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Abstract
Based on LMDZ4 daily temperature dataset, equidistant cumulative distribution function matching method (EDCDFm) and cumulative
distribution function-transform method (CDF-t) are used to evaluate the ability of models in simulating extreme temperature over central and
eastern China. The future temperature change is then projected. The results show that the EDCDFm and CDF-t methods function effectively
correct the spatial distribution of daily mean temperature and extreme temperature, significantly reduce the biases of the model simulation and
effectively improve the capacity of models for spatial pattern of extreme temperature. However, the cold bias of the CDF-t method in winter is
obviously higher than that of the EDCDFm method, and the temperature change curve of the EDCDFm method is closer to the observation than
that of the CDF-t method. The projection based on the EDCDFm method shows that under the RCP4.5 emission scenario, the temperature in the
study area shows a warming trend. Relative to 1986e2005, the mean temperature is projected to increase by 0.76, 1.84, and 2.10 �C during
2017e2036, 2046e2065, and 2080e2099, respectively. The spatial change for the mean, maximum, and minimum temperature in the three
future periods have good consistency; warming in northern China is higher than that in the south. Uncertainties in temperature projection are
large in the Tibetan Plateau and Sichuan Basin. Frost days decrease significantly, especially in the Tibetan Plateau, and the frost days in the three
periods decrease by more than 15, 30, and 40 d, respectively. The variation of heat wave indice is the smallest; the increase of heat wave is
mainly in eastern China, and the increase in South China is more than 2 d. Besides, under the global warming of 1.5 �C and 2 �C, the response
characteristics of extreme temperature over central and eastern China are also analyzed. The results show that the mean temperature, maximum
temperature and minimum temperature in the study area increase by more than 0.75 �C under 1.5 �C target and over 1.25 �C under 2 �C target,
especially in the northwestern China and the Tibetan Plateau, relative to 1986e2005. Additionally, comparing two warming targets, the dif-
ference of three temperature indices in parts of northeastern China is over 1.5 �C, while more than 3 d for heat wave.

Keywords: EDCDFm method; CDF-T method; Future temperature projection; 1.5 �C and 2 �C global warming
1. Introduction

Climate models are important tools for climate simulation
and projection of future climate change (Zhao, 2006). The
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global model (GCM) cannot accurately describe regional cli-
matic characteristics due to coarse resolution (Gao et al., 2006;
Jiang et al., 2016). Therefore, a regional climate model (RCM)
driven by the outputs of the GCM needs to be applied over an
area of interest to generate finer scale projections of local
climatologies (Xu et al., 2007; Zhang et al., 2008). This
technique is usually referred to as dynamical downscaling.
Some studies (Chen et al., 2011; Ji and Kang, 2015; Yu et al.,
2015; Gao et al., 2016; Yang et al., 2016; Zhang et al., 2017)
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have shown that LMDZ, PRECIS, WRF, and RegCM4 have
good simulation ability for the regional and seasonal scales of
geographical and seasonal variations in temperature and pre-
cipitation in China. However, dynamical downscaling may
remain large errors, on the one hand, as a result of the regional
model itself, such as physical processes, and on the other hand,
having been inherited from the driving GCM (Dosio and
Paruolo, 2011).

The bias correction is an important means to reduce biases
of the model results (Ines and Hansen, 2006; Yang et al.,
2010,2017; Zhou et al., 2014a,b; Tong et al., 2017). One
way of bias correction is to construct a transfer function (TF)
to match the cumulative distribution functions (CDF) of
modelled and observed data from large-scale climatic vari-
ables (e.g. temperature and precipitation), such as CDF-
transform method (CDF-t) and equidistant CDF matching
method (EDCDFm). Michelangeli et al. (2009) first applied
the CDF-t method to GCM outputs fields to project changes in
wind intensity anomalies. Thereafter, many studies have
applied this method to the correction of temperature and
precipitation in different regions, and all of them have a better
correction effect (Lavaysse et al., 2012; Vrac et al., 2012;
Vigaud et al., 2013; Flaounas et al., 2013; Farajzadeh et al.,
2015). The EDCDFm method is proposed on the basis of
the quantile mapping method by Li et al. (2010), and is applied
to the projection of precipitation and temperature field in
northern Europe. The results show that compared with the
quantile mapping method, the proposed method is more sen-
sitive to the reduction in variability and biases. However, these
two methods are rarely applied in China. All relevant studies
are aimed at GCM and lack in biases correction of dynamical
downscaling results (Jiang et al., 2012; Li et al., 2013; Zhou
and Jiang, 2017).

