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The Power of Programs over Monoids in J

Nathan Grosshans*!

Abstract

The model of programs over (finite) monoids, introduced by Barring-
ton and Thérien, gives an interesting way to characterise the circuit com-
plexity class NC! and its subclasses and showcases deep connections with
algebraic automata theory. In this article, we investigate the compu-
tational power of programs over monoids in J, a small variety of finite
aperiodic monoids. First, we give a fine hierarchy within the class of lan-
guages recognised by programs over monoids from J, based on the length
of programs but also some parametrisation of J. Second, and most import-
antly, we make progress in understanding what regular languages can be
recognised by programs over monoids in J. We show that those programs
actually can recognise all languages from a class of restricted dot-depth
one languages, using a non-trivial trick, and conjecture that this class
suffices to characterise the regular languages recognised by programs over
monoids in J.

1 Introduction

In computational complexity theory, many hard still open questions concern
relationships between complexity classes that are expected to be quite small in
comparison to the mainstream complexity class P of tractable languages. One
of the smallest such classes is NC!, the class of languages decided by Boolean
circuits of polynomial length, logarithmic depth and bounded fan-in, a relevant
and meaningful class, that has many characterisations but whose internal struc-
ture still mostly is a mystery. Indeed, among its most important subclasses, we
count AC®, CC°® and ACC®: all of them are conjectured to be different from each
other and strictly within NC!, but despite many efforts for several decades, this
could only be proved for the first of those classes.

In the late eighties, Barrington and Thérien [3], building on Barrington’s
celebrated theorem [2], gave an interesting viewpoint on those conjectures, re-
lying on algebraic automata theory. They defined the notion of a program over
a monoid M: a sequence of instructions (i, f), associating through function f
some element of M to the letter at position ¢ in the input of fixed length. In that
way, the program outputs an element of M for every input word, by multiplying
out the elements given by the instructions for that word; acceptance or rejec-
tion then depends on that outputted element. A language of words of arbitrary
length is consequently recognised in a non-uniform fashion, by a sequence of
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programs over some fixed monoid, one for each possible input length; when that
sequence is of polynomial length, it is said that the monoid p-recognises that
language. Barrington and Thérien’s discovery is that NC! and almost all of its
significant subclasses can each be exactly characterised by p-recognition over
monoids taken from some suitably chosen variety of finite monoids (a class of
finite monoids closed under basic operations on monoids). For instance, NC!,
AC®, CC® and ACCP correspond exactly to p-recognition by, respectively, fi-
nite monoids, finite aperiodic monoids, finite solvable groups and finite solvable
monoids. Understanding the internal structure of NC' thus becomes a matter
of understanding what finite monoids from some particular variety are able to
p-recognise.

It soon became clear that regular languages play a central role in understand-
ing p-recognition: McKenzie, Péladeau and Thérien indeed observed [12] that
finite monoids from a variety V and a variety W p-recognise the same languages
if and only if they p-recognise the same regular languages. Otherwise stated,
most conjectures about the internal structure of NC! can be reformulated as a
statement about where one or several regular languages lie within that structure.
This is why a line of previous works got interested into various notions of tame-
ness, capturing the fact that for a given variety of finite monoids, p-recognition
does not offer much more power than classical morphism-recognition when it
comes to regular languages (see [13], 14, [IT], 20, 21l 22|, 10, {]).

This paper is a contribution to an ongoing study of what regular languages
can be p-recognised by monoids taken from “small” varieties, started with the
author’s Ph.D. thesis [7]. In a previous paper by the author with McKenzie and
Segoufin [§], a novel notion of tameness was introduced and shown for the “small”
variety of finite aperiodic monoids DA. This allowed them to characterise the
class of regular languages p-recognised by monoids from DA as those recognised
by so called quasi-DA morphisms and represented a first small step towards a
new proof that the variety A of finite aperiodic monoids is tame. This is a
statement equivalent to Furst’s, Saxe’s, Sipser’s [6] and Ajtai’s [I] well-known
lower bound result about AC®. In [8], the authors also observed that, while DA
“behaves well” with respect to p-recognition of regular languages, the variety J,
a subclass of DA, does, in contrast, “behave badly” in the sense that monoids
from J do p-recognise regular languages that are not recognised by quasi-J
morphisms.

Now, J is a well-studied and fundamental variety in algebraic automata
theory (see, e.g., [I5,[16]), corresponding through classical morphism-recognition
to the class of regular languages in which membership depends on the presence
or absence of a finite set of words as subwords. This paper is a contribution to
the understanding of the power of programs over monoids in J, a knowledge that
certainly does not bring us closer to a new proof of the tameness of A (as we are
dealing with a strict subvariety of DA), but that is motivated by the importance
of J in algebraic automata theory and the unexpected power of programs over
monoids in J. The results we present in this article are twofold: first, we
exhibit a fine hierarchy within the class of languages p-recognised by monoids
from J, depending on the length of those programs and on a parametrisation
of J; second, we show that a whole class of regular languages, that form a
subclass of dot-depth one languages [16], are p-recognised by monoids from J
while, in general, they are not recognised by any quasi-J morphism. This class
roughly corresponds to dot-depth one languages where detection of a given factor



does work only when it does not appear too often as a subword. We actually
even conjecture that this class of languages with additional positional modular
counting (that is, letters can be differentiated according to their position modulo
some fixed number) corresponds exactly to all those p-recognised by monoids
in J, a statement that is interesting in itself for algebraic automata theory.

Organisation of the paper. Following the present introduction, Section 2]
is dedicated to the necessary preliminaries. In Section [3] we present the results
about the fine hierarchy and in Section [4| we expose the results concerning the
regular languages p-recognised by monoids from J. Section [5| gives a short
conclusion.

Note. This article is based on unpublished parts of the author’s Ph.D.
thesis [7].

2 Preliminaries

2.1 Various mathematical materials

We assume the reader is familiar with the basics of formal language theory,
semigroup theory and recognition by morphisms, that we might designate by
classical recognition; for those, we only specify some things and refer the reader
to the two classical references of the domain by Eilenberg [4, [5] and Pin [I5].

General notations and conventions. Let i,j € N. We shall denote by [i, 5]
the set of all n € N verifying ¢ < n < j. We shall also denote by [i] the set
[1,4]. Given some set E, we shall denote by PB(F) the powerset of E. All our
alphabets and words will always be finite; the empty word will be denoted by €.

Varieties and languages. A variety of monoids is a class of finite monoids
closed under submonoids, Cartesian product and morphic images. A variety of
semigroups is defined similarly. When dealing with varieties, we consider only
finite monoids and semigroups, each having an idempotent power, a smallest
w € Ny g such that % = x2¥ for any element x. To give an example, the variety
of finite aperiodic monoids, denoted by A, contains all finite monoids M such
that, given w its idempotent power, ¢ = 2*“*! for all x € M.

To each variety V of monoids or semigroups we associate the class £(V) of
languages such that, respectively, their syntactic monoid or semigroup belongs
to V. For instance, £(A) is well-known to be the class of star-free languages.

Quasi V languages. If S is a semigroup we denote by S* the monoid S if S
is already a monoid and S U {1} otherwise.

The following definitions are taken from [I7]. Let ¢ be a surjective morphism
from ¥* to a finite monoid M. For all k consider the subset (%) of M (where
¥ is the set of words over ¥ of length k). As M is finite there is a k such
that ¢(X2*) = (X*). This implies that ¢(X*) is a semigroup. The semigroup
given by the smallest such k is called the stable semigroup of . If S is the
stable semigroup of ¢, S! is called the stable monoid of p. If V is a variety of
monoids or semigroups, then we shall denote by QV the class of such surjective



morphisms whose stable monoid or semigroup, respectively, is in V and by
L(QV) the class of languages whose syntactic morphism is in QV.

Programs over monoids. Programs over monoids form a non-uniform model
of computation, first defined by Barrington and Thérien [3], extending Barring-
ton’s permutation branching program model [2]. Let M be a finite monoid and
Y an alphabet. A program P over M on X" is a finite sequence of instructions
of the form (i, f) where i € [n] and f € M¥; said otherwise, it is a word over
([n] x M*). The length of P, denoted by |P|, is the number of its instruc-
tions. The program P defines a function from ™ to M as follows. On input
w € X", each instruction (7, f) outputs the monoid element f(w;). A sequence
of instructions then yields a sequence of elements of M and their product is the
output P(w) of the program. A language L C X" is consequently recognised by
P whenever there exists ' C M such that L = P‘l(F).

A language L over X is recognised by a sequence of programs (P,)nen over
some finite monoid M if for each n, the program P, is on X" and recognises
L= = LNnX¥". We say (Py)nen is of length s(n) for s: N — N whenever
|P,| = s(n) for all n € N and that it is of length at most s(n) whenever there
exists a € Ry verifying |P,| < a - s(n) for all n € N.

For s: N — Nand V a variety of monoids, we denote by P(V, s(n)) the class
of languages recognised by sequences of programs over monoids in V of length
at most s(n). The class P(V) = [J, ey P(V,n") is then the class of languages
p-recognised by a monoid in V, i.e. recognised by sequences of programs over
monoids in V of polynomial length.

The following is an important property of P(V).

Proposition 2.1 ([I2, Corollary 3.5]). Let V be a variety of monoids, then
P(V) is closed under Boolean operations.

Given two alphabets ¥ and I', a I'-program on X" for n € N is defined
just like a program over some finite monoid M on X", except that instructions
output letters from I' and thus that the program outputs words over I'. Let now
L CY* and K CI'™. We say that L program-reduces to K if and only if there
exists a sequence (¥,,),cn of I-programs (the program-reduction) such that ¥,
is on ©" and L=" = W, (K=I"l) for each n € N. The following proposition
shows closure of P(V) also under program-reductions.

Proposition 2.2 (|7, Proposition 3.3.12 and Corollary 3.4.3]). Let 3 and T be
two alphabets. Let V be a variety of monoids. Given K C T'* in P(V,s(n))
for s: N— N and L C X* from which there exists a program-reduction to K of
length t(n), fort: N — N, we have that L € P(V,s(t(n))). In particular, when
K is recognised (classically) by a monoid in 'V, we have that L € P(V,t(n)).

