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 39 

Abstracts 40 

To avoid dangerous climate change impact, the Paris Agreement sets out two ambitious 41 

goals: to limit the global warming to be well below 2 °C and to pursue effort for the 42 

global warming to be below 1.5 °C above the pre-industrial level. As climate change 43 

risks may be region-dependent, changes in magnitude and probability of extreme 44 

precipitation over China are investigated under those two global warming levels based 45 

on simulations from the Coupled Model Inter-Comparison Projects Phase 5. The focus 46 

is on the added changes due to the additional half a degree warming from 1.5 °C to 2 °C. 47 

Results show that regional average changes in the magnitude do not depend on the 48 

return periods with a relative increase around 7% and 11% at the 1.5 °C and 2 °C global 49 

warming levels, respectively. The additional half a degree global warming adds an 50 

additional increase in the magnitude by nearly 4%. The regional average changes in 51 

term of occurrence probabilities show dependence on the return periods, with rarer 52 

events (longer return periods) having larger increase of risk. For the 100-year historical 53 

event, the probability is projected to increase by a factor of 1.6 and 2.4 at the 1.5 °C and 54 

2 °C global warming levels, respectively. The projected changes in extreme 55 

precipitation are independent of the RCP scenarios. 56 

  57 
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1. Introduction 74 

A global-scale warming has been dominating the Earth climate since the 75 

beginning of the industrial era. But to different magnitudes of temperature increase, the 76 

corresponding climate changes would exert different impacts on the global natural 77 

ecosystems and human societies. The question that what level of global warming is 78 

regarded as a dangerous warming threshold has been widely debated. The current 79 

international agreement about avoiding dangerous climate change impact was made 80 

under the United Nations Framework Convention on Climate Change (UNFCCC) at 81 

the 21st Conference of Parties (COP 21) in Paris. The agreement including two global 82 

warming targets: “holding the increase in the global average temperature to be well 83 

below 2 °C above pre-industrial and to pursue effort to limit the temperature increase to 84 

1.5 °C.” It is based on the hypothesis that maintaining the global warming below 1.5 °C 85 

would reduce the risks caused by climate change [1]. Meanwhile, UNFCCC invited the 86 

IPCC to elaborate a special report on the issue, which should be a comprehensive 87 

synthesis of the relevant scientific literature [2], [3], [4], [5], [6], [7]. The global mean 88 

warming is just an emblematic indicator, and vulnerability to global warming may vary 89 

from region to region and exhibit notable spatial inhomogeneity [3]. Therefore a 90 

differentiation of risks caused by climate change between 1.5 °C and 2 °C global 91 

warming levels is particularly important for highly sensitive regions [6]. China, a 92 

country with fragile ecological environment due to the fact that it has a prominent 93 

monsoon climate and has complex topography, is identified as a vulnerable region to 94 

global warming [8]. Floods after extreme precipitation cause considerable economic 95 

losses and serious damage to property. Therefore, it is necessary to rigorously assess 96 

physical and statistical characteristics of regional extreme precipitations when the 97 

global temperature increases by 1.5 °C and 2.0 °C relative to pre-industrial. 98 

 99 

Global climate models are primary tools for investigating possible future change 100 

in climate extremes [9], [10], [11]. The Coupled Model Intercomparison Project Phase 101 

5 (CMIP5) of the World Climate Research Programme incorporates more physical 102 
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processes and higher resolution models than its previous phases [12]. Many results 103 

indicated that CMIP5 models can well reproduce the observed extreme precipitation at 104 

continental scale [13], [14] and regional scale [15], [16]. Climate responses to different 105 

global warming levels over China have been investigated in several recent studies using 106 

CMIP5. They mainly focus on the 2 °C warming target, including the timing of 107 

occurrence and the factors responsible for the timing uncertainties among models [17], 108 

[18]. This needs to investigate whether the expected changes exceed the natural internal 109 

variability [19], [20]. There are also researches investigating the extreme climate 110 

change with different warming targets (e.g. 2 °C, 3 °C, 4 °C) [21], [22], [23]. Recently, 111 

a few studies are reported on the climate change under 1.5 °C warming and the 112 

difference from 2 °C warming [24], [25]. However, limited attention has been paid to 113 

investigating extreme precipitation changes in term of magnitude and probability under 114 