In addition, the 2015 Paris Agreement aims to limit the
global mean temperature increase to below 2 �C or even 1.5 �C
above pre-industrial levels. Relative to the 2 �C global
warming target, the occurrence frequencies and impact of
extreme events under the 1.5 �C target would be drastically
reduced (Schaeffer et al., 2012; Fischer and Knutti, 2015;
Knutti et al., 2016), and thus it's worth getting more atten-
tion. Previous studies analyzed the response characteristics
mainly by the means of GCMs (Jiang et al., 2009; Guo et al.,
2016; Hu et al., 2017; Shi et al., 2018). However, there was not
high credibility in fine features of regional response obtained
by GCMs. In this paper, combining multi-model dynamical
downscaling with bias correction methods could improve the
credibility of regional response.
Table 1

Basic information of models.

GCMs Research center Resolution

bcc-csm1-1-m China, BCC 1.125� � 1.12�

CNRM-CM5 France, CNRM 1.4� � 1.4�

FGOALS-g2 China, IAP 2.8� � 2.8�

IPSL-CM5A-MR France, IPSL 2.5� � 1.27�

MPI-ESM-MR Germany, MPI 1.875� � 1.875�
In this study, based on dynamical downscaling daily mean,
minimum, and maximum temperature data from LMDZ4,
which is nested into five GCMs (bcc-csm1-1-m, CNRM-CM5,
FGOALS-g2, IPSL-CM5A-MR, and MPI-ESM-MR), the
EDCDFm and CDF-t methods are used to evaluate the ability
of the models to simulate extreme surface air temperature over
central and eastern China. On this basis, the better method is
used to project the regional temperature change in the early
(2017e2036), middle (2046e2065), and late (2080e2099)
21st century under the RCP4.5 emission scenario, and analyze
the response characteristics of extreme temperature in the
study area under the global warming 1.5 �C and 2 �C, relative
to 1986e2005.

2. Data and methods
2.1. Datasets
The dynamic downscaling LMDZ4 is the atmospheric
component of the coupled model IPSL-CM5A that participates
in the Coupled Model Intercomparison Project Phase 5
(CMIP5) (Hourdin et al., 2006; Taylor et al., 2012; Dufresne
et al., 2013). The model center is set at 30�N, 110�E; the
range of encryption is 5�e55�N, 85�e135�E; and the simu-
lated horizontal resolution is approximately 60 km and with 19
layers in the vertical direction. Dynamical downscaling daily
mean, minimum, and maximum temperature data from
LMDZ4, which is nested into five GCMs (namely, bcc-csm1-
1-m, CNRM-CM5, FGOALS-g2, IPSL-CM5A-MR, and
IPSL-CM5A-MR) are chosen. Basic information on the
models is shown in Table 1. The data are divided into two
phases: historical (1961e2005) and estimated period
(2006e2100). The previous data are used for calibration and
verification of the bias correction, and the posterior data are
used for projection of future temperature change. The 0.5� �
0.5� daily maximum and minimum temperature datasets,
which are based on the interpolation of 753 meteorological
station observations from the China Meteorological Admin-
istration, are used as observations (Xu et al., 2009). For con-
venience of comparison, the bilinear interpolation method is
used to interpolate the model outputs to the same grid as
observed data. Considering the obvious variation of terrain in
different regions of central and eastern China, we divided the
study area into seven regions to compare the difference be-
tween the global model and the downscaled model for extreme
temperature (Zou and Zhou, 2013; Dong et al., 2015); these
regions are Northeast China (NE, 42�e55�N, 105�e132�E),
RCM Downscaling Resolution