2.2 Tameness and the variety J

We won’t introduce any of the proposed notions of tameness but will only state
that the main consequence for a variety of monoids V to be tame in the sense
of [§] is that P(V) N Reg C L£(QV). This consequence has far-reaching im-
plications from a computational-complexity-theoretic standpoint when P(V)
happens to be equal to a circuit complexity class. For instance, tameness for
A implies that P(A) NReg C L(QA), which is equivalent to the fact that AC°



does not contain the language MOD,, of words over {0, 1} containing a number
of 1s not divisible by m for any m € N;m > 2 (a central result in complexity
theory [6] ).

Let us now define the variety of monoids J. A finite monoid M of idempotent
power w belongs to J if and only if (zy)* = (zy)“z = y(zy)* for all z,y € M.
It is a strict subvariety of the variety DA, containing all finite monoids M of
idempotent power w such that (zy)* = (xy)¥z(zy)* for all x,y € M, itself a
strict subvariety of A. The variety J is a “small” one, well within A.

We now give some specific definitions and results about J that we will use,
based essentially on [9], but also on [I5, Chapter 4, Section 1].

For some alphabet 3 and each k € N, let us define the equivalence relation
~p on X* by u ~ v if and only if v and v have the same set of k-subwords
(subwords of length at most &), for all u,v € ¥*. The relation ~ is a congruence
of finite index on ¥*. For an alphabet ¥ and a word u € X*, we shall write
u LW ¥* for the language of all words over ¥ having u as a subword. In the
following, we consider that L has precedence over U and N (but of course not
over concatenation).

We define the class of piecewise testable languages PT as the class of regular
languages such that for every alphabet X, we associate to ¥* the set PT(X*)
of all languages over ¥ that are Boolean combinations of languages of the form
u W X* where u € ¥*. In fact, PT(X*) is the set of languages over ¥ equal
to a union of ~j-classes for some k € N (see [I8]). Simon showed [18] that a
language is piecewise testable if and only if its syntactic monoid is in J, i.e.
PT = L(J).

We can define a hierarchy of piecewise testable languages in a natural way.
For k € N, let the class of k-piecewise testable languages PTy be the class of
regular languages such that for every alphabet X, we associate to ¥* the set
PT(X*) of all languages over ¥ that are Boolean combinations of languages
of the form u LW X* where u € ¥* with |u| < k. We then have that PT,(X*) is
the set of languages over 3 equal to a union of ~g-classes. Let us define Jy the
inclusion-wise smallest variety of monoids containing the quotients of ¥* by ~y,
for any alphabet 3: we have that a language is k-piecewise testable if and only
if its syntactic monoid belongs to Jk, i.e. PT = L(Jx). (See |9, Section 3].)

3 Fine Hierarchy

The first part of our investigation of the computational power of programs
over monoids in J concerns the influence of the length of programs on their
computational capabilities.

We say two programs over a same monoid on the same set of input words are
equivalent if and only if they recognise the same languages. Tesson and Thérien
proved in [23] that for any monoid M in DA, there exists some k € N such that
for any alphabet ¥ there is a constant ¢ € Ny verifying that any program over
M on X" for n € N is equivalent to a program over M on X" of length at most
c-n*. Since J € DA, any monoid in J does also have this property. However,
this does not imply that there exists some k € N working for all monoids in J,
i.e. that P(J) collapses to P(J,n").

In this section, we show on the one hand that, as for DA, while P(J, s(n))
collapses to P(J) for any super-polynomial function s: N — N, there does not



exist any k € N such that P(J) collapses to P(J,nk); and on the other hand
that P(Jy) does optimally collapse to P(Jk, n““/ﬂ) for each k € N.

3.1 Strict hierarchy

Given k,n € N, we say that o is a k-selector over n if ¢ is a function of
‘ﬁ([n])["]k that associates a subset of [n] to each vector in [n]¥. For any sequence
A = (0)nen such that o, is a k-selector over n for each n € N — a sequence we

will call a sequence of k-selectors —, we set La = ,,cy Kn,o0,,, Where for each
n € N, the language K, ,, is the set of words over {0,1} of length (k+1)-n
that can be decomposed into k + 1 consecutive blocks v, u® ... u®) v of n

letters where the first k£ blocks each contain 1 exactly once and uniquely define
a vector p in [n]*, where for all i € [k], p; is given by the position of the only 1
in u® (ie. ugfi) = 1) and v is such that there exists j € 0,,(p) verifying that v;
is 1. Observe that for any k-selector o over 0, we have Ko 5, = ()

We now proceed similarly to what has been done in Subsection 5.1 in [8] to
show, on one hand, that for all £ € N, there is a monoid Mj, in Jax41 such that
for any sequence of k-selectors A, the language La is recognised by a sequence
of programs over M, of length at most n**!; and, on the other hand, that for
all k& € N there is a sequence of k-selectors A such that for any finite monoid
M and any sequence of programs (P,)nen over M of length at most n¥, the
language La is not recognised by (Py)nen.

We obtain the following proposition; the proof can be found in Appendix [A]

Proposition 3.1. For all k € N, we have ’P(J,nk) C ’P(J,n’““‘l). More pre-
cisely, for allk € N and d € N,d < fg] — 1, we have P(Jk,nd) C P(Jk,nd+1).

3.2 Collapse

Looking at Proposition [3.1] it looks at first glance rather strange that, for each
k € N, we can only prove strictness of the hierarchy inside P (Jx) up to exponent
k

(ﬂ. We now show, in a way similar to Subsection 5.2 in [8], that in fact

P(Jx) does collapse to ’P(Jk,n[k/z]) for all k& € N, showing Proposition
to be optimal in some sense. Due to space constraints, we leave the proof to

Appendix [A]

Proposition 3.2. Let k € N. Let M € Jyx and ¥ be an alphabet. Then there
exists a constant ¢ € Nsqg such that any program over M on ¥X™ for n € N is
equivalent to a program over M on X" of length at most ¢ - n/*/21.

In particular, P(J) = P(Jx,nl*/31) for all k € N.

4 Regular Languages in P(J)
The second part of our investigation of the computational power of programs

over monoids in J is dedicated to understanding exactly what regular languages
can be p-recognised by monoids in J.



4.1 Non-tameness of J

It is shown in [] that P(J) N Reg € £(QJ), thus giving an example of a well-
known subvariety of A for which p-recognition allows to do unexpected things
when recognising a regular language. How far does this unexpected power go?

The first thing to notice is that, though none of them is in £(QJ), all
languages of the form Y*u and uX* for ¥ an alphabet and v € T are in
P(J). Indeed, each of them can be recognised by a sequence of constant-length
programs over the syntactic monoid of u L ¥*: for every input length, just
output the image, through the syntactic morphism of w L 3*, of the word made
of the |ul first or last letters. So, informally stated, programs over monoids in
J can check for some constant-length beginning or ending of their input words.

But they can do much more. Indeed, the language (a + b)*ac™ does not
belong to £(QJ) (compute the stable monoid), yet it is in P(J). The cru-
cial insight is that it can be program-reduced in linear length to the piecewise
testable language of all words over {a,b,c} having ca as a subword but not
the subwords cca, caa and cb by using the following trick (that we shall call
“feedback-sweeping”) for input length n € N: read the input letters in the order
2,1,3,2,4,3,5,4,...,n,n—1, output the letters read. This has already been ob-
served in [8 Proposition 5]; here we give a formal proof of the following lemma,
to be found in Appendix

Lemma 4.1. (a + b)*ac™ € P(J,n).

Using variants of the “feedback-sweeping” reading technique, we can prove
that the phenomenon just described is not an isolated case.

Lemma 4.2. The languages (a+b)*ac™, (a+b)*acTa(a+b)*, ctala+b)*act,
(a+ b)*bact and (a+b)*act (a + b)*ac™ do all belong to P(J) \ L(QJ).

Hence, we are tempted to say that there are “much more” regular languages
in P(J) than just those in £(QJ), even though it is not clear to us whether
L(QJ) € P(J) or not. But can we show any upper bound on P(J) N Reg? It
turns out that we can, relying on two known results.

First, since J € DA, we have P(J) C P(DA), so Theorem 6 in [§], that
states P(DA) N Reg = L(QDA), implies that P(J) N Reg C L(QDA).

Second, let us define an important superclass of the class of piecewise test-
able languages. Let ¥ be an alphabet and uy,...,u; € X7 (k € N5g); we define
[ug,...,ug] = Z*ur X% - - - T*up X*. The class of dot-depth one languages is the
class of Boolean combinations of languages of the form ¥*u, uX* and [uq, . . . , ug]
for ¥ an alphabet, k € Ny and u,ug,...,ux € X7. The inclusion-wise smal-
lest variety of semigroups containing all syntactic semigroups of dot-depth one
languages is denoted by J * D and verifies that £(J x D) is exactly the class of
dot-depth one languages. (See [19, 11}, [16].) It has been shown in [I1 Corollary
8] that P(J * D) N Reg = L(Q(J x D)) (if we extend the program-over-monoid
formalism in the obvious way to finite semigroups). Now, we have J C J x D,
so that P(J) € P(J * D) and hence P(J) NReg C L(Q(J xD)).

To summarise, we have the following.

Proposition 4.3. P(J) NReg C L(QDA) N L(Q(J xD)).

In fact, we conjecture that the inverse inclusion does also hold.



Conjecture 1. P(J)NReg = L(QDA) N L(Q(J xD)).

Why do we think this should be true? Though, for a given alphabet 3, we
cannot decide whether some word u € X7 of length at least 2 appears as a factor
of any given word w in ¥* with programs over monoids in J (because L*uX* ¢
L(QDA)), Lemma and the possibilities offered by the “feedback-sweeping”
technique give the impression that we can do it when we are guaranteed that
u appears at most a fixed number of times in w, which seems somehow to be
what dot-depth one languages become when restricted to belong to L(QDA).
This intuition motivates the definition of threshold dot-depth one languages.