1.5 °C and 2 °C warming levels. 115 

 116 

This study uses statistical method to investigate two questions: How extreme 117 

precipitation may change under 1.5 °C and 2 °C global warming levels over China and 118 

how much is the influence of the extra half degree? Such questions are critical ones and 119 

should be addressed in an appropriate way. They are not only relevant to risk 120 

assessment and adaptation measures, but also useful to rationalize future international 121 

negotiations on climate change issues. 122 

2. Data and Methods 123 

2.1 Data 124 

We use the daily precipitation datasets extracted from CMIP5 models in their 125 

historical experiments (1850–2005) with natural and anthropogenic forcing, and 126 

future simulations (2006–2100) with the Representative Concentration Pathway (RCP) 127 

scenarios [26]. In this study, we make relevant diagnostics on extreme precipitations 128 

under RCP4.5 and RCP8.5 scenarios. The reason for selecting those two scenarios is 129 

that RCP8.5 is mostly close to the observed emissions pathway, whereas RCP4.5 130 

represents a consideration of mitigation. The first realization from each model is 131 
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selected in order to treat all models equally. We select 1986–2005 as the reference 132 

period for assessment of future changes under the two warming targets. 133 

 134 

Monthly surface air temperatures in both historical experiment and RCP 135 

scenarios are used to study the timing for the global mean temperature to reach the 136 

two warming targets for each model. Given that the observed global temperature in 137 

the reference period is 0.6 °C warmer than the pre-industrial level [27], the 1.5 °C and 138 

2 °C warming targets relative to pre-industrial imply warming of 0.9 °C and 1.4 °C 139 

relative to the reference period, respectively. We first calculate the average global 140 

temperature anomalies from 2006 to 2100 relative to the reference period by using the 141 

area-weighted scheme which takes into account the variation of grid box areas with 142 

latitude for individual models. The anomaly time series are then divided into a few 143 

20-year time slices to find the right period when the 0.9 °C and 1.4 °C warming 144 

thresholds occur for each model separately. The CMIP5 models used in this article 145 

and their timing to reach the two warming targets under RCPs scenarios are shown in 146 

Table 1. 147 

There is a large difference among models when 1.5 ˚C and 2 ˚C warming targets 148 

are reached. For RCP4.5, the 20-year period of 1.5˚C warming ranges from [2013, 149 

2032] for BNU-ESM to [2046, 2065] for GFDL-ESM2G. For the 2˚C warming level, 150 

the 20-year period ranges from [2029, 2048] (HadGEM2-ES, MIROC-ESM and 151 

MIROC-EMS-CHEM) to [2064, 2083] (MRI-CGCM3). When the multi-model 152 

ensemble is examined, time reaching the two warming targets under RCP8.5 is earlier 153 

than under RCP4.5. Global warming reaches 1.5˚C under RCP4.5 and RCP8.5 at 154 

[2021, 2040] and [2016, 2035] respectively. The 2˚C warming is projected to be 155 

reached at [2041, 2060] for RCP4.5 and [2031, 2050] for RCP8.5. These results are 156 

consistent with former researches [6, 7, 18]. 157 

2.2 Methodology 158 

Return value of annual daily precipitation is a widely used metric to measure the 159 

magnitude of extreme events [28], [29]. Also, return value is commonly used for a wide 160 
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range of applications on engineering planning, for instance, in the decision of 161 

hydrologic design, water management structure, dams, and bridges. The return value 162 

for a particular return period τ is the threshold likely to be exceeded in a year with 163 

probability 1/τ. Higher τ means more intense and rarer extreme events. To estimate the 164 

return value, annual maximum (AM) approach is used to select sample sequences from 165 

daily data at every grid point to be fitted by generalized extreme value (GEV) 166 

distribution. GEV distribution has been found suitable as a fit to the tails of the 167 

distribution for precipitation. GEV distribution is also a generally reasonable 168 

approximation for the distribution of annual extremes in most CMIP5 models [14]. 169 

