 2 and
40%). Moreover, statistics display large fluctuations from
one station to another. Both figures show that in general, the
higher the number of observation data around the analysis
point, the higher the RMS error reduction. This reduction
can reach 50%, as shown in Figure 3b. For a few sites the
analyses are worse than the simulations because of a lack
of representativeness.

5.4. Time Series Comparisons

[35] In order to further show how well the analysis
procedure captures the time variability of observed ozone
concentrations, we show in Figure 4 time series of daily
ozone mixing ratios in ppb from 1 May to 31 August 2002
for five European locations. These series correspond to
values taken at 1500 UTC. Surface ozone observations are
compared with both simulations and analyses. The analyses
are again obtained using the leave-one-out method. The
monitoring stations have been chosen because they are
representative of several types of environments. Monitoring
sites SONCHAMP and BERLIN-MARIENFELDE are near
Paris and Berlin, respectively. They monitor pollution
advected by the wind from the cities, while VOSGES-
HAUTES is relatively far from any emission source and
located in the French Vosges mountains at 1100-m eleva-
tion. Finally, NL-107 (middle eastern Netherlands) and
LADYBOWER (central England) are much more influ-
enced by nitrogen monoxide emissions. For both stations
the hourly mean of the observations is of the order of 30–
40 ppb, instead of �50 ppb for the other sites.
[36] Though meteorological conditions during summer

2002 were not so often conducive to ozone pollution, some
episodes still developed over western Europe. These epi-
sodes occurred on 15–16 May, 2–5 June, 17–27 June, 8–9
July, 28 July to 2 August, and 17–23 August. It is often
noticed that the ozone episodes move slightly eastward, in
this case, from stations SONCHAMP and VOSGES-
HAUTES (or NL-107) to BERLIN-MARIENFELDE. A

Figure 3. RMS error change due to the use of the ASI
algorithm versus the number of monitoring stations
surrounding the analyzed grid point within a radius of
100 km. Each circle corresponds to a different observation
site. The black line shows the mean value of the change
computed over sites surrounded with the same number of
monitoring stations. The grey line denotes the mean value
of the change computed over all monitoring stations.
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Figure 4. Time series of daily ozone mixing ratios in ppb from 1 May to 31 August 2002 taken every
day at 1500 UTC. Dashed line, observations; solid grey lines, raw simulations; solid black lines, analyses.
Above each panel are indicated the name and geographical location of the respective observation site,
mean of the observed data, biases and RMS error of the simulated (top row) and analyzed (bottom row)
mixing ratios relative to the observed mixing ratios, and the corresponding correlation coefficients.
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time lag of 2–3 days is often noted (see, for example, the
episode of 2–5 June). The episode of 28 July to 2 August is
particularly interesting and is studied in section 5.5.
[37] We note that the CTM correctly represents the ozone

variability over all types of observation stations. It espe-
cially locates all of the high-ozone episodes. However, it
often overestimates the ozone concentrations and especially
the ozone peaks. Ozone analyses are much closer to the
observations than to the simulations. The overestimations
are mostly corrected. Biases are drastically reduced except
over SONCHAMP. This monitoring station is the only
observation site often influenced by strong and thin ozone
plumes in the Paris region. It is located downstream from
the city of Paris during the anticyclonic situations. At this
rural station the ASI correction is therefore mainly con-
trolled by the surrounding ozone observations, which are
always less elevated.
[38] We also note that the ASI method corrects ozone

concentrations at station VOSGES-HAUTES well although

the station is located at altitude. In this case, observations
are compared to the simulations and the analyses of the
second level of the CTM.