4.2 Threshold dot-depth one languages

The idea behind the definition of threshold dot-depth one languages is that
we take the basic building blocks of dot-depth one languages, of the form
[u1,...,ux] for an alphabet ¥, for k € Nyg and uy,...,u; € X1, and restrict
them so that, given [ € N5, membership of a word does really depend on the
presence of a given word u; as a factor if and only if it appears less than [ times
as a subword.

Definition 4.4. Let X be an alphabet. For all u € ©* and [ € Ny g, we define
[u], to be the language of words over ¥ containing u' as a subword or u as a
factor, i.e. [u], = T*uX*Uu! W E*. Then, for all uy,...,u; € T (k € N,k > 2)
and | € Ny, we define [uy, ..., ux]; = [w1]; - - - [ur);-

Obviously, for each ¥ an alphabet, & € Nso and uy,...,u; € X7, the
language [u1, ..., u;]; equals u; - - - up LW X*. Over {a,b, c}, the language [ab, |,
contains all words containing a letter ¢ verifying that in the prefix up to that
letter, ababab appears as a subword or ab appears as a factor. Finally, the
language (a+b)*ac™ over {a, b, c} of Lemmais equal to [c, a]QCﬂ[c, b]QCﬁ[ac]Q.

We then define a threshold dot-depth one language as any Boolean combina-
tion of languages of the form ¥*u, u¥X* and [u4, ..., ux); for 3 an alphabet, for
k,l € Nyg and w,uq,...,u; € 2T,

Confirming the intuition briefly given above, the technique of “feedback-
sweeping” can indeed be pushed further to prove that the whole class of threshold
dot-depth one languages is contained in P(J), and we dedicate the remainder
of this section to prove it. Concerning Conjecture our intuition leads us
to believe that, in fact, the class of threshold dot-depth one languages with
additional positional modular counting is exactly L(QDA) N L(Q(J x D)). We
simply refer the interested reader to Section 5.4 of the author’s Ph.D. thesis [7],
that contains a partial result supporting this belief, too technical and long to
be presented here.

Let us now move on to the proof of the following theorem.

Theorem 4.5. Every threshold dot-depth one language belongs to P(J).

As P(J) is closed under Boolean operations (Proposition , our goal is to
prove, given an alphabet ¥, given [ € Nyg and uq,...,u; € X7 (k € N5g), that

[u, ..., ug], is in P(J); the case of *u and uX* for u € XV is easily handled
(see the discussion at the beginning of Subsection . To do this, we need to
put [ui,...,ux], in some normal form. It is readily seen that [ui,...,us|, =

Uql,---,qu{l,l} LEQl o Léfjk ) where the L(l), qi)’s are defined thereafter.

(i,



Definition 4.6. Let 3 be an alphabet.
XruXt ifa<l

For all u € ¥*, 1 € Ny and « € [I], set L = . .
(w,e) u' LW YX*  otherwise

Building directly a sequence of programs over a monoid in J that decides
L&)qu) e &)k’qk) for some alphabet ¥ and ¢i,...,qx € {1,1} seems however
tricky. We need to split things further by controlling precisely how many times
each u; for i € [k] appears in the right place when it does less than [ times.
To do this, we consider, for each a € [I]*, the language R{(u1,...,uy) defined

below.

Definition 4.7. Let X be an alphabet.

For all uy,...,u; € X% (k € Nxg), | € N, a € [I]*, we set
Rif(up, ..., ug) =(ug® - - up™) W E*N
ﬂ (g™ ™, W E*)E .
i€ [k],a; <1
Now, for a given a € [I]¥, we are interested in the words of R®(u1,...,ux)

such that for each i € [k] verifying «; < [, the word u; indeed appears as a factor
in the right place. We thus introduce a last language S{*(u1, ..., ux) defined as
follows.

Definition 4.8. Let ¥ be an alphabet.
For all uy,...,ur € ¥1 (k € Nug), I € N, a € [I]F, we set

Si(uy, ... ug) = ﬂ ((ur® o @ )WE* )y (g @ - up ™ )LUE™).
i€[k],0; <l

We now have the normal form we were looking for to prove Theorem
[u,...,ux); is equal to the union, over all a € [I]*, of the intersection of
RY(uq,...,ux) and Sp*(u1,...,ur). Though rather intuitive, the correctness
of this decomposition is not so straightforward to prove and, actually, we can
only prove it when for each i € [k], the letters in u; are all distinct. (The tedious
proof is to be found in Appendix )

Lemma 4.9. Let ¥ be an alphabet, | € Nsg and uy,...,u, € X" (k € Nyg)
such that for each i € [k], the letters in w; are all distinct. Then,

l l
U Lgil,qu“LEquk): U @B (u,. o) 0 S (ua, o ug))
q1s--qr€{1,1} a€ll]k

Our goal now is to prove, given an alphabet ¥, given ! € Nyg and uy,...,ux €
¥t (k € Nsg) such that for each i € [k], the letters in u; are all distinct, that
for any a € [I]*, the language R (u1, ..., ur) NS (u1, ..., ug) is in P(J); closure
of P(J) under union (Proposition consequently entails that [u,...,ux], €
P(J). The way RY(uq,...,ux) and Sf(u1,...,ux) are defined allows us to
reason as follows. For each ¢ € [k] verifying a; < [, let L; be the language
of words w over X containing x; 1u;**x; 2 as a subword but not xiyluio‘iﬂxi,g
and such that w = yju;y2 with y1 € 2,1 W X" and yp € z;2 W X*, where
il = w® ot and x50 = w0 ™ . If we manage to prove



that for each i € [k] verifying a; < I we have L; € P(J), we can conclude that
Rif(ur, .. ue) O S (s ug) = (w® ™) WS O (;eppy,a,< Li does
belong to P(J) by closure of P(J) under intersection, Proposition The
lemma that follows, the main lemma in the proof of Theorem exactly shows
this. The proof crucially uses the “feedback sweeping” technique, but note that
we actually don’t know how to prove it when we do not enforce that for each
i € [k], the letters in u; are all distinct.

Lemma 4.10. Let ¥ be an alphabet and v € X1 such that its letters are all
distinct. For all o € Nsg and x1,x2 € X, we have

(z1u®z2) W S N ((z1u* T a) W E*)C N (27 W Eu(zo W E*) € P(J) .

Sketch. Let ¥ be an alphabet and u € X7 such that its letters are all distinct.
Let a € Nyg and x1, 22 € ¥*. We let

L = (z1u®z2) WE* N ((z1u*as) W E*)C N (21 WX u(rg W X*) .

If |u| = 1, the lemma follows trivially because L is piecewise testable and hence
belongs to £(J), so we assume |u] > 1.

For each letter a € X, we shall use 2 |u| — 1 distinct decorated letters of the
form a(¥) for some i € [0,2 |u| —2], using the convention that a(®) = a; of course,
for two distinct letters a,b € ¥, we have that a( and b\%) are distinct for all
i,7 € ]0,2|ul —2]. We denote by A the alphabet of these decorated letters. The
main idea of the proof is, for a given input length n € N, to build an A-program
¥,, over X" such that, given an input word w € X", it first ouputs the |u| — 1
first letters of w and then, for each ¢ going from |u| to n, outputs w;, followed by
(ful~1) (a “sweep” of |u|—1 letters backwards down to position i —|u|+

i—|ul+1
1, decorating the letters incrementally) and finally by wglf‘glﬁ e wz@luld) (a

“sweep” forwards up to position i, continuing the incremental decoration of the
letters). The idea behind this way of rearranging and decorating letters is that,
given an input word w € X", as long as we make sure that w and thus ¥,,(w) do
contain x1u®ry as a subword but not z1u®"1xs, then ¥, (w) can be decomposed

as ¥, (w) = y12y2 where y; € z1 WY*, yo € oI X* and |y1], |y2| are minimal,

\(i|)*1 RSN I uﬁ}““%

some 3 € [a] if and only if w € (z1 W X*)u(xe LW X*). This means we can check
whether w € L by testing whether w belongs to some fixed piecewise testable
language over A.

The full proof can be found in Appendix O

wfi)l ... w

with z containing u®u =8 as a subword for

As explained before stating the previous lemma, we can now use it to prove
the result we were aiming for. The detailed proof can be found in Appendix

Proposition 4.11. Let ¥ be an alphabet, | € Nsg and uy,...,u; € X7 (k €
N.o) such that for eachi € [k], the letters in u; are all distinct. For all o € [I)*,
we have R (uq,. .., uk) NS (ur, ..., ug) € P(J).

We thus derive the awaited corollary.

Corollary 4.12. Let X be an alphabet, | € Nug and uy, ..., u,€XT (k € Nyg)
such that for each i € [k], the letters in u; are all distinct. Then, [u1,...,ug]; €

P(I).

10



However, what we really want to obtain is that [u1,...,u;], € P(J) without
putting any restriction on the w;’s. But, in fact, to remove the constraint that
the letters must be all distinct in each of the u;’s, we simply have to decorate each
of the input letters with its position minus 1 modulo a big enough d € N+ (. This
finally leads to the following proposition; as usual, the proof is in Appendix [B]

Proposition 4.13. Let ¥ be an alphabet, | € Nsg and uy,...,u; € 7 (k €
Nso). Then [uy, ..., ui], € P(J).

This finishes to prove Theorem by closure of P(J) under Boolean com-
binations (Proposition and by the discussion at the beginning of Subsec-
tion (411

5 Conclusion

Although P(J) is very small compared to AC®, we have shown that programs
over monoids in J are an interesting subject of study in that they allow to
do quite unexpected things. The “feedback-sweeping” technique allows one to
detect presence of a factor thanks to such programs as long as this factor does
not appear too often as a subword: this is the basic principle behind threshold
dot-depth one languages, that our article shows to belong wholly to P(J).