LMDZ LMDZ/BCC 0.6� � 0.6�

LMDZ/CNRM

LMDZ/FGOALS

LMDZ/IPSL

LMDZ/MPI



Fig. 1. Study areas and their topography.
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North China (NC, 35�e42�N, 105�e122�E), Yangtze River
Valley (YZ, 28�e35�N,105�e122�E), Southeast China (SE,
19�e28�N,105�e122�E), Tibetan Plateau (TP, 27�e36�N,
86�e105�E), Southwest China (SW, 22�e27�N, 96�e105�E),
and Northwest China (NW, 36�e50�N, 86�e105�E), as shown
in Fig. 1.
2.2. Extreme temperature indices
In order to comprehensively investigate the EDCDFm and
CDF-t method's abilities in simulating extreme surface air
temperature over central and eastern China, and four extreme
temperature indices are employed. The first two are mean
maximum temperature (TXAV) and mean minimum temper-
ature (TNAV), which can directly describe the model to
simulate the strength of extreme temperature capability. The
third indice is frost days (FD), which describes the length of
frost days in the middle-to-high latitudes. The fourth is heat
wave duration indice (HWDI), which reflects the duration of
summer high temperatures. The specific definitions can be
found in Table 2 (Frich et al., 2002; Jiang et al., 2017).
2.3. Bias correction methods

2.3.1. Cumulative distribution function transform method
(CDF-t)

The CDF-t method is based on the assumption that a
transform function T exists, which establishes the relationship
Table 2

The definition of extreme indices.

Index unit Indicator Definition

TNAV �C Mean Tmin Annual/Seasonal average of daily

minimum temperature

TXAV �C Mean Tmax Annual/Seasonal average of daily

maximum temperature

FD d Frost days Number of days with minimum

temperature less than 0 �C
HWDI d Heat wave

duration

Number of days with daily maximum

temperature 5 �C greater than the base

period for at least five consecutive days
between the CDF of the observed and modelled outputs. Let
FSh stand for the CDF of observed daily temperature data at a
given grid cell over a historical period, and FGh stand for the
CDF of model outputs at the given grid cell for the same
period. FGf and FSf are the CDFs equivalent to FGh and FSh but
for a future period.

TðFGhðxÞÞ ¼ FShðxÞ ð1Þ
Define u ¼ FGhðxÞ, and thus x ¼ F�1

Gh ðuÞ with u2½0; 1�.
Replacing x in Eq. (1) allows the following definition for
transform T:

TðuÞ ¼ FSh

�
F�1
Gh ðuÞ

� ð2Þ
In which T denotes the functional relationship between the

CDF of observation and simulation results over a historical
period. Thus, assuming that relationship in Eq. (2) will remain
valid in the future, and the corrected CDF is given by

FSfðxÞ ¼ FSh

�
F�1
Gh

�
FGfðxÞ

�� ð3Þ
Following Michelangeli et al. (2009), the CDF-t is then

defined in two steps. First, fit non-parametrically the observed
and modelled variables over a historical period and establish
the functional relation between FSh and FSf . Then, use the
modelled projection x and estimate the CDF of the future
climate projection referring to FSf based on Eq. (3). Flaounas
et al. (2013) pointed out that the uncertainty associated with
CDF-t increases significantly when performing seasonal
distinction without beneficial effect of considering the sea-
sonality of the extremes due to smoothed spatial and temporal
variability of the extremes. Therefore, we use the CDF-t
method to monthly correct the daily temperature at the given
grid cell.

2.3.2. Equidistant cumulative distribution function
matching method (EDCDFm)

The EDCDFm method is based on the assumption that for a
given percentile, the difference between the model and
observed value during the historical period also applies to the
future period, which means that the adjustment function re-
mains the same. Meanwhile, the difference between the CDFs
for the future and historical periods is also considered. The
method can be written mathematically as

XGf: adjust ¼ XGf þF�1
Sh

�
FGf

�
XGf

���F�1
Gh

�
FGf

�
XGf

�� ð4Þ
Let FSh and FGh stand for the CDF of observed and models

outputs at a given grid cell over a historical time period,
respectively. FGf is the CDF equivalent of FGh but for a future
period. XGf denotes the future modelled outputs. XGf: adjust

represents the future corrected outputs by the EDCDFm
method. Fig. 2 illustrates the specific principle. Firstly, for a
fixed grid, fit parametrically the historical observation, the
historical modelled outputs and the future modelled outputs
following the normal distribution. Secondly, whenXGf ¼ � 10,
and thus FGfðXGfÞ ¼ 0:2. For the corresponding current
climate, the difference between F�1

Sh ð0:2Þ and F�1
Gh ð0:2Þ is

defined asDx and transferDx into the future period. Finally, the
corrected value is �10þDx.