5.5. Illustrative Cases of Ozone Analyses

[39] In order to illustrate the ozone analysis results, we
now focus on an individual case, the episode from 28 July
to 2 August 2002, which is a very interesting situation. With
the exception of western parts of France, the meteorological
conditions on 28 July were characterized by sunny hot
weather with high temperatures (above 30�C) and light
winds until the beginning of the afternoon. Late in the
day, a talweg in altitude with a cold pseudofront at the
surface penetrated western Europe from the Atlantic, stim-
ulating cloud development and the growth of thunderstorms
in the front. During the next few days the convective
episode moved eastward with a very similar situation. The
CTM does not account for deep convection and therefore
had difficulties in representing the strong dispersion of

Figure 5. Maps of the differences between ozone simulations and analyses for four consecutive days of
summer 2002. These maps are computed for 1500 UTC: (a) 30 July 2002, (b) 31 July 2002, (c) 1 August
2002, and (d) 2 August 2002. The differences are in ppb. Solid contours show positive values, and dashed
contours show negative values.
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pollutants during this episode. During the following 6 days
it actually develops a high-ozone region over large parts of
the western Europe with few exceedances of the ozone
information threshold (90 ppb). However, these high
concentrations were in most cases not observed or much
lower (see Figure 4). The model error reaches 15–20 ppb
on 28 July, 20–25 ppb on 29 July, and more than 25 ppb
on the next 2 days. From 30 July the error seems to
propagate eastward with the low-pressure system (from
SONCHAMP and VOSGES-HAUTES to NL-107 and
BERLIN-MARIENFELDE in Figure 4).
[40] The maps of the differences between ozone simula-

tions and analyses for 30 July to 2 August are displayed in
Figure 5. Again, they are calculated for 1500 UTC. These
differences give an estimate of the CTM error although the
analysis itself also contains errors. They illustrate the spatial
distribution of the forecast error.
[41] On 30 July 2002 (Figure 5a), the CTM overesti-

mates by more than 10 ppb (up to 25 ppb) the ozone
mixing ratios over a large part of France and the Nether-
lands. On 31 July 2002 (Figure 5b) the overestimations are
found in western Germany (but also in central England),
and they are found over central to eastern Germany on the
next 2 days (Figures 5c and 5d). During the next days the
largest errors clearly seem to propagate eastward.
[42] In section 5.6, this question of error propagation is

addressed by performing initial-value experiments. If, at
least in some cases, model error is due to error propagation
and not to ‘‘instantaneous error’’ in meteorology, emission,
or chemistry, simulations initialized with the analyses
should be improved relative to noninitialized simulations.
The objective of section 5.6 is therefore to quantify the
importance and beneficial impact of properly defined initial
values to improve the CTM predictive skills.

5.6. Forecast Error Statistics

[43] In this section, our objective is to assess the potential
of using the ASI method for improving short-term ozone
forecasts. We present results of several forecast experiments
performed with the assimilation of surface observations or
without any assimilation.
[44] These experiments have been performed over sum-

mer 2002 following the scheme described in Figure 6. We
first perform a forecast without assimilation over the whole
summer. This forecast is referred to as the ‘‘reference
forecast’’ in the following. Second, we produce 3-D ozone
analyses for each day at 1500 UTC using the ASI method.
Then, we use the resulting ozone analyses to initialize a
series of 3-day forecasts. These forecasts are referred to as
the ‘‘new forecasts.’’ No more observations are introduced

after the ozone analyses initialization. Finally, we compare
all of the new 3-day forecasts with the reference forecast.
[45] An afternoon hour (1500 UTC) is chosen for initial-

izing the forecast because it is the time when the boundary
layer is the most developed and mixed. Therefore we expect
the information from ozone surface observations to be most
representative for the whole boundary layer. The error
covariance model derived from the 1999 summer ozone
data is used, so that the experiment simulates a real-time
forecast setup. The only difference from a real forecast is
due to the fact that we do not use meteorological forecasts

Figure 6. Scheme showing the implementation of the
forecast experiments with and without assimilation of
surface ozone observations.

