

Production cross section of ^{197m}Hg induced by deuterons on natural gold target

15th Varenna Conference on Nuclear Reaction Mechanisms June 15th 2018

Etienne NIGRON¹, Arnaud GUERTIN¹, Ferid Haddad²

¹ SUBATECH laboratory – CNRS/IN2P3, IMT Atlantique, Nantes University, France ² GIP ARRONAX, Nantes, France

June 15th 2018

Radionuclides in medicine

- Physics properties :
 - > Particle or radiation emitted by decay of the radionuclide ($\alpha,\beta,\gamma,e_{Auger}$)
 - > Energy
 - Half life of the radionuclide
- Chemical properties :
 - Extraction of the radionuclide from the target
 - Radionuclide labelling …

The radionuclides are coupled with a tracer to do **imagery** or **therapy**. Indeed, the tracers have an affinity with the interest area which allows to bring them to the cancer cells.

Radionuclides in medicine

Imagery → Low energy gamma emissions (~100 keV)

• SPECT (Single photon emission computed tomography)

• PET (Positron emission tomography)

Therapy

Linear energy transfer

• Brachytherapy

Vectorised internal radiotherapy

^{197m}Hg a potential medical radioisotope

Half life 197mHg 23,8h

Decay 91,4% IT, 8,6% EC no β+

```
Main gamma emissions
134 keV (33%)
279 keV (6%)
```

195Hg	196Hg	197Hg	198Hg	199Hg	200Hg	201Hg
10.53 H	STABLE	64.14 H	STABLE	STABLE	STABLE	STABLE
8: 100.00%	0.15%	8: 100.00%	9.97%	16.87%	23.10%	13.18%
194Au 38.02 H 8: 100.00%	195Au 186.01 D 8: 100.00%	196Au 6.1669 D ε: 93.00% β-: 7.00%	197Au STABLE 100%	198Au 2.6941 D β-: 100.00%	199Au 3.139 D β-: 100.00%	200Au 48.4 M β-: 100.00%

The best production route is ¹⁹⁷Au(d,2n)

- \succ Optimise the production \longrightarrow Highest cross section with deuterons
- \succ Limit the number of impurities \longrightarrow Natural gold is monoisotopic

Hg extraction by dry distillation

- ^{197m}Hg can be imaged through the SPECT technique
 - To be use as a tracer for gold nanoparticles
 - Use in human with radiopharmaceutical

Stacked foils technique

Several measures for one irradiation

Pattern Target (thin foil): produce the radionuclide of interest Degrader : change the beam energy

Possibility of nucleus being ejected

Catcher : catch the recoil nuclei

Two methods of **incident flux** φ measurement

- Two methods of incident flux ϕ measurement

 - Absolute : direct measurement of the number of charges crossing the stack using a Faraday cup: error estimate less than 3%

- Two methods of incident flux ϕ measurement

→ Values recommended by IAEA^[1]

Hypothesis: $\phi_{target} = \phi_{monitor}$

Absolute : direct measurement of the number of charges crossing the stack using a Faraday cup: error estimate less than 3%

[1] International Atomic Energy Agency (IAEA), Summary Report Second Research Coordination Meeting on Nuclear Data for C charged-particle Monitor Reactions and Medical Isotope Production, technical report April 2015

- Two methods of incident flux ϕ measurement

 - Absolute : direct measurement of the number of charges crossing the stack using a Faraday cup: error estimate less than 3%

June 15th 2018

• The measure of the activity : gamma spectrometry

HPGe detector

After Irradiation : activity measurement of all radionuclides present in the foils

- Short counting to sort short lived radionuclides (<10h)</p>
- Long counting to sort long lived radionuclides (>10h)

The experimental set up

Beam setting using a camera

Electronic

- Vacuum enclosure
- Aligned with the beam output

• Our objectives are :

- Acquire new values for the production cross section of ^{197m}Hg
- > Compare values obtained using both technique of flux determination

Pattern of the stack : Au – Ti - Al

Two kind of values acquired after the experiments :

- \succ σ _{charge} (mb) : measure the number of charges crossing the stack with the Faraday cup
- \succ $\sigma_{monitor}$ (mb) : using Titanium monitor foil

Reaction of interest : ¹⁹⁷Au(d,2n)^{197m}Hg

Reaction of interest : ¹⁹⁷Au(d,2n)^{197m}Hg

• Monitor reaction : $^{nat}Ti(d,x)^{48}V$

• Monitor reaction : $^{nat}Ti(d,x)^{48}V$

Reaction ¹⁹⁷Au(d,2n)¹⁹⁷Hg

At the measure of activity: Contribution of

- The direct production
- The metastable decay
- \rightarrow Correction of the metastable decay

example 1

E [MeV] σ [mb]