Fig. 2. Illustration of methodology (OBS: observation; MODC: model simu-

lation for current climate; MODP: model simulation for future projection;

EDCDFm: the corrected values by the EDCDFm method).

Table 3

The time points and study periods of five global models under global warming

at 1.5 �C and 2.0 �C.

Model 1.5 �C warming year 2.0 �C warming year

BCC-CSM1-1-m 2014 (2004, 2024) 2039 (2029, 2049)

CNRM-CM5 2037 (2027, 2047) 2059 (2049, 2069)

FGOALS-g2 2038 (2028, 2048) /

IPSL-CM5A-MR 2017 (2007, 2027) 2034 (2024, 2044)

MPI-ESM-MR 2023 (2013, 2033) 2045 (2035, 2055)

Note: “/” shows that FGOALS-g2 can't achieve 2.0 �C global warming target.
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In this paper, the historical period (1961e2005) is divided
into two parts: the control period (1966e1985), in which the
observation and model data are used to establish the TF, and
the verification period (1986e2005). By outputting the
correction results of the early (2017e2036), middle
(2046e2056), and late (2080e2099) periods of the 21st cen-
tury, we examine the characteristics of future temperature
changes over central and eastern China. The model spreads
(i.e., mean square error between modes) are used to analyze
the uncertainty of the model estimates (Li and Zhou, 2010).
During the validation and projection periods, the average of
the five models before and after the correction is used as the
analysis result.
2.4. Arrival time point of 1.5 �C and 2 �C global
warming target
The global averaged temperature anomalies in the 21st
century under the RCP4.5 emission scenario are dealt by 21-
year running average. The year firstly arriving the 1.5 �C and
2 �C warming target is defined as the 1.5 �C and 2 �C year,
respectively. Selecting the arrival time points and the individual
10 years before and after these points add up to 21 years as the
study period. The response characteristics of extreme tempera-
ture over central and eastern China under the global warming of
1.5 �C and 2 �C are analyzed relative to the pre-industrial period.
Table 3 shows the specific time points and study periods of
five GCMs for the 1.5 �C and 2 �C global warming target.

3. Comparison of various correction methods in current
climate
3.1. Comparison of mean temperature space fields
The observed temperature data and five dynamical down-
scaling outputs during 1966e1985 are used to establish the
transform functions T , respectively. Then, the functional re-
lations were applied to estimate five corrected downscaling
results for 1986e2005. The simulation capabilities of the
EDCDFm and CDF-t methods were evaluated in the study
area by comparing them with the observation data. As shown
in Fig. 3, the multi-model dynamic downscaling can simulate
the spatial distribution of the daily mean temperature (TAV)
over central and eastern China, but an average bias of
�1.15 �C. The cold anomalies in TP, SW, and southeastern
coastal areas are obvious; for example, in the TP and SW
regions, the cold anomalies are more than 3 �C and 2 �C,
respectively. A weak warm bias occurs in the NC and YZ
regions (Fig. 3b). The EDCDFm and CDF-t methods have a
significant improvement in the spatial distribution of TAV
(Fig. 3c and d). The biases in most regions are below 0.5 �C.
Compared with dynamic downscaling, the biases of correction
in the entire study region still show weak cold bias, but the
intensity is significantly reduced and the absolute errors of
TAV reduce to �0.15 �C (Table 4). Northern China shows
weak cold biases and southern China exhibits weak warm
biases, especially in the TP region where the correction effect
is significant and the bias is reduced to 0.07 �C.

In order to further examine the spatial simulation ability of
the EDCDFm and CDF-t methods, the absolute errors of TAV
between observation and simulation during the period
1986e2005 are calculated. Fig. 4 illustrates the absolute errors
before and after correction for TAV during the period
1986e2005 for seven subregions. The results show that the
simulation results of models are poor, especially in the NW
and TP regions, where the median absolute errors are �1 �C
and �3 �C, respectively. The absolute errors after correction
are reduced significantly, as the median absolute errors in all
regions are close to 0 �C, and the range of the 25th and 75th
quantile percentile errors are significantly reduced, especially
in the NW and TP regions where the median is reduced to
0.3 �C and 0 �C. In addition, in most areas, the EDCDFm
method is slightly better than the CDF-t method; for example,
the bias range of the EDCDFm method is less than that of the
CDF-t method, especially in the SE, TP, and SW regions.
3.2. Comparison of TAV annual change
The central and eastern parts of China are located in a
typical monsoon climate region, and the seasonal character-
istics of temperature are obvious. Therefore, investigating the
simulation ability of the annual circle in different regions
before and after correction is necessary. The seasonal changes
in the absolute biases of TAV (Fig. 5) shows that a cold bias of
less than �1 �C occurs in spring, autumn, and winter, as
simulated by dynamical downscaling, while a warm bias