Whether threshold dot-depth one languages with additional positional mod-
ular counting do correspond exactly to the languages in L(QDA)NL(Q(J x D))
seems to be a challenging question, that we leave open. In his Ph.D. thesis [7],
the author proved that all strongly unambiguous monomials (the basic building
blocks in £(DA)) that are imposed to belong to £(J * D) at the same time are in
fact threshold dot-depth one languages. However, the proof looks much too com-
plex and technical to be extended to, say, all languages in L(DA) N L(J x D).
New techniques are probably needed, and we might conclude by saying that
proving (or disproving) this conjecture could be a nice research goal in algebraic
automata theory.

Acknowledgements The author thanks the anonymous referees for their
helpful comments and suggestions.
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A Missing Proofs from Section

A.1 Proof of Proposition 3.1

Upper bound. We start with the upper bound. Given k € N, we define the
alphabet Y, = {e,#} U{L;, T; | I € [k]}; we are going to prove that for all
k € N there exists a language Z, € PT ox+1(Yy) such that for all A = (o,,)nen
sequences of k-selectors, there exists a program-reduction from La to Zj of
length at most 2- (k+1)7%-n**!. To this end, we use the following proposition
and the fact that the language of words of length n € N of L is exactly K,/ o ,
when there exists n’ € N verifying n = (k+ 1) - n’ and 0 otherwise.

Proposition A.1. For all k € N there is a language Zy, € PT op1+1(Yy) such
that € ¢ Zy, and for all n € N and all k-selectors o, over n, we have K, ,, =

=|v o .
\IJ(_kl—&-l)m, an(Zk ¥y "l) where W (i1 1).n.,s, 8 a Yj-program on {0,1}¢

of length at most 2 - (k + 1) - n*+1.

k+1)n

Proof. We first define by induction on k a family of languages Zj over the
alphabet Yj,. For k = 0, set Zy = Yy #Y,. For k € Ny, the language Z;, is
the set of words containing each of T; and 1, exactly once, the first before
the latter, and verifying that the factor between the occurrence of T and the
occurrence of Ly belongs to Zy_1, ie. Zy =Y, TpZp_1 LY, ;. A simple
induction on k shows that Z; for k € N is defined by the expression

Y TRV o Ther - Yy ToYy T Yo Y L Yy LY e L g Y o LY

hence it belongs to PT a41(Y,") and in particular does not contain the empty
word €.
Fix n € N. If n = 0, the proposition follows trivially since for any k-selector
oo over 0, we have Ko ,, = 0 and € ¢ Z; otherwise, we define by induction
on k a Yi-program Py (d, o) on {0, 1}(4+*+1D" for every k-selector o over n and
every d € N.
For any j € [n] and o a O-selector over n, which is just a function in B ([n]){=},
let h;o:{0,1} — Y, be the function defined by h;,(0) = e and h;,(1) =
# ifjeo(e)
e otherwise
V3101 defined by f4(0) = gr(0) = e, fr(1) = Ty and gi(1) = Lg. Moreover,
for any k-selector o over n, the symbol o|j for j € [n] denotes the (k — 1)-
selector over n such that for all p’ € [n]*~!, we have i € o|j(p’) if and only if
ica((j,p))
For k € Ny, for d € N and o a k-selector over n, the Y;-program Py(d, o)
on {0, 1}{(@+k+1)7 ig the following sequence of instructions:

. For all £ € Ny, we also let f; and gr be the functions in

(d-n+1, fr)Pe-1(d+1,0/1)(d-n+1,9k)
c(d-n+n, fr)Pe—1(d+1,0n)(d-n+n,gx) .
In words, for each position i € [d-n+1,d-n+n] with a 1 in the (d+1)-th block
of n letters in the input, the program runs, between the symbols T and 1y,

the program Py_1(d 4 1,0]¢) obtained by induction for o|i the (k — 1)-selector
over n obtained by restricting o to all vectors in [n]* whose first coordinate is i.
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For k = 0, for d € N and o a 0-selector over n, the Yy-program Py(d, o) on
{0, 1}(4+1) is the following sequence of instructions:

(d-n+Lhio)(d n+2heg) - (d-n+nhys).

In words, for each position ¢ € [d-n +1,d-n + n] with a 1 in the (d + 1)-th
block of n letters in the input, the program outputs # if and only if (i — d - n)
does belong to the set o(e).

In short, Py(d, o) is designed so that for any w € {0, 1}(4T++1)" the word
Py (d,o)(w) belongs to Zj, if and only if the last (k + 1) - n letters of w form a
word of K, ..

A simple computation shows that for any k& € N, any d € N and o a k-selector
over n, the number of instructions in Py(d, o) is at most 2 - (k + 1) - nF+1.

A simple induction on k shows that for any k € N and d € N, when running
on a word w € {0, 1}(d+k+1)'”, for any o a k-selector over n, the program
Pi(d,o) returns a word in Zj, if and only if when v u® . u®) v are the
last k + 1 consecutive blocks of n letters of w, then u(,u® ... u® each
contain 1 exactly once and define the vector p in [n]* where for all i € [k], the
value p; is given by the position of the only 1 in u(¥), verifying that there exists
J € on(p) such that v; is 1.

Therefore, for any k € N and o, a k-selector over n, if we set ¥(x41).n,0, =

=V o .
Pk(0,0'n), we have K”Jn = \I’acl-l-l)%,an(zk | e n‘) where \I/(k-‘rl)»n,o'n 1S a
Yi-program on {0, 1}(*+1) ™ of length at most 2 - (k + 1) - nF*1. O

Consequently, for all £ € N and any sequence of k-selectors A, since the
language Zj, is in PTak11(Y}") and thus recognised by a monoid from Jaxy1,
we have, by Proposition that La € P(Jak41,n" ).

Lower bound. For the lower bound, we use the following claim, whose proof
can be found in [8, Claim 10].

Claim A.2. For all i € N5y and n € N, the number of languages in {0,1}"
recognised by programs over a monoid of order i on {0,1}™, with at most | € N
instructions, is upper-bounded by ittt (n -2

If for some k € N and ¢ € [a] with a € N5, we apply this claim for all n € N
and | = o~ ((k + 1) - n)*¥, we get a number y;(n) of languages in {0, 1}(+1n
recognised by programs over a monoid of order i on {0, 1}(k+1)'" with at most
[ instructions that is in 20" log2(n)) " which is asymptotically strictly smaller
than the number of distinct K, ,, when the k-selector o, over n varies, which
. k1, . ket
is 2™, ie. pi(n)isino(2™ ).

Hence, for all j € N5, there exist an n; € N and 7; a k-selector over n; such
that no program over a monoid of order ¢ € [j] on {0, 1}(k+1)'”j and of length
at most j - ((k + 1) - n;)* recognises Ky, ;- Moreover, we can assume without
loss of generality that the sequence (n;);en., is increasing. Let A = (0y,)nen be
such that o, = 7; for all j € N5¢ and o,,: [n]* — B([n]), p — 0 for any n € N
verifying that it is not equal to any n; for j € N5y. We show that no sequence
of programs over a finite monoid of length O(n*) can recognise L. If this were
the case, then let i be the order of the monoid. Let j € N, j > i be such that for
any n € N, the n-th program has length at most j-n*. But, by construction, we
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know that there does not exist any such program on {0, 1}(k+1)'”J recognising
Ky, +;, a contradiction.

This implies that for all £ € N, we have P(J,nk) C P(J,nk“) and addi-
tionally that for all d € N, d < (%1 — 1, we have P(and) - P(and“), since
any monoid from Jgq is also a monoid from Jy.

A.2 Proof of Proposition |3.2

Actually, the equivalent shorter program we give is even a subprogram of the
original one, i.e. a subsequence of the latter. For P some program over a
finite monoid M, we may denote by £p the function that associates to each
possible input word w the word in M P! obtained by successively evaluating the
instructions of P for w.

Observe that given P a program over some finite monoid M on X" for n € N
and ¥ an alphabet, a subprogram P’ of P is equivalent to P if and only if for
every language K C M* recognised by the evaluation morphism 7y, of M,
the unique morphism from M* to M extending the identity on M, we have
ép(w) € K & &p/(w) € K for all w € £™. Moreover, every language recognised
by nas is precisely a language of PT(M*) when M € Jx for some k € N.

The result is hence a consequence of the following lemma and the fact that
every language in PT(M*) is a union of ~-classes, each of those classes cor-
responding to all words over M having the same set of k-subwords, that is
finite.

Lemma A.3. Let ¥ be an alphabet and M a finite monoid.

For all k € N, there exists a constant ¢ € Nsq verifying that for any program
P over M on X" for n € N and any word t € M*, there exists a subprogram Q
of P of length at most ¢ - n'*/21 such that for any subprogram Q' of P that has
Q as a subprogram, we have that t is a subword of Ep(w) if and only if t is a
subword of {gr(w) for all w € L.

Proof. A program P over M on X" for n € N is a finite sequence (p;, f;) of
instructions where each p; is a positive natural number which is at most n and
each f; is a function from ¥ to M. We denote by [ the number of instructions
of P. For each set I C [I] we denote by P[I] the subprogram of P consisting
of the subsequence of instructions of P obtained after removing all instructions
whose index is not in I. When I = [i, j] for some i, j € [I], we may write P[i, j]
instead of P[[].

We prove the lemma by induction on k, fixing the constant to be ¢, =
k! |2|U€/21 for a given k € N.

The intuition behind the proof for a program P on inputs of length n and
some t of length at least 3 is as follows. Given [ the length of P, we will select
a subset I of the indices of instructions numbered from 1 to [ to obtain P[I]
verifying the conditions of the lemma. Consider all the indices 1 < i1 < is <

- < ig < I that each correspond, for some letter a and some position p in
the input, to the first instruction of P that would output the element ¢; when
reading a at position p or to the last instruction of P that would output the
element t; when reading a at position p. We then have that, given some w as
input, ¢ is a subword of {p(w) if and only if there exist 1 <y < § < s verifying
that the element at position i., of £p(w) is t1, the element at position is of £p(w)
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is t, and tp---tx_1 is a subword of {p; 4145—1)(w). The idea is then that if
we set I to contain iq,149,...,7s as well as all indices obtained by induction for
Plij+ 1,441 — 1] and to---tgforall 1 < j<s—land 1 < a < f <k, we
would have that for all w, the word t is a subword of {p(w) if and only if it
is a subword of {p7j(w), that is {p(w) where only the elements at indices in [
have been kept. The length upper bound of the order of n!*/21 would be met
because the number of possible values for j is s — 1, hence at most linear in n,
and the number of possible values for (¢, 8) is quadratic in k, a constant.