0

example 2

4.5E0

E [MeV] σ [mb]

18

clear

Projectile:

Target nuclide:

Chemical form:

clear

O p

() d

44Ca

_ α

gas

Reaction of interest : ¹⁹⁷Au(d,2n)^{197m}Hg

Estimate the production of ^{197m}Hg

Radionuclide Yield Calculator a free GUI developed at ARRONAX by M.Sitarz

- Conclusion
- ➢ ^{197m}Hg is a good candidate to be use for SPECT imaging
- Data collected using the faraday as more precise than that collected with the monitor foil technique as expected. They are both in agreement.
- Our results are in good agreement with the IAEA recommended cross section values and other available data in the literature
- Outlook
- Our new set of data will also help extending the accuracy of databases and can be used to constrain theoretical calculations

Collected data sets

Proton induced reactions:

 $Cu-67 \rightarrow New data set from {}^{68}Zn(p,2p)$ - NIMB 415 (2018) 41-47 $Ac-225 \rightarrow from Th-232(p,x)$ - Phys. Med. Biol. **60** (2015) **931–946** $Ra-223 \rightarrow from Th-232(p,x)$ - EPJ Web of Conferences 146, 08008 (2017)Fission fragment distribution $\rightarrow from Th-232(p,x)$ - EPJ Web of Conferences 146, 08008 (2017)Monitor reactions on Ti, Ni and Cu \rightarrow from Th-232(p,x)- E. Garrido et al., NIM. B 383 (2016) 191

Deuteron induced reactions:

Sc-44 \rightarrow New data set for Ca-44(d,x) Tb-155 \rightarrow New data set for Gd-nat(d,x) Re-186g \rightarrow New data set for W-186(d,x)

Th-226 \rightarrow New data set for Th-232(d,x) Fission fragment distribution \rightarrow from Th-232(d,x) Monitor reactions on Ti

Hg-197m \rightarrow New data set for Au-197(d,x)

Alpha induced reactions:

Sn-117m \rightarrow Cd-116(α ,x) Monitor reactions on Cu, Ti, Ni:

- C. Duchemin et al, Phys. Med. Biol. 60 (2015) 6847
- Submitted to ARI
- C. Duchemin et al, Appl. Rad. And Isot. 97 (2015) 52
- C. Duchemin et al

Nuclear Data Sheets **119** (2014) **267** International Journal of Modern Physics **27** (2014) Phys. Med. Biol. **60** (2015) **931**

- C. Duchemin et al, ARI 103 (2015)160

- C.Duchemin et al, ARI 115 (2016) 113

Thank you for your attention

¹⁹⁷Hg

Half life 64,14h

Decay 100% EC, no β +

Main gamma emissions 77,3 keV (18,7%) 191,4 keV (0,6%)

195Hg	196Hg	197Hg	198Hg	199Hg	200Hg	201Hg
10.53 H	STABLE	64.14 H	STABLE	STABLE	STABLE	STABLE
8: 100.00%	0.15%	8: 100.00%	9.97%	16.87%	23.10%	13.18%
194Au 38.02 H 8: 100.00%	195Au 186.01 D 8: 100.00%	196Au 6.1669 D ε: 93.00% β-: 7.00%	197Au STABLE 10075	198Au 2.6941 D β-: 100.00%	199Au 3.139 D β-: 100.00%	200Au 48.4 M β-: 100.00%

¹⁹⁵Hg & ^{195m}Hg

- ➤ Half life ¹⁹⁵Hg 10,5h
- ➤ Half life ^{195m}Hg 41,6h

195Hg	196Hg	197Hg	198Hg	199Hg	200Hg	201Hg
10.53 H	STABLE	64.14 H	STABLE	STABLE	STABLE	STABLE
8: 100.00%	0.15%	8: 100.00%	9.97%	16.87%	23.10%	13.18%
194Au 38.02 H 8: 100.00%	195Au 186.01 D 8: 100.00%	196Au 6.1669 D ε: 93.00% β-: 7.00%	197Au STABLE 100%	198Au 2.6941 D β-: 100.00%	199Au 3.139 D β-: 100.00%	200Au 48.4 M β-: 100.00%

79-AU-197(P,N)80-HG-197-M