Fig. 3. Spatial pattern of bias between observed mean daily temperature and simulations during 1981e2005: (a) observation, (b) observation minus model

simulation, (c) EDCDFm simulation minus observation, and (d) CDF-t simulation minus observation.

85GUO L.-Y. et al. / Advances in Climate Change Research 9 (2018) 81e92
occurs in the summer, especially in July and August, when the
biases are greater than 0.5 �C (Fig. 5a). The seasonal biases
after EDCDFm method correction are reduced significantly,
and during most of the months, these biases are below 0.5 �C,
indicating that the TAV seasonal change curve is almost
coincident with the observation (Fig. 5a). Although the biases
of the CDF-t method have decreased, a cold bias of more than
1 �C still occurs in January and February.

For the various regions (Fig. 5), simulations of dynamical
downscaling show warm biases in NE, NC, YZ, and NW in
the summer, while other seasons show cold biases, and in
most of the months, the biases are greater than 1 �C. Warm
biases occur during MarcheJune in SC, and are more than
1.5 �C in March and April. However, in the TP and SW re-
gions, the model biases are the largest, and the annual biases
Table 4

Bias between observation and simulation before and after correction for TAV,

TNAV, and TXAV (unit: �C).

Index Obs ave LMDZ EDCDFm CDF-t

TAV 7.13 ‒1.15 ‒0.15 ‒0.15

TNAV 1.84 ‒1.09 ‒0.35 ‒0.33

TXAV 13.51 ‒2.12 0.01 0.04
are mainly cold, especially in winter; for example, the winter
bias in the TP region reaches �5 �C. After the correction of
the EDCDFm method, the biases in each region are signifi-
cantly reduced; specifically, the monthly biases in the YZ, TP,
and SW regions are reduced to less than 0.5 �C. For various
seasons, the EDCDFm method has the most obvious
improvement in winter; for example, in the TP region, the
Fig. 4. Box plot of absolute errors between observed and simulated values for

each region.
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bias is almost 0 �C. The biases of the CDF-t method have
decreased, which is consistent with the result of the EDCDFm
method. In contrast to the correction effect of the two
methods, the temperature change curve of the EDCDFm
method is closer to that of the CDF-t method in most areas,
especially in January and February; for example, the biases of
the EDCDFm method are below 0.5 �C in the NC, NW, and
YZ regions, while the biases after the CDF-t method
correction are still greater than 1 �C.

In summary, the EDCDFm and CDF-t methods can reduce
the biases between the model simulation and the observation,
so that the seasonal variation curve is basically coincident with
the observation, particularly in the TP and SW regions where
the correction effect is remarkable. However, the temperature
change curve of the EDCDFm method is closer to the obser-
vation than that of the CDF-t method.
3.3. Comparison of extreme temperature space fields
To test the simulation capabilities of extreme temperature
before and after correction, the spatial distributions of the
extreme temperature indices during 1986e2005 are
compared with the corresponding observation field, as shown
in Fig. 6. The biases of TNAV and TXAV in the study area
were �1.09 �C and �2.12 �C, respectively (Table 2). Warm
biases are observed in the northern region and cold biases in
the southern region for TNAV. The cold biases are the highest
in the TP and SW regions, reaching 4 �C (Fig. 6b). Although
TXAV in YZ and the Sichuan Basin region shows warm bias,
other areas exhibit cold biases. The biases of the EDCDFm
and CDF-t methods are significantly reduced, and the
Fig. 5. Seasonal change of temperature bias in the different regions before and aft

observation; CDF-t: CDF-t minus observation).
national mean biases of TXAV and TNAV are reduced to less
than 0.35 �C (Table 2). TNAV shows weak cold bias in NE,
Inner Mongolia, and the western region (Fig. 6c and d),
whereas NC, YZ, and SE exhibit warm bias of less than
0.3 �C; however, the warm biases in the Sichuan Basin are
0.3e0.6 �C (Fig. 6c and d). For TXAV (Fig. 6g and h), cold
biases are observed in Inner Mongolia and the northern part
of the TP, and the other regions show a warm bias, which is
relatively large in the SW region.