The intuition behind the proof when ¢ is of length less than 3 is essentially
the same, but without induction.

Inductive step. Let £ € N,k > 3 and assume the lemma proven for all
k' € NJk' < k. Let P be a program over M on X" for n € N of length [ € N
and some word t € M*.

Observe that when n = 0, we necessarily have P = ¢, so that the lemma is
trivially proven in that case. So we now assume n > 0.

For each p € [n] and each a € ¥ consider within the sequence of instructions
of P the first instruction of the form (p, f) with f(a) = ¢; and the last instruction
of that form with f(a) = g, if they exist. We let I(; ;) be the set of indices
of these instructions for all a and p. Notice that the size of I ;) is at most
2% n.

Let s = |I(1,k)| and let us denote I(y ) = {i1,i2,...,4s} where i; < iy <
.- < ig. Given a, 8 € [k], we also set t(*#) =t t,,1---ts. For all a,f € [K]
such that 1 < a < 8 <k and j € [s — 1], we let J; (o ) be the set of indices of
the instructions within P[ij +1,7;41 — 1] appearing in its subprogram obtained
by induction for P[i; 4+ 1,441 — 1] and ¢(*5).

We now let I be the union of I(y ) and J; , 5 = {e+1i; | e € Jj(a,p} for
all o, 8 € [k] such that 1 < o < 8 < k and j € [s — 1] (the translation being
required because the first instruction in P[i; + 1,4;41 — 1] is the (¢; + 1)-th
instruction in P). We claim that @ = P[I], a subprogram of P, has the desired
properties.

First notice that by induction the size of J} , 5 for all o, § € [k] such that

l<a<fB<kandje€ [s—1]is upper bounded by
(B — a+ 1)l [p|[E=a+D/2] p[B-at))/2] < (o)1 |p|[*=2/2] p(k=2)/2]

Hence, the size of I is at most

s—1
Tawl+> D

j=11<a<p<k

T} o)

k—1)- (k-2 _
<2 %) n+ (28 n—-1)- % (ke —2)1 - x| [B=2/21 g [(h=2)/2]

(k-1 _
<218 -n+ 215 -n-1)- % (k—2)!- mﬁk 2)/21 ) [(k=2)/2]
<kl || R/ k2] = ) Ly TR/2]
as [{(0.8) e N* |1 <a < B <k} =300, (k —j) = X527 = B2 and
2|8 n< A |E|W€72)/2W -nl(#=2)/21 since k > 3, so that P[I] has at most the
required length.
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Let Q' be a subprogram of P that has ) as a subprogram: it means that
there exists some set I’ C [I] containing I such that Q' = P[I’].

Take w € X™.

Assume now that t is a subword of {p(w). It means that there exist r1, 79, ...,
r € [I], 11 <72 <--+ <y, such that for all j € [k], we have fr (wp, ) =1;. By
definition of Iy 1), there exist 7,6 € [s],y < d, such that i, <7y <7 < is and
fi,(wp,) =t1 and fi,(wp,, ) = tx. For each j € [,0 —1], let m; € [2,k] be the
smallest integer in [2, k — 1] such that i; < Tm; < ij+1 and k if it does not exist,
and M; € [1,k —1] be the biggest integer in [2, £ — 1] such that i; < ry;, <iji1
and 1 if it does not exist. Observe that, since for each j € [v,6 — 1], we
have t(mi-M;i) = t(k1) = ¢ if there does not exist any o € [2,k — 1] verifying
ij < 1o < ijy1, it holds that ¢+~ = Hj;i tmaMi) - For all j € [y, — 1],
we have that for any set J C [ij11 —4; — 1] containing U, ,<p<k Jj,(ap): the
word t("5:Mi) is a subword of i (wpij)gp[ij+17ij+l_1][J] (w) when m; < k and
Tm; = 1j, and of {pi, 41,4, ,—1)(7) (w) otherwise. Indeed, let j € [y,d — 1].

o If mj < k and ry, = ij, then fi (wp, ) = fr, (wp, ) = tm; and
1y = Tm; < my41 < oo < Ty < L1, SO t(mi+1.M;) g o subword of
€Pli;+1,i;4,—1)(w). This implies, directly when m; = M; or by induction
otherwise, that for any set J C [i; 11 —i;—1] containing U, ., <5<y, Jj.(a5)
the word ¢(™i+t1.M;) is a subword of &Pli;+1,i;,1—1)(7)(w). This implies in
turn that t(™-M) is a subword of i (wpij E Pl 41,641 1)) (W)-

e Otherwise, when m; = k, there does not exist any o € [2, k — 1] verifying
ij <16 < ij41, 50 t(m3:M;) = ¢ is trivially a subword of EPli;+1,i541 1)1 (W)
for any set J C [ij41 — i; — 1] containing U, . ,<s<k Jj,(a,p)- And when
mj < k but rp,, # 1, it means that Tm; > 5, hence ij < Ty, < Tm;41 <

- < ry; < g1, SO t(m3:M;) s a subword of §Pli;+1,i;41—1)(w). This

implies, by induction, that ¢(™i-3) is a subword of EPlij+1,i541 1117 (W)

for any set J C [ij1 —4; — 1] containing U, _,<g<x /j,(a.5)-

Therefore, using the convention that 7o = 0 and i,41 = [ + 1, if we define, for
each j € [0, s], the set I} = {e —i; [e € I';i; < e <i;;1} as the subset of I" of

elements strictly between i; and i1 translated by —i;, we have that ¢(*=1) is
a subword of

€P[i7+1,iﬂ,+1fl][lg] (w)fz‘wl (wm7+1 )6P[i7+1+1,i7+271][11{+1} (w)---
fié—l(wpi571 )EP[1‘571+1,1‘5—1][1(’571](w)
(since we have 7, > 12 > 71 > i), so that, as f; (wl’w) =t; and fj, (wpié) =
t,, we have that t = t;t(2#~ D¢, is a subword of
Ep(1iy—1)(15] (W) fir (Wp, VEPfiy+ 15— 1117 (W) -+ fi, (Wp,, )EPfi,+1,1 (1] (W)
:fp[p](’w) .

Assume finally that ¢ is a subword of &p;j(w). Then it is obviously a
subword of {p(w), as £p(p(w) is a subword of {p(w).

Therefore, ¢ is a subword of {p(w) if and only if ¢ is a subword of g/ (w) =
Eppry(w), as desired.
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Base case. There are three subcases to consider.

Subcase k = 2. Let P be a program over M on X" for n € N of length [ € N
and some word t € M?2.

We use the same idea as in the inductive step.

Observe that when n = 0, we necessarily have P = ¢, so that the lemma is
trivially proven in that case. So we now assume n > 0.

For each p € [n] and each a € ¥ consider within the sequence of instructions
of P the first instruction of the form (p, f) with f(a) = #; and the last instruction
of that form with f(a) = to, if they exist. We let I be the set of indices of these
instructions for all @ and p. Notice that the size of I is at most 2 - |X|-n =
9. |E‘f2/21 nl2/2] = ¢, . pl2/21,

We claim that @ = P[I], a subprogram of P, has the desired properties. We
just showed it has at most the required length.

Let Q' be a subprogram of P that has ) as a subprogram: it means that
there exists some set I’ C [I] containing I such that Q' = P[I'].

Take w € ¥™.

Assume now that t is a subword of £p(w). It means there exist iy,ip €
[l],i1 < iz such that f; (wp, ) = t1 and fi,(wy,,) = ta. By definition of I,
there exist i1’,42" € I, such that i/ < i1 < iy < iy’ and filf(wpil,) =t
and fi,/(wp, ,) = t2. Hence, as fi,/(wp, ,)fir (wp, ,) is a subword of {prj(w)
(because I C I'), we get that t = t1t5 is a subword of {p(j(w).

Assume finally that t is a subword of £pp(w). Then it is obviously a
subword of {p(w), as §py(w) is a subword of {p(w).

Therefore, ¢ is a subword of {p(w) if and only if ¢ is a subword of g/ (w) =
Epry(w), as desired.

Subcase k = 1. Let P be a program over M on X" for n € N of length [ € N
and some word ¢t € M*.

We again use the same idea as before.

Observe that when n = 0, we necessarily have P = ¢, so that the lemma is
trivially proven in that case. So we now assume n > 0.

For each p € [n] and each a € ¥ consider within the sequence of instructions
of P the first instruction of the form (p, f) with f(a) = 1, if it exists. We let I
be the set of indices of these instructions for all a and p. Notice that the size of
I is at most |X|-n=1!- |Z|[1/21 M2l = ¢ pll/21

We claim that @ = P[I], a subprogram of P, has the desired properties. We
just showed it has at most the required length.

Let Q' be a subprogram of P that has ) as a subprogram: it means that
there exists some set I’ C [I] containing I such that Q' = P[I’].

Take w € X"

Assume now that ¢ is a subword of {p(w). It means there exists i € [I] such
that f;(wp,) = t1. By definition of I, there exists i € I such that i < ¢ and
fir(wp,,) = t1. Hence, as fi(wp,) is a subword of {p(;j(w) (because I' C I), we
get that ¢ = ¢; is a subword of {p(p(w).

Assume finally that t is a subword of £ppj(w). Then it is obviously a
subword of {p(w), as {py(w) is a subword of {p(w).

Therefore, ¢ is a subword of {p(w) if and only if ¢ is a subword of g/ (w) =
Epry(w), as desired.