The cumulative distribution function, G(z), is given by (Coles, 2001) [30]: 170 

G(z) = exp {− [𝜉 (
𝑧 − 𝜇

𝜎
)]

−1/𝜉

} , 1 + ξ (
𝑧 − 𝜇

𝜎
) > 0 171 

where μ, σ and ξ are location, scale and shape parameters, respectively. These three 172 

parameters are estimated by the method of “L-moments”, which is more efficient and 173 

generates less uncertainty compared to other methods to estimate parameters over a 174 

small sample size [31]. Having estimated the parameters, return value, 𝑧𝑝 , 175 

corresponding to the return period τ = 1/p, can be determined after inverting the 176 

GEV cumulative distribution function.  177 

𝑧𝑝 = 𝜇 −
𝜎

𝜉
[1 − {− log(1 − 𝑝)}−𝜉], 𝜉 ≠ 0 178 

where p is an exceedance probability. In addition, we can examine the probability 179 

change of extreme precipitation by using probability ratio (PR), a metric 180 

characterizing the factor by which probability of an event has changed [32, 33], 181 

defined as PR=𝑃1 𝑃0⁄ , where 𝑃0 denotes the probability of 𝜏0-year return value 182 

during the reference period and 𝑃1 during 1.5˚C or 2˚C warming climate, expressed 183 

as a future return period 𝜏1 = 1/𝑃1, 𝑃1 𝑃0⁄ = 𝜏0/𝜏1. If PR>1, probability of reference 184 

period events would increase at 1.5˚C or 2˚C warming environment. 185 

Three different return periods events (20-, 50-, and 100-year) of annual maxima 186 

precipitation for the reference period (1986-2005) and the 20-year slices when global 187 

warming reaches the two warming levels for individual models are derived from the 188 
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fitted GEV. PR of historical (for three return periods) events at the two levels of 189 

warming climate can also be determined. Those two statistical values from different 190 

models are interpolated onto a common 1°×1° latitude-longitude grid with a bilinear 191 

interpolation scheme. 192 

Additionally, GEV distribution allows the incorporation of covariates in 193 

parameters to estimate the dependence of extreme precipitation change on global 194 

mean temperature anomaly, which can provide more information about extreme 195 

precipitation change with further global warming. Here, the location and scale 196 

parameters are assumed to be function of global mean temperature anomaly and the 197 

shape parameter is kept constant. Because the scale parameter must be positive 198 

everywhere, it is often modeled using a log link function, such that:  199 

μ(t) = 𝜇0 + 𝜇1𝑦(𝑡) 200 

lnσ(t) = 𝜎0 + 𝜎1𝑦(𝑡) 201 

where y(t) is the global mean temperature anomaly from 1961 to 2100 relative to the 202 

pre-industrial in year t. 𝜇0, 𝜇1, 𝜎0, 𝜎1 are regression parameters to be estimated. The 203 

cumulative distribution function, G(𝑧𝑡) can be expressed as 204 

G(𝑧𝑡) = exp {− [𝜉 (
𝑧𝑡 − 𝜇(𝑡)

𝜎(𝑡)
)]

−1/𝜉

} , 1 + ξ (
𝑧𝑡 − 𝜇(𝑡)

𝜎(𝑡)
) > 0 205 

Return value 𝑍𝑝𝑡
 is defined as  206 

𝑍𝑝𝑡
= 𝜇𝑡 −

𝜎𝑡

𝜉
[1 − {− log(1 − 𝑝)}−𝜉], 𝜉 ≠ 0 207 

There are five parameters (𝜇0, 𝜇1, 𝜎0, 𝜎1, 𝜁) in nonstationary GEV distribution. Those 208 

five parameters are estimated by the method of maximum likelihood estimation (MLE) 209 

[34]. An advantage of MLE is that it is efficient when the sample size is large and it is 210 

particularly preferred in estimating parameters for nonstationary data. Here, 211 

nonstationary GEV is fitted to time series of annual maxima precipitation for the 212 

period 1961-2100 for individual models. The magnitude and probability change 213 

relative to historical at given global warming target can be derived from fitted 214 

nonstationary GEV. 215 

3. Results 216 
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3.1 Changes in the magnitude of extreme precipitation 217 