For the national mean FD, the model simulation is 17.7 d
higher than the observation, while the biases of the two
correction methods are reduced to 5 d. From the spatial dis-
tribution of the biases of FD before and after correction, one
can see that the model-simulated FD in NE are lower than the
observation, and the other regions show positive biases,
especially in the southern TP, YZ, and SW for more than 40 d
(Fig. 6j). After the correction of the two methods, the biases in
most regions are significantly reduced; a large decrease is
observed in the large negative biases in the NE and the large
positive biases in the YZ areas. The biases of the EDCDFm
method are significantly smaller than that of the CDF-t method
in NE, Inner Mongolia, and NW regions.

For HWDI, the model simulations of northern NW, Hetao,
and parts of SE are lower than the observation with negative
biases of more than 4 d, while positive biases are observed in
TP and SW (Fig. 6n). After the correction of the EDCDFm
method (Fig. 6o), the negative biases of NW and the positive
biases of TP and SW are reduced significantly, but no
improvement is observed in the Hetao region. The negative
biases of the CDF-t method have slightly increased in Hetao
and southern TP (Fig. 6p). This result indicates that the same
er correction (LMDZ: model minus observation; EDCDFm: EDCDFm minus



Fig. 6. Spatial pattern of extreme indices for the observed (first column), biases between observation and model (second column), biases between observation and

EDCDFm (third column), and biases between observation and CDF-t (fourth column).
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method has varying effects on different regions, and the biases
of the EDCDFm method is slightly lower than those of the
CDF-t method.

Taylor diagrams are used to assess the performance before
and after correction in simulating the spatial pattern of indices
(Fig. 7). The spatial correlation coefficients of TXAV, TNAV,
and FD between model simulation and observation are
approximately 0.97 and the root mean square error is more
than 0.25 �C. After correction, the correlation coefficients for
the three indices are above 0.99, the relative standard de-
viations are close to 1, and the root mean square errors are
close to 0, which indicates that the performances in simulating
the spatial pattern of TXAV, TNAV, and FD are significantly
improved by correction. For HWDI, the model simulations are
poorer than those of the other three indices, with a spatial
correlation coefficient below 0.75 and relative standard devi-
ation of 0.75. After correction, the spatial correlation
coefficient increases to 0.75 and the relative standard deviation
is close to 1, indicating that the simulation capability of HWDI
improves slightly after the correction.

By comprehensively evaluating the ability of the model to
simulate the TAV and the extreme temperature spatial pattern
before and after the correction, we can observe that the model
can significantly improve the simulation capability of the
temperature spatial pattern over central and eastern China after
the correction of the EDCDFm and CDF-t methods, and we
can reproduce the regional characteristics of the temperature
affected by terrain and atmospheric circulation. Therefore,
projecting the spatial pattern of the future climate by using
EDCDFm and CDF-t correction is a reliable task. In addition,
the cold bias of the CDF-t method in winter is obviously
higher than that of the EDCDFm method, and the temperature
change curve of the EDCDFm method is closer to the obser-
vation than that of the CDF-t method.



Fig. 7. Taylor diagram of extreme indices before and after correction.
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4. Future projections
4.1. Future projection of extreme temperature and its
uncertainties
The preceding results show that the EDCDFm method is
superior to the CDF-t method for temperature. Therefore, the
EDCDFm method is applied to project the future changes of
mean temperature and extreme temperatures in the study area
relative to the baseline in 1986e2005. Notably, differences
occur in the climate distribution between the model simula-
tions and the corrections, but for the climate change signals
relative to the baseline period, the results are consistent before
and after the correction. The projection based on the EDCDFm
method shows that under the RCP4.5 emission scenario, the
temperature in the entire study area shows a warming trend in
the 21st century (Fig. 8). The mean temperature is projected to
increase by 0.76, 1.84, and 2.10 �C with respect to 1986e2005
during 2017e2036, 2046e2065, and 2080e2099, respec-
tively. The spatial change for the TAV in the three future pe-
riods exhibit good consistency, warming in northern China is
higher than that in the south, and warming in the northwest is
higher than that in the northeast, specifically in the northern
part of Xinjiang where the temperature change in the three
periods reaches 1.1, 2.0, and 3.0 �C.