Subcase k = 0. Let P be a program over M on X" for n € N of length [ € N
and some word ¢t € M°.
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We claim that @) = ¢, a subprogram of P, has the desired properties.

First notice that the length of Q is 0 < 0! - |Z\[O/21 -nl021 = ¢y - nl0/21 at
most the required length.

Let Q' be a subprogram of P that has @ as a subprogram. As t € M?, we
necessarily have that ¢ = e, which is a subword of any word in M*. Therefore,
we immediately get that for all w € X", the word ¢ is a subword of {p(w) if and
only if ¢ is a subword of £g/ (w), as desired. O

B Missing Proofs from Section

B.1 Proof of Lemma [4.1]

Proof of Lemma[/.1. Let ¥ = {a,b,c}.
Let
L =caw ¥ N(cca Ly E*)G N (caa LW E*)B N (cb L E*)C

be the language of all words over X having ca as a subword but not the subwords
cca, caa and cb, that by construction is piecewise testable, i.e. belongs to £(J).

We are now going to build a program-reduction from (a + b)*ac™ to L. Let
neN. If n <1, we set U, to be €, the empty >-program on X". Otherwise, if
n > 2, we set

¥, = (2,idg)(1,idx)(3,1idx)(2,ids)(4,ids)(3,ids) - - - (n,ids) (n — 1,idy) .

Let us define s: N — N by s(n) = |¥,,| for all n € N, which is such that

S(n):{o ifn<1

2n — 2 otherwise (n > 2)

for all n € N. Fix n € N.

Let w € ((a+ b)*ac™)™": it means n > 2 and there exist v € (a + b)™* with
n1 € [0,n—2] and ny € [0,n—2] verifying that w = uacc™ and ny +ny = n—2.
We therefore have

v cac?m? when n; =0
n(w) - " 29 th . 0
QUL * + * Upy,y Upy —1 Gy, CAC otherwise (nq > 0) ,

a word easily seen to belong to L=2"~2. Since this is true for all w € ((a +
b)*act)=", it follows that ((a + b)*act)=" C W, }(L=5().

Let conversely w € W, (L=*(")). Since this means that ¥, (w) € L= we
necessarily have n > 2 as it must contain ca as a subword, so that

U, (W) = wowi WawaWaws -+ Wy Wp—1 -

Let 4, j € [n] verifying that w; = ¢, that w; = a and w;w; is a subword of ¥, (w).
This means that j > i—1, and we will now show that, actually, j = i—1. Assume
that j > i+2; by construction, this would mean that w;w;w; = caa is a subword
of ¥, (w), a contradiction to the fact it belongs to L. Assume otherwise that
7 = i+ 1; by construction, this would either mean that w;w;_jw;;iw; is a
subword of ¥, (w), which would imply one of caa, cba and cca is a subword of
U, (w), or that w;11w;w;12w; 1 is a subword of ¥, (w), which would imply one

20



of caa, cba and cca is a subword of ¥, (w), in both cases contradicting the fact
VU, (w) belongs to L. Hence, we indeed have j = i — 1, and in particular that
i > 2. Now, by construction, for each ¢ € [i — 2], we have that wiw;w;—1 = wica
is a subword of ¥, (w) € L, so that w; cannot be equal to ¢. Similarly, for
each t € [i + 1,n], we have that w;w;_1w; = caw; is a subword of ¥,,(w) € L,
so that w; must be equal to ¢. This means that w; - w;—o € (a + b)* and
Wiyl Wy € ¥, so that w € (a + b)*acc* = (a + b)*ac™. Since this is true for
all w € UL (L=(), it follows that ((a + b)*act)=" D W-1(L=5("),
Therefore, we have that ((a + b)*act)=" = W_1(L=5(") for all n € N, so
(¥),)nen is a program reduction from (a + b)*act to L of length s(n). So
since L € L(J), we can conclude that (a + b)*act € P(J,s(n)) = P(J,n) by
Proposition [2.2 O

B.2 Proof of Lemma [4.9]

Proof of Lemma[/.9 Let ¥ be an alphabet and | € N-. We prove it by induc-
tion on k € N5g.

Base case k = 1. Let u; € ¥1 such that the letters in u; are all distinct. It
is clear that

O]
U L(ul,th)
q1e{1,l}
:(E*ulZ* U ull LU Z*)
l
( (u1a1 WM (ug®H w E*)G N E*ulz*) U (uy' w Z*))
1

(RS (1) NS ()

|
—

a1

m

[e 5] [
Induction. Let & € Ny and assume that for all u;,...,u; € X such that
for each i € [k], the letters in w; are all distinct, we have

l l « o
U LEu)l,ql)"'LEzzk,qk) = U (R (ur, o) N SP (ua, -y ue)
a1, qe€{1,1} aEll*

Let now uy,...,ur+1 € L1 such that for each i € [k + 1], the letters in wu;
are all distinct.
Right-to-left inclusion. Let

we | J (RMua,. o urgn) NS (ua, ) -

agll]F+1

Let o € [I]**! witnessing this fact. Asw € R(u1, ..., ugs+1), we can decom-
pose it as w = zy where € (w1 -+ - urp® ) W X* and y € upqq W X* with
ly| being minimal. What we are going to do is, on the one hand, to prove that
T € Rf/(ul, ceyug) N S’f‘/(ul, ..., ug) where &' = (ai,...,ax), so that we can
apply the inductive hypothesis on = and get that there exist q1,...,qr € {1,1}

such that x € L( ) ;

(21 ) Lugan) and, on the other hand, we are going to prove
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O]

(Ukt1,qk+1)"

that there exists gx41 € {1,1} verifying y € L We now spell out the
details.

For each i € [k],c; <[, we have x ¢ (u1®" - u; %L @ )LUS* | otherwise
we would have w = 2y € (ug®* -+ ;% -+ oup @) W X*. Also, for all i €
[k], a; < I, we have that z € ((ulo‘l S %) W E*)Ui((ul'+1ai+l Coeup®) LW
E*), otherwise it would mean that y = y1y2 with |y1| > 0, that xy; € ((ulal e
Uj—q Y1) LW E*)Ui((ul'+1ai+l Ceeup®r) W Z*) and ys € ugy1 ¥+ LI X" contra-
dicting the minimality of |y|. So x € R;"/(ul, ceyug) N Sl‘xl (uq,...,ux), which
means by inductive hypothesis that there exist gi,...,qx € {1,1} such that

T e LEQh(h) o LEL)M%)'

Remember now that the letters in ug4q are all distinct. If agq1 < I, since
w E ((ulo‘1 R W Z*)ukHE*, we must have y € ¥*up1X*. Indeed, by
minimality of |y|, the word y starts with the first letter of wug.q, which has
pairwise distinct letters, so that ugi; cannot appear as a factor of xzy partly
in z and partly in y; so if it were the case that y does not contain wugy
as a factor, we would have x € ((ulo‘1 CoUR™E) LW Z*)ukHE*, so that zy =
w € (U™ .. up U @1 W B a contradiction with the hypothesis on w.

! . 1
Hence, y € LE’U«)k+17ak+l)- If a1 =1, then y € up ™ W X" = LEu)k+1,ak+1)'

1 if i1 < l (1)

So, if we set qx4+1 = , then we get that y € L

[ otherwise (ks 15q041)"
We can conclude that w = zy € LEL)I W L&)k . &)kﬂ -
Left-to-right inclusion. Let w € Uq17---;q1c+1€{17l} LEQuql) .. Lgi‘)k+1ﬂk+l)' The

rough idea of our proof here is to take a1 € [I] the biggest integer in [I] such

1 !
wasw=zy where z € U, .o Lgu)hql) A0

(uk,qn) and y € up41 W
¥* with |y| being minimal. By inductive hypothesis, we know there exists
a € [I]* such that = € R®(uy,...,uk) N S*(uq,...,u;) and we then prove that
Ty € Rl(al""’ak“)(ul, e Ugg1) N kS”l(al’“"O”"“)(u17 ...,ug+1) by distinguishing
between the case in which a1 = [ and the case in which a1 < I. The first
one is easy to handle, the second one is much trickier.

We now spell out the details.

e Suppose we have

wE U L(l) . L(l) L(l)

(u1,q1) (wr,qr) ™ (Uk+1,l)
q1,--q€{1,1}

= O] 0) . .
_( U L(ul,lh) o L(uk,qk)) (ukJrl > ) .
q1s---,qx €{1,1}

O]

Then w can be decomposed as w = xy where z € Uq1 ’’’’’ are{L,l} L(u1 a)

ngk ) and y € uy41'WY* with |y| being minimal. So by inductive hypo-
thesis, there exists a € [I]*¥ such that z € R (u1, ..., ug) NS (u1, . .., uk).

Observe that this means we have w € (u;®! -+ up® ug41!) W X* and for
each i € [k],a; < [, that w ¢ (ug® -+ u; ¥ up® g4 ') W S*, other-
wise it would mean that z € (ug® -+ u;* 1. 4@ ) W $* by minimality
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of |y|. Similarly, for all ¢ € [k],a; < I, it is obvious that we have

w=u1xy € ((ulo‘1 ceeu M) W Z*)ui((ui+1°‘i+1 . ~uka""uk+1l) LL E*)
asw € ((ul"1 -~-ui_lo‘i*l)LLlZ*)ui((ui+1""+1 e uka’*‘)Ll_lZ*) and y € ugy 1!
LW Y*. Hence, w € Rl(al""’a’““)(ul, ey Ug1) ﬂSl(al""’a’““)(ul, ey Ug1)-
Or we have

@ O] (1)
w g_ﬁ U L(uhth) o L(uk,Qk)L(ukJrl;l)
q1,--,qx €{1,1}

= O ) ! .
7( U L(U17q1)...L(uk,qk)>(uk+1 L %)
q1,--,qk €{1,1}

but

0] @ @
we U L(ul’lIl) o L(uk:,qk)L(uk+1,1) :
q1,--,q €{1,1}

Let agq1 € [l — 1] be the biggest integer in [l — 1] such that

@ () Qi1 *
we ( U L(“’lan) o L(Ulmflk)) (uk'i'l LR )
q1,--,q€{1,1}

which does exist by hypothesis. We can decompose w as w = xy where
! l .