Figure 7. Hourly mean RMS error of the simulated ozone
mixing ratios relative to the observed mixing ratios. The
RMS error is averaged over the available European
observations and over a given time period. (a) Average
over the whole summer 2002 (from 1 May to 31 August
2002). (b) Average over the short time period of 30 and 31
July and 1 August 2002. This RMS is plotted as a function
of the time, in hours after the initialization. The initialization
of the 3-day forecasts is done at 1500 UTC (time zero).
Black dashed line, reference forecasts (not initialized with
ozone analyses); black solid line, forecasts initialized at time
zero with 3-D ozone analyses; grey solid line, difference
between the two forecasts. RMS error is in ppb.
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with the corresponding lead times, but short-term (0–
12-hour) forecasts.
[46] Ozone forecast performance is presented in Figures 7

and 8by RMS error and bias graphs, respectively. These
statistical measures are computed over two periods of time:
the whole summer of 2002 (Figures 7a and 8a) and a 3-day
episode on 30 and 31 July and 1 August 2002 (Figures 7b
and 8b). They are also computed over all observation sites.
Finally, these hourly average RMS error and bias values are
plotted versus the time passed after the ozone analysis
initializations.

[47] The RMS error of the reference forecast has a clear
diurnal cycle that is identical from one simulation day to the
next. If real meteorological forecasts were used, the RMS
would increase with time. RMS error is larger during
nighttime (2000–0500 UTC, e.g., 5–15 hours after the
initialization time) than during daytime. Several factors
could explain this behavior. First, nighttime ozone concen-
trations are very sensitive to the thickness of the shallow
nocturnal boundary layer, which may be too coarsely
represented in the model. Second, because of the titration
with local nitrogen monoxide emissions, ozone structures at
ground level could be of smaller scale than during the
daytime. Large horizontal gradients could cause represen-
tativeness problems.
[48] On average (Figure 7a), the new forecasts have a

significantly smaller RMS than the reference ones during
the first 24 hours of simulation, but beyond that time,
the initialized simulation quality becomes identical to the
reference one.
[49] Over the 3-day episode (Figure 7b) the reference

simulation shows a large RMS error of 20 ppb on 30 July at
the initialization time. This is consistent with the maps
presented in Figure 5. The RMS error rapidly decreases
during the next few hours. In this case, the impact of
the ozone analyses is significant up to 48 hours after the
initialization time. During the 11 hours following the
initialization time, the differences between the forecasts
continuously decrease. Afterward, they slightly increase.
This increase is probably due to the late morning downward
mixing of air masses from the upper residual layer, where
previous-day observations have corrected the ozone con-
centrations. Indeed, the correction of the ozone concentra-
tions in the whole boundary layer at 1500 UTC has a
positive impact on the day after.
[50] Figure 8 presents the ozone forecast performance in

terms of biases. As shown in Figure 8a, the bias of the
reference forecast is always positive (see discussion of
the bias in section 5.2). It also shows a clear diurnal cycle.
Between 1500 and 1800 UTC the bias decreases because
the urban ozone plumes progressively diffuse. The ozone
gradients are therefore less strong, and the observations are
more representative. Afterward, the bias increases because
of the increase of NOx emissions and the decrease of the
atmospheric boundary layer (ABL) (the low vertical reso-
lution of the model induces some systematic errors). It
decreases again when the NOx emissions decrease and the
ABL increases. The bias of the new forecasts has a similar
evolution but is much smaller. This figure shows a bias
reduction of �2 ppb 24 hours after the initialization time
for the whole summer and 4 ppb for the 3-day episode
(Figure 8b).
[51] The spatial distribution of the differences between

new initialized simulations and analyses for 30 and 31 July
and 1 and 2 August is displayed in Figure 9, in the same
format as in Figure 5, to which it should be compared. For
the four cases the simulations are issued with an initialization
at 1500 UTC on the previous day. The large errors are not
reduced much for 30 July, showing that these errors are not
due to a propagation of previous errors. In contrast, the errors
are partially (halfway) corrected for 31 July. The ozone
data assimilation allows an error reduction of �10 ppb
over central England, western Germany, and the Benelux