Large uncertainties are observed in the projection of future
climate change. The model spreads (i.e., the mean square error
between modes) are the indicators of uncertainties (Li and
Zhou, 2010). No significant differences are observed in the
distribution of model spreads in China during the three periods
(Fig. 8). The model spreads in the early 21st century are
0e0.4 �C, indicating that the multiple models have fewer
uncertainties for TAV projection. The model spreads in TP and
Sichuan Basin in the middle and late 21st century exceeded
0.4 �C and 0.6 �C, respectively, indicating that the multiple
model uncertainties of the TAV projection change have
increased. The spatial distribution characteristics and distri-
butions of model spreads of TNAV and TXAV are similar to
those of TAV, which show that the temperature increases from
south to north, and the uncertainty in TP and Sichuan Basin
gradually increases from the early to the late 21st century.

FD in the 21st century shows a significant decrease (Fig. 9),
the magnitude of reduction from the early to late 21st century
gradually increased. The reduction magnitude of 26º‒40ºN is
the largest. The FD reduction in TP in the early, middle, and
late 21st century exceeds 15, 30, and 40 d, respectively, while
the reduction magnitude in Guangdong, Guangxi, and Sichuan
Basin is less than 5 d. In TP and the Loess Plateau, the
simulated model spreads of FD are greater than 5 d (Fig. 9),
which indicates that the uncertainties in these regions are
larger. The uncertainties between models from the early to the
end of the 21st century gradually increase.

In the 21st century, HWDI is expected to increase in the
NC, NE, YZ, and SE regions (Fig. 10), especially in SE over
3 d. Meanwhile, in NW and TP, HWDI shows a decreasing
trend. From the early to the late 21st century, the range of
increased heat waves has widened. For the model spreads, the
difference between the models is greater than 0.8 d in NW,
NE, and SE, that is, the model has higher uncertainty.

In summary, under the RCP4.5 emission scenario, TAV,
TXAV, and TNAV over central and eastern China show a
warming trend in the 21st century. In the early, middle, and
late 21st century, TAV is projected to increase by 0.76, 1.84,
and 2.10 �C, respectively. The spatial change for TAV, TXAV,
and TNAV in the three future periods exhibit good consis-
tency, and warming in northern China is higher than that in
the south. Uncertainties in temperature change projection are
large in TP and Sichuan Basin, and uncertainty from the early
to the late 21st century gradually increases. FD decreases
significantly, especially in TP, to more than 15, 30, and 40 d,
and the uncertainty is larger. The variation of the heat wave
indice is the smallest, the heat wave increase mainly occurs
in eastern China, and the heat wave in south China occurs for
more than 2 d.

Wang et al. (2008) have shown that TXAVand TNAV in the
21st century is likely to increase; the increase is expected to be
greater in the north than that in the south, and the FD is much
larger in the Jianghuai region and plateau areas. These con-
clusions are consistent with the results of the four extreme
temperature indices. FD decreases significantly in the YZ and
TP. These conclusions are consistent with the projection re-
sults of the four extreme temperature indices discussed in this
paper.
4.2. Response of extreme temperature under the global
warming of 1.5 �C and 2.0 �C
Considering the high attention of regional response to the
global warming of 1.5 �C and 2.0 �C in Paris Agreement, the
response characteristic of extreme temperature over central
and eastern China under two warming targets are analyzed.
As shown in Fig. 11, TAV, TNAV and TXAV have an



Fig. 10. Spatial distribution of heat wave indice changes relative to 1968e2005: (a) 2017e2036, (b) 2046e2065, and (c) 2080e2099; black dots indicate models

spreads; in the areas without black dots, the model spreads are less than 0.8 d.

Fig. 8. Spatial distribution of mean daily temperature changes relative to 1968e2005: (a) 2017e2036, (b) 2046e2065, and (c) 2080e2099; black dots indicate

models spreads; in the areas without black dots, the model spreads are less than 0.4 �C.