T € Uql,---,qu{Ll} Lgu)l,ql)'”LEu)k,qk) and y € upp1®H W X with |y

being minimal. So by inductive hypothesis, there exists a € [I]* such that

x € RY(uq,...,ug) N S{(u1,...,ux). We are now going to prove that

w=uxy € Rl(ahm’akﬂ)(uh ey Ugg1) N Sz(ahm’ak“)(uh ce s Upg1) -

Among the obvious things to observe is that we have w € (u® - - up®*
Up+1*¥+1) LW X* and for each 4 € [k], a; < [, that

« a;+1 « « *
w¢(u1 1...ui1 e U kuk+1 k+1)|_u2 ,

otherwise it would mean that z € (uy®* -+ - u; %+ -+ %) W X* by min-
imality of |y|. Similarly, for all ¢ € [k], o; < [, it is obvious that we have

w=xy € ((ur™ -+ w1 ") W X" )y ((wig1 * - up ™ g “FH) WD)
because z € ((ur™ -+ w1 1) W By ((wig @+ -+ up™) W B*) and
Y € gy @ LT,

Now let us show that we have y € ¥*uy41%*. Assume it weren’t the case:
the letters in ug4; are pairwise distinct and moreover y starts with the
first letter of w11 by minimality of |y|, so ur41 cannot appear as a factor
of zy partly in x and partly in y and, additionally,

wE U L(l) . L(l) L(l)

(u1,q1) (wk,qr) ™~ (Uk+1,1)
q1,--,qr€{1,1}

= 1) (1) N N
N ( U L(ul,ql) o L(uk,qk)>2 U127,
q1,--,qr €{1,1}
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so we would have x € (U,,  ..ciy LEL)MI) : -~L53k,qk))2*uk+12*. But

this either contradicts the maximality of a1 or the fact that

O] 0] . .
v ¢ < U L(uh(h) o L(uk,qk)) (uk+1 TN ) .
q1,--q€{1,l}

Thus, we have w = zy € ((u1® - up™) W E*)up 1 X% as & € (ug™ -
SLORITD IS
Let us finish with the trickiest part, namely showing that w ¢ (u;®*---
U ug 1 L) WS*, Assume that w € (u1® -+ - up**F ugp S T R
We then have that € (u1®! - up®upsq) W X*, otherwise it would
mean that y = yyys with |y1] > 0, with zy; € (ur® -+ upg® ugy1) W
¥* and Yo € up41®*+t W X*, contradicting the minimality of |y|. We
can decompose x as ¥ = x1zy where 1 € (u1® ---up®) W X* and
T2 € upyq W X* with |2o| being minimal. We claim that, actually, 21 €
R (uq, ... ugk) NS (w1, ..., ug), so that by inductive hypothesis, z; €
W O] : 1 . a1
Uql,.‘.,qke{l,l} (wrgr) " Ll qu)- But since @2y € Up1¥+1 71 W $*) this
means that
W= x1x2y € ( U LW W ))(U/k+1ak+1+1 w "),

(u1,q1) (uk g
q1,--aK€{1,0}

contradicting the maximality of aj41 or the fact that
1 l *
w ¢ ( U LEu)hth) o LEU«)k,Qk)) (uk+1l X ) ’
q1,--,qe €{1,1}

So we can conclude that w & (ug® -+ - ug g @1 W B*.

The claim that 1 € R} (u1,...,ux)NSf(u1,. .., ux) remains to be shown.
We directly see that z1 ¢ (ug®t -+ u; @+ .. uka’**)Ll_IE* foralli € [k],a; <
[, otherwise it would mean that x € (u3® -+~ u;® - @) W X%, Let

now i € [k],o; < [, and assume that x1 ¢ ((u1® -~ u;—1®1) W T* )y,
((uiﬂ"”“ e U YR LY E*). We can decompose x1 as x1 = 1,1%1,2 Where
11 € (W™ ) W E* and 19 € (U1 ™+ - up®) WX with |29 1]
being minimal. By hypothesis, we have z11 ¢ ((ulo‘l ceeu_q ) W
Z*)uiE*, otherwise we would have

T1 =T1,1%T1,2 € ((ulo‘l e Ui O” 1) L > ) ((ui+1a’7+1 .. ~uk°"“) L E*) .

As previously, the letters in u; are pairwise distinct, and z1,; ends with
the last letter of u; by minimality of |z1,1], so u; cannot appear as a factor
of  partly in 21 ; and partly in 27 222. Thus, we have that

T1,2%2 € E*Ui((ui_i_la“rl o "U,kak) L1 E*)

because we know that # € ((u1®" -+ w;—1 =" ) WS ) ((wip1 @+ - ug™)

LL E*) But this means that z = z1 121 2w € (ug®* -+ - u; %! --ukak) LI_I
3*, a contradiction. Hence, we can deduce that for all i€ [k, <,
we have z1 € (( XLy Vi 1)Ll_IE”‘)uZ((uZJrl il LLIE*) This

finishes to show that

x1 € R (uq, ..., uk) N ST (ug, ..., ug) -
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Putting all together, we indeed also have that

in the present case.
In conclusion, in both cases,
we | J (RMua,. . urgn) NS (ua, - upg)) -
aEfl]k+
So we can finally conclude that

) AU
U L(quh) L(“k+1v¢1k+l)

q1,e5qe+1€{1,0}

= U (B ugn) OS2 (s ugg)) -
agl]k+1

This concludes the proof of the lemma. O

B.3 Proof of Lemma [4.10]

Before proving Lemma we need a useful decomposition lemma, that is
straightforward to prove.

Lemma B.1. Let ¥ be an alphabet and uw € XF. Then, for all o € N, each
w e u® WE* N (ut wE*)C verifies

a |ul

w = (H H(Ui,juj))y

i=1j=1

where v; ; € (X \ {u;})* for alli € [o] and j € [|u]], and y € Uli‘l (H;;ll ((=\
{u))u;) (2 {ui)”).

Proof. Let ¥ be an alphabet and u € 7.

Take @ € Nog and w € u® W £* N (vt w v+

As w € u® W ¥*, the word w can be decomposed as w = xy where = €
u® W ¥* and |z| is minimal. Then, it is clearly necessarily the case that z =

I, Hljlil(viyjuj) with v; ; € (X \ {u;})* for all i € [o] and j € [|u|]. Moreover,
as oy ¢ u®t W X*, we necessarily have that y ¢ u W ¥*, so that there exists
some i € [|u|] verifying that u; - - - u;_1 is a subword of y but not w; - - - u;. Thus,

we have that y € [T,2} (2 \ {w;})u;) (2 \ {ui})*.
This concludes the proof. O

We can now prove Lemma [£.10]

Proof of Lemma[{.10 Let ¥ be an alphabet and u € X7 such that its letters
are all distinct. Let o € Ny and z1, 29 € ¥*. We let

L= (zu®zs) WE* N ((zu*as) w E*)E N (21 W X u(zg W X*) .
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If |u| = 1, the lemma follows trivially because L is piecewise testable and hence
belongs to £(J), so we assume |u| > 1.

For each letter a € X, we shall use 2 |u| — 1 distinct decorated letters of the
form a(?) for some i € 0,2 |u|—2], using the convention that a(®) = a; of course,
for two distinct letters a,b € ¥, we have that a(® and b() are distinct for all
i,7 € [0,2|u| — 2]. We denote by A the alphabet of these decorated letters.

For each i € [0,2 |u] — 2], let

f@:n A
a s a®
For all i € N,i > |u|, we define
jul-1 pul A
@, = (1.9 TT (=3 f9) [1G — ful + 3. 74572
Jj=1 j=2

For all n € N,n < |u|, we define ¥,, = ¢. For all n € N;n > |u|, we define

Jul-1 n
v, = [] GO [T @ -
i=1 i=lu|

Finally, let K be the language of words over A having

[ul -1 Jul

- j +5-2) a—
s | |
j=1 j=2

for some 3 € [a] as a subword but not z1u**1z,.

Claim B.2. The sequence (Vy,)nen of A-programs is a program-reduction from
L to K.

Let

s:N—=+N

if n < |ul
n +—
lu| =1+ (n —|u|+1)-(2|u| —1) otherwise .

It is direct to see that s(n) = |U,| < (2|u| — 1) -n for all n € N.

Therefore, using this claim, (¥,,),cn is a program-reduction from L to K of
length s(n), so since K is piecewise testable and hence is recognised (classically)
by some monoid from J, Proposition [2.2] tells us that L € P(J, s(n)) = P(J,n).

Proof of claim. Let n € N. If n < |ul, then it is obvious that for all w € X",
we have w ¢ (z1 W X*)u(ze W X*) so w ¢ L= and also ¥, (w) = ¢ ¢ K=,
hence L=" = () = ¥;; ' (K=*(")). Otherwise, n > |u|. We are going to show that
=" — \Ilgl(Kzg(n))
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Left-to-right inclusion. Let w € L=". We want to show that ¥, (w) €
K:S(n).