Changes in magnitude of extreme precipitation relative to the reference period at 218 

the two warming levels under RCP4.5 and RCP8.5 were analyzed with the annual 219 

precipitation maxima from individual CMIP5 models fitted to stationary GEV (Fig. 1). 220 

Regionally averaged, the relative changes of return periods in the multi-model 221 

ensemble mean (MME) (black point) under RCP4.5 are close to RCP8.5 scenario. 222 

This indicates that changes in magnitude of extreme precipitation are not very much 223 

independent on emission scenarios when the global warming level reaches a given 224 

warming target.  225 

t can be seen that there is little difference among return periods under same 226 

warming conditions. The amplitude is projected to increase by about 7% and nearly 227 

11% when global warming reaches to 1.5 °C and 2 °C, respectively. Extra half a 228 

degree warming makes the intensity to increase by nearly 4%. If we use the dispersion 229 

of models to represent the projection uncertainties, we can see that the projection 230 

uncertainties vary among return periods, with larger uncertainty at higher return 231 

period. Meanwhile, uncertainties at higher warming level are larger than that at lower 232 

warming level. 233 

 234 

We examine now the spatial distribution of intensity difference between the 235 

1.5 °C and 2 °C worlds for RCP4.5 and RCP8.5 scenarios (Fig. 1S). As expected, the 236 

changes in 20-, 50-, and 100-year return value show a very similar spatial distribution. 237 

Compared to 1.5 °C warming, the magnitude of extreme precipitation is projected to 238 

increase under 2 °C warming across most of the region for both scenarios. In many 239 

regions where the magnitude increases, especially for regions with large increase, the 240 

consistency among models is high. Areas where large increases are projected to occur 241 

show a dependence on scenarios. Areas with an increase larger than 5% are 242 

concentrated in most of Western China and Southeastern China for RCP4.5, while for 243 

RCP8.5, such areas of increase are mainly in Western China and North China, but not 244 

in Southeastern China. These results are generally in agreement with previous studies 245 

showing that a larger magnitude of extreme precipitation can be found in those 246 
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regions under the context of global warming [35], [11], [36]. The difference in 247 

intensity change between RCP4.5 and RCP8.5 also indicates that the finer change of 248 

extreme precipitation at regional scale from global models still have large 249 

uncertainties. 250 

 251 

The magnitude change of extreme precipitation with future global warming can 252 

also be seen if the nonstationary GEV scheme is applied to the transient simulations. 253 

Fig. 2 displays the regional average changes (which is relative to reference period) of 254 

the three return periods as a function of global mean temperature anomaly (which is 255 

relative to pre-industrial) simulated by CMIP5 models for RCP4.5 and RCP8.5 256 

scenarios. It is noted that the global warming in the multi model ensemble mean do 257 

not exceed 3 °C relative to pre-industrial for RCP4.5 and 5 °C for RCP8.5 scenario, so 258 

we only show the relationship within the period where global warming may reach. 259 

Results of non-stationary calculation show very similar results as in the stationary 260 

calculation. This is particularly true for the change of magnitude in MME and 261 

uncertainties among models when warming reaches 1.5 °C and 2 °C. The 262 

nonstationary results show that the magnitude increases in MME nonlinearly with 263 

future warming. For example, the magnitude is expected to increase by nearly 8% 264 

when global mean temperature warms from 1 °C to 2 °C, while the increase is about 5% 265 

when the global mean temperature increases from 3 °C to 4 °C under RCP8.5.  266 

3.2 Change in the probability of extreme precipitation 267 

The probability change of historical extreme events at two warming levels is 268 

analyzed in this section. The regional average PR of historical events for the three 269 

return periods is illustrated in Fig. 3 for the two warming levels. As expected, the 270 

MME results show little distinction between RCP4.5 and RCP8.5 scenarios. 271 

Generally speaking, the probabilities of historical extreme events are projected to 272 

increase in response to the global warming. PR increases most strongly for the longest 273 

return periods, especially at higher warming level, which implies that the most intense 274 

and rarest extreme precipitation events have largest increase in the risk. Taken 2 °C 275 
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warming as an example, the probability of historical 20-yr events increases by a factor 276 

of 1.9, however, for historical 100-year events, the probability increases by a factor of 277 