Fig. 9. Spatial distribution of frost days changes relative to 1968e2005: (a) 2017e2036, (b) 2046e2065, and (c) 2080e2099; black dots indicate model spreads; in

the areas without black dots, the model spreads are less than 3 d.
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increasing trend and increase by over 0.75 �C in the study
area under 1.5 �C warming target, especially in the north-
western China and the TP, relative to 1986e2005. Under 2 �C
warming target, three temperature indices increase by more
than 1.25 �C over central and eastern China, and over 3 �C in
parts of TP. It's noted that the addition of temperature are over
0.75 �C in the Huanghuai region and North China, and over
1.5 �C in parts of northeastern China obviously larger than
under 1.5 �C warming target. For HWDI, the increase hap-
pens in North China, Ordos region and southwestern China,
while the slight decrease occurs in northeastern China and TP
under the global warming of 1.5 �C. There is a whole in-
crease of HWDI in the study area and the largest increase in
southwestern China is up to 4 d under the global warming of
2 �C. What's more, addition of HWDI in northeastern China
is more than 3 d larger than under 1.5 �C target and 80% of
models have the consistency in the sign of future change.

Compared with response results of GCM simulations (Jiang
et al., 2009; Guo et al., 2016; Hu et al., 2017; Shi et al., 2018),
the increase of extreme temperature over central and eastern
China with CDF-t method has a similar spatial distribution
decreasing from northwest to southeast, and obviously
changes in TP and Northwest China. However, with difference
in the additional 0.5 �C global warming, the results using
CDF-t more clearly capture that the significantly changed re-
gion is Northeast China.



Fig. 11. Spatial distributions of extreme indices changes over central and eastern China (relative to 1986e2005 period) for global warming at 1.5 �C (left column),

2 �C (middle column) and 2e1.5 �C (right column) in the RCP4.5 emission scenario, black dots indicate 80% of models have the consistency in changes only for

the global warming of 2e1.5 �C.
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5. Summary and conclusions

In this paper, the EDCDFm and CDF-t methods are applied
to the daily mean temperature, minimum temperature, and
maximum temperature data of the dynamical downscaling
simulation. The simulation capabilities of these two methods
on the daily temperature over central and eastern China are
evaluated, and the better correction method is selected to
project the future temperature change and analyze the un-
certainties of future projection in the 21st century under the
RCP4.5 emission scenario. The following conclusions are
drawn:
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(1) The EDCDFm and CDF-t methods can better correct the
spatial distribution of daily mean temperature and
extreme temperature, significantly reduce the biases of
the model simulation, and effectively improve the ca-
pacity of models for the spatial pattern of extreme
temperature. The temperature change curve of the
EDCDFm method is closer to the observation than that
of the CDF-t method.

(2) The projection of the MME based on the EDCDFm
method shows that under the RCP4.5 emission scenario,
the temperature over central and eastern China shows a
warming trend. The mean temperature is projected to
increase by 0.76, 1.84, and 2.10 �C with respect to
1986e2005 during the periods 2017e2036, 2046e2065,
and 2080e2099, respectively. The spatial change for the
mean temperature, maximum temperature, and mini-
mum temperature in the three future periods have good
consistency, and warming in northern China is higher
than that in the south. Uncertainties in temperature
change projection are large in TP and the Sichuan Basin.
The frost days decrease significantly in the mid-latitude
area, and the increasing heat wave increase mainly oc-
curs in eastern China.

(3) TAV, TNAV and TXAV over central and eastern China
increase by more than 0.75 �C under 1.5 �C target,
especially in the northwestern China and the TP, relative
to 1986e2005. Under 2 �C warming target, three tem-
perature indices increase by over 1.25 �C. It's noted that
the addition of temperature in parts of northeastern
China is more than 1.5 �C obviously larger than under
1.5 �C target, while over 3 d for HWDI.

The EDCDFm and CDF-t methods significantly improve
the ability of the model to simulate temperatures over central
and eastern China. However, these two methods only establish
the function of the CDF between the observed and model
variables, and the large-scale circulation factors are not
involved; thus, simulation biases remain. In addition, the two
methods aim to correct the probability and simulation values
of the cumulative distribution function of models, respectively.
Further study should investigate whether the effect will be
better when the probability and simulation value are corrected
simultaneously.
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