We are first going to show that there exists some 8 € [« such that (g is
a subword of ¥, (w). The fact that w € L= means in particular that w €
(17 W X*)u(xe w ¥*) and we can hence decompose w as w = yj2y2 where
y1 € (z1 W X*) and yo € (22 W X*) with |y;| and |yz| being minimal. It follows
necessarily that z € u® W ¥* N (vt W ¥*)® N S*uX* by minimality of |y;| and

ly2|. By Lemma we have z = ([T, ]_[l;il(v”uj))y where v; ; € (2\{u;})*
for all i € [a] and j € [Jul], and y € UL, (TIZE ((5\ )7 uy) (5\ {uih)* ). We

know the letters in u are all distinct, so this means that there is no 5 € [ — 1]
such that u is a factor of z partly in Hl _1(vﬂ ju;) and partly in H‘ _1(115_5_17] Uj),
and that u cannot appear as a factor of z partly in ]_[J 1(va ju;) and partly
in y either. Hence, since z € X*ud*, by the way we decomposed z, there
necessarily exists B € [a] such that H] 1(1)[“11]) € YruX*. Let v,0 € [n]

such that w. - H] 1(vg]u]) Wi Wye1 = Y1 (H H 1 (viju;)) and
Wea1 " Wy = (Hl 5i1 HJ 1(1)”u]))yy2. By the way f is defined, we have
Ws_|u|+1 "+ Ws = u, because ¢ is the first and only position in w with the letter
uj,,| within the interval [v, 6] verifying that w. - --ws_1 contains wuy - - - uj,—1 as
a subword, and we observe additionally that § > v + |u| — 1 > |u|. This means
that

Ps(w)
:f(O) (wa)f(l)(wsq) .. f(lu‘il)(w6—|u\+1)f(|ul)(wé—\u|+2) .. f(2lu|f2) (ws)
1T (ukie2)
j=1 =2
Moreover,
y—1 B—-1 |ul
H f(0)<wz> =wWi Wy = yl(H H(’U'LJUJD ,
i=1 i=1 j=1
I  FOw) = ws_jupsr - wso1 = w1 - vy
i=0—|u|+1
and

Jul

H f(o)(wi) = Ws41 - Wn H H v; jUj) yy2 .

i=6+1 i=B+1j=1

So as [112 (i, FO)Y T2 a1 (65 FON®s [T 51 (i, f9) is a subword of U,,, we
have that

|u|—1 Ju|

2 —
(p = mu’ H ul(if —j H (a2 yo=by,
j=2

is a subword of ¥, (w).

We secondly show that z3u®!xs cannot be a subword of ¥,,(w). But this
is direct by construction of ¥, otherwise we would have that z;u®t'zy is a
subword of w, contradicting the fact that w € L=".
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Hence, VU, (w) € K=" and since this is true for all w € L=", we have
L=" C \I’;I(K:S(n))

Right-to-left inclusion. We are going to prove the “contrapositive inclusion”.

Let w € ¥™\ L=". We want to show that ¥, (w) ¢ K=5("),

Let us start with the easy cases. If we have w ¢ (xju®xs) LU X*, then it
means that xyu®xs is not a subword of w and hence, by construction of ¥,,, not
a subword of ¥, (w) either, so that there does not exist any 8 € [a] such that
(s is a subword of ¥,,(w). Similarly, if we have w € (z1u®"'zy) LU T*, then it
means that z,u®t'z, is a subword of w and hence, by construction of U,,, a
subword of ¥, (w).

We now assume that w € (z1u®z2) W X* N ((z1u*as) W E*)B while w ¢
(21 W E*)u(xe W X*). We want to show that in this case, there does not exist
any 8 € [a] such that (g is a subword of ¥, (w). Suppose for a contradiction
that such a g exists; our goal is to show, through a careful observation of what
this implies on the letters in w by examining how ¥,, decorates the letters, that
this contradictingly entails z;u®*'zy is a subword of w.

Since (3 is a subword of ¥,,(w), it is not too difficult to see there exist

DLy s Play |+ (B=1)uls Q1s -+ - A3Ju|=2>T1s - - - > T(a—B)-Jul+]a2| € (7]

verifying that

— B-1
Wpy ** Wppey 4 (5-1)-ju) — L1U )
lul—1 [ul
Wqy * " Wegpy—p — U H Ulu|—j Huj ’
=1 =2
_ ,a—f
Wry = Wria gy jultlay) — & L2

and

1, F ) ey 51 s SO (@1, FO) - (qpugs £1O)
(@1 F ) (=1, FD) (Gopug, £ - (g3p)—2, FEM2)
(1o FO) - (P ampy-ful s £ )

is a subword of ¥,,. By construction of ¥,,, we have

D1 < < Plag|+(B-1)Jul <41 < < G < T < < T(a—f)-Jul+|z|

so this implies that w can be decomposed as w = y;zys where y; € xp LU X*,
where z € u® W X" and y» € wp W X*, the positions pi,...,pp,,| corres-
ponding to letters in yi, the positions pu, |41, Play|+(B—1)-ul> Q15 -« - QJu|»
T1,-+sT(a—B)-lu| cOrresponding to letters in z and the positions 7(o—gy.jul+15 - - s
T(a—B)-|u|+|zs| COrTEsponding to letters in yo.

We are now going to show that, in fact, g, < Gopu—1 < @ou < -+ <
3ju|—2 < 71, which implies z € u*™! LI $* and thus the contradiction we are
aiming for. Since w ¢ (z1 W ¥*)u(ze W X*), we have z ¢ Y*uX*, hence as
Wgq,,, = Uy and [u| > 1, there must exist j € [|u| — 1] such that wg, —; # uju|—;
and wy ., —, = Uy, for all v € [0, — 1]. By construction of ¥,,, we know that
Qlul+; = qu| — J (because the instructions with fUY) after an instruction with
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f© querying position p € [n] all query a position at least equal to p — j), but
since ujy|—; # Wq,, —j and Ujy|—j F Uy, = Wg,,—. for all v € [0,7 — 1] as the
letters in u are all distinct, we get that gj,1; > ¢ By (backward) induction,
we can show that for all v € [j + 1, |u| — 1], we have g4+, > ¢ Indeed, given
¢ € [j+1,Jul — 1], we have qu4+,—1 > qju|, either by inductive hypothesis or
directly in the base case « = j+1 by what we have just seen. So by construction
of ¥,,, we know that g+, > g, (because the instructions with @ after an
instruction with f¢~1) querying position p € [n] all query a position at least
equal to p — 1), but since uj,—, # Uy = Wy, as the letters in u are all distinct,
it follows that g4, > gj- Therefore, we have that ggj,—1 > q,|. Moreover,
by construction of ¥,,, we also have gaj,|—1 < @2ju) < -+ < g3ju|—2 < 71 (because
for each ¢ € [0, |u| — 2], the instructions with f(“I*9) after an instruction with
fUul+=1) querying position p € [n] all query a position at least equal to p + 1
and similarly for the instructions with f(°) after an instruction with fl%=2)),
So, to conclude, we have p1 < -+ < o4 (8-1)fu] < @1 <+ < Q| < @luj-1 <
QPlu < < @uj—2 <71 < < T(qm ) ul+|zy| and

Wpr ** Wp oy 14 (g1 ful War = Wapu Wasju)—1 Wazpu) * " Wazu—oWrr * " Wrig gy a4y

-1 B

Tluu U U uT otly, .

=T1U o = T1U

This implies that w € (xqu®T1xy) WE*, a contradiction. So there does not exist
B € o] such that (s is a subword of ¥(w).

Therefore, in every case ¥,(w) ¢ K=°(") and since this is true for all
w € X"\ L=", we have X"\ L=" C W, 1(A%(™ \ K=5(") which is equivalent to
L=" D W L (K=s(),

This concludes the proof of the claim. O

And the one of the lemma. O

B.4 Proof of Proposition 4.11

Proof of Proposition[.11] Let ¥ be an alphabet, [ € Ny and ug,...,u; € &
(k € Nsg) such that for each i € [k], the letters in u; are all distinct. Let
a € [l]k.

For each i € [k] verifying a; < [, we define

Li =(u1® ™) w0 ((wg ™ g™t ™) w Z*)Gﬂ

((ulo‘l s ui,la"*l) L Z*)ui((uiﬂ‘““ s ukak) [WH] E*> .
It is immediate to show that

R (uy, .. yup) NS (ur, .o ug) = (ug™ - up ™) W ¥* N m L; .
i€k],a; <l

By Lemma L; € P(J) for each i € [k] verifying o; < [. Moreover,
since (u1® - - up® ) LU X* obviously is a piecewise testable language, it belongs
to P(J). Thus, we can conclude that R} (uq,...,ux) N S¥(u1,...,ux) belongs
to P(J) by closure of P(J) N Reg under intersection, Proposition O
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B.5 Proof of Proposition [4.13

Proof of Proposition[{.13 Let ¥ be an alphabet, [ € Ny and ug,...,u; € L
(k € N>o).

Let d = max;ey) |us|. If d = 1, then the result is straightforward because
the language [uy, ..., ux], then belongs to £(J), so now we assume d > 2. We
let ¥y = ¥ x Z/dZ and for all w € ¥*, for all i € Z/dZ, we define @' =
Hljill(wj, (j+i—1) mod d). We also let w = w° for all w € X*.

For all v € X7, |v| < d, we define u(v,1) = v and

u(v,l)zvl,...,vm, ......... y U1y« -5 Upp| -

! times

For all v1,...,v € 37 (k' € N5g) such that |v;| < d for each i € [k'], we let

[Ula'”vvk/]l’d: U [’l}vlilv"'a’lj;c/’ik/]l )
i1yl €L/AL

a language over ¥4, that does belong to P(J) by Corollary and closure of
P(J) N Reg under finite union (Proposition [2.1)), because since |v;| < d for each
i € [K'], each v;’ for j € Z/dZ has all distinct letters.

This implies that for all ¢1,...,qx € {1,1}, we have that [u(ui,q1),...,
m(uk, qi)]; 4 does belong to P(J), so that

U [M(ulvch)a-~-7M(Ukan)]l,d
q1,---, qu{l,l}

is a language over 3, belonging to P(J).
Now, it is not so difficult to see that

_ 0 0
b= U B B
q1,--,qr€{1,1}
= {U} € Z’* ’[DE U [N(Uhfh)a-~-7M(Uk7Qk)]l’d} )

q1,--,qk €{1,1}

which allows us to conclude that the sequence (U, ) en of ¥4-programs such that

U, (w) =w for all n € N and w € ¥" is a program-reduction from [u1, ..., ug],
to Uq17___7qk6{1,l}[u(u1, q1), - plug, Qk)]l,d of length n. Hence, [u1,...,u]; does
also belong to P(J) by Proposition O
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