2.4.  278 

Probability of historical 100-year events increases by about a factor of 1.6 under 279 

1.5 °C warming and 2.4 under 2 °C warming climate. This implies that regional 280 

average event expected once every 100 years in historical period is expected to occur 281 

about every 62 and 42 years under 1.5 °C and 2 °C warming climate, respectively. The 282 

100-year event of 1.5 °C warming is almost 1.4 times more likely to occur at 2 °C 283 

warming. 284 

 285 

Similar to the relative changes of magnitude in extreme precipitation, the 286 

inter-model variation of PR is significant across the three return periods for a given 287 

warming level, with larger inter-model spreading at higher return periods. For 288 

example, PR of a historical 20-year event ranges from 1.4 to 2.8 under 2 °C warming 289 

level, but for 100-year events, PR ranges from 1.6 to 4.2. Furthermore, the 290 

inter-model spreading of PR under higher warming climate is also larger. PR of a 291 

historical 100-year event at 1.5 °C and 2 °C warming levels ranges from 1.0 to 2.6 and 292 

1.6 to 4.2, respectively. 293 

 294 

The spatial distribution of PR variation between 1.5 °C warming and 2 °C 295 

warming is also researched (Fig. 2S). We show the cases for 20-, 50-, and 100-year 296 

events and for the two scenarios. The risk of extreme events at 1.5 °C warming level 297 

is projected to increase almost everywhere at 2 °C warming over China for both RCP 298 

scenarios. PR of 20-, 50-, and 100-year events shows a very similar spatial 299 

distribution, although it varies depending on the return periods with higher return 300 

periods associated to larger PR. Areas where PR is larger than 2.0 show a future 301 

strengthening and extension with increasing of return periods. Those regions also 302 

depend on scenarios. The largest PR for RCP4.5 is projected to occur over large zones 303 

in western China, especially around the Tibetan Plateau. For RCP8.5, the largest PR 304 

occurs over western China and the Yangtze River. Events that would be attained once 305 
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every 50 and 100 years in 1.5 °C warming climate will be 2 times more likely to occur 306 

at 2 °C warming climate in those regions. Meanwhile, regions with large increase of 307 

probability also exhibit a relative high models consistency. 308 

 309 

In order to study how the probability changes with future global warming, we 310 

examine the probability change of historical extreme events with increases of global 311 

mean temperature by using the non-stationary GEV distribution. Fig. 4 displays the 312 

regional average PR of historical extreme events at a given warming levels relative to 313 

pre-industrial conditions in CMIP5 models for RCP4.5 and RCP8.5 scenarios. Also, 314 

results of PR exhibit no difference between the stationary and nonstationary schemes 315 

for MME and inter-model spread. However, with further warming, the PR of 316 

historical events in MME increases nonlinearly, especially for the very rare events. 317 

The probability of historical 100-year events increases 2 times when global warming 318 

increases from 4 °C to 5 °C. However, when global warming increases from 1 °C to 319 

2 °C, the probability of historical 100-year events only increases 1 time. It is also 320 

noted that the uncertainties among models would be larger at higher warming. For 321 

instance, the range of models for PR of 100-year historical events at 4 °C warming is 322 

nearly 13 times higher than that at 1 °C warming.  323 

4. Summary  324 

In this study, future changes in magnitude and probability of extreme 325 

precipitation are investigated at global warming levels of 1.5˚C and 2˚C above 326 

pre-industrial. The magnitude and probability of extreme precipitation are described 327 

by the return values corresponding to three return periods and probability risk, 328 

respectively. Major findings are summarized as follows. 329 

(1) Changes of extreme precipitation from MME show less dependences on the 330 

emission scenarios of RCP4.5 and RCP8.5 when global warming reaches two 331 

warming levels.  332 

(2) Relative changes in the magnitude exhibit little difference for different return 333 

periods under the same warming threshold. Magnitude is projected to increase by 334 
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about 7% for 1.5˚C warming and 11% for 2˚C warming relative to reference 335 

period. The additional half a degree warming makes the extreme precipitation to 336 

increase by 4%.  337 

(3) Probabilities of a given change depend on the return periods. The rarest events 338 