Figure 8. Hourly mean bias of the simulated ozone
mixing ratios relative to the observed mixing ratios. The
bias is averaged over the available European observations
and over a given time period. (a) Average over the whole
summer 2002 (from 1 May to 31 August 2002). (b) Average
over the short time period of 30 July, 31 July, and 1 August
2002. This bias is plotted as a function of the time, in hours
after the initialization. The initialization of the 3-day
forecasts is done at 1500 UTC (time zero). Black dashed
line, reference forecasts (not initialized with ozone analyses);
black solid line, forecasts initialized at time zero with 3-D
ozone analyses; grey solid line, difference between the two
forecasts. Bias is in ppb.
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countries. The errors made on 30 July have been advected
eastward and can be corrected by a proper ozone initializa-
tion. Similar conclusions hold for the following 2 days.

6. Summary and Conclusion

[52] In this study, the potential of data assimilation of
surface ozone concentrations in a chemistry-transport model
at the scale of the European continent is investigated. Ozone
data analyses have two major applications: (1) the
representation of accurate ozone maps for the informa-
tion of populations and (2) the initialization of ozone
forecasts. The present article evaluates the accuracy of a
previously developed analysis method in fulfilling these
two applications.
[53] The outputs of the continental-scale version of the

CHIMERE chemistry-transport model [Schmidt and Martin,
2003] are combined with surface ozone measurements using
a statistical interpolation method. This method was previ-

ously used to produce ozone analyses over the Paris region
[Blond et al., 2003]. Its advantage is to provide an aniso-
tropic error covariance model that is extendable in the
vertical direction. As for the regional ozone analyses, the
coarse grid ozone analyses are objectively evaluated in a
statistical way using a leave-one-out method. We show that
the RMS error of analyses is reduced by �30% relative to
the raw simulations.
[54] Next we investigate the potential improvement of

using the analyses to initialize ozone forecasts using the
same chemistry-transport model. The initialization time is
chosen as 1500 UTC, for two reasons. First, this hour often
corresponds to the time of ozone daily maxima, and second,
it is also the time when the boundary layer is most
developed and therefore surface information is better spread
in the vertical direction. The evaluation of the skill is
achieved by a series of initial-value experiments starting
each day of summer 2002. Depending on the case, ozone
analysis initialization improves the simulation for 24–

Figure 9. Maps of the differences between ozone initialized simulations and analyses for four days of
summer 2002. The forecasts have been initialized using ozone analyses on the previous day at 1500 UTC.
The maps are shown for a lead time of 24 hours after initialization and therefore also at 1500 UTC:
(a) 30 July 2002, (b) 31 July 2002, (c) 1 August 2002, and (d) 2 August 2002. The differences are in ppb.
Solid contours show positive values, and dashed contours show negative values.
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48 hours later. In an operational framework, ozone initial-
ization should therefore improve forecasts for the next day.
[55] However, inspection of individual cases shows that

surface ozone analysis initialization only allows a partial
correction of the total error, because initial conditions are not
the only source of uncertainty. Emissions and meteorology,
as well as boundary concentrations, also contribute signif-
icantly to the global model uncertainty. All these parameters
should also be optimized, as has been proposed in recent
studies [Elbern and Schmidt, 2002].
[56] The conclusions we reach in this paper are in

agreement with those obtained by Elbern and Schmidt
[2001], who used a much more computationally intensive
data assimilation algorithm (4D-Var). Several research
questions remain to be addressed in the future. In this study,
we only use surface ozone observation data. Accurate
observations of precursors (NOx or volatile organic com-
pounds) may also help in defining proper initial conditions.
The use of measurements from spaceborne sensors, which
have the ability to view large areas of the atmosphere
simultaneously, could also bring in the future valuable
information to force chemistry-transport models (CTMs).
The method proposed here, which is very easy to implement
in practice, can be applied in all these cases.
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