(the longest return period) have largest increase in the risk for a given warming 339 

level. For historical 100-year events, their occurrence probability increases by 1.6 340 

times at 1.5˚C warming, whereas at a 2˚C warming, the increase is about 2.4 times. 341 

The 100-year event of 1.5˚C is 1.4 times more likely to occur at 2˚C warming 342 

condition.   343 

(4) Uncertainties among models for magnitude and probability of change increase 344 

with global warming and higher return period events exhibits larger uncertainties. 345 

Our research is one of the first studies targeting two global warming levels at 1.5˚C 346 

and 2˚C over China. For both of them, extreme precipitation shows stronger 347 

magnitude and higher probability. Changes are generally larger under 2˚C global 348 

warming level compared to 1.5˚C global warming. The additional half-degree 349 

warming does matter for eventual mitigation measures against extreme precipitation 350 

events. We should remind that global climate models are generally of low spatial 351 

resolution and they suffer imperfections for physical processes, which causes 352 

differences and uncertainties among models in projecting regional-scale climate 353 

changes. Some regional climate modelling efforts in East Asia show that a higher 354 

resolution may give a more accurate regional climate [37-39]. Therefore, more 355 

experiments with higher-resolution regional climate models are needed to address this 356 

issue of regional climate change. 357 
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 470 

 471 

Fig.1 Boxplots of the regional average relative change (relative to 1986-2005 472 

reference period, units: %) in the 20-, 50-, 100-year return values for 1.5˚C (left panel) 473 

and 2˚C (middle panel) warming level, as well as the difference between the two 474 

warming levels (right panel) among models under RCP4.5 and RCP8.5 scenario. The 475 

upper and lower limits of the box indicate the 75th and 25th percentile value among 476 

models; the horizontal line in the box indicates the multi-model ensemble median and 477 

the whiskers show the range of models. MME is represented by black points. 478 
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 492 

 493 

Fig.2 The relationship between relative change (%) in regional average 20- (green), 494 

50- (blue), and 100-year (red) return values (relative to reference period) and global 495 

mean temperature anomaly (relative to pre-industrial) in CMIP5 models for RCP4.5 496 

(a) and RCP8.5 (b). Solid lines indicate the MME and the dotted lines are the 497 

uncertainties range.  498 
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 524 

 525 

Fig.3 Boxplots of PR for the historical 20-, 50-, 100-year return values in 1.5˚C (left 526 

panel) and 2˚C (middle panel) warming conditions among models, as well as PR of 527 

1.5˚C warming events in 2˚C warming conditions (right panel) under RCP4.5 and 528 

RCP8.5 scenarios. The upper and lower limits of the box indicate the 75th and 25th 529 

percentile value among models; the horizontal line in the box indicates the 530 

multi-model ensemble median and the whiskers show the range of models. MME is 531 

represented by black points. 532 
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 548 

 549 

 550 

Fig. 4 The relationship between PR of historical 20- (green), 50- (blue), and 100-year 551 

(red) return values and global mean temperature anomaly (relative to pre-industrial) 552 

for RCP4.5 and RCP8.5. Solid lines indicate the MME and the two dotted lines 553 

represent the uncertainties range. 554 
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 581 

Table 1 The CMIP5 models used in this article, together with their atmospheric 582 

model’s resolution and the 20-year time slices when global warming reaches 1.5˚C 583 

and 2˚C relative to pre-industrial period under RCP4.5 and RCP8.5 scenarios. 584 

Model name Atmospheric 

resolution 

RCP4.5 RCP8.5 

1.5˚C 2 ˚C 1.5˚C 2 ˚C 

ACCESS1.0 ~1.9°×1.25°, L38 [2018,2037] [2041,2060] [2016,2035] [2029,2048] 

ACCESS1.3 ~1.9°×1.25°, L38 [2020,2039] [2039,2058] [2015,2034] [2029,2048] 

BCC-CSM1.1 ~2.8°×~2.8°, L26 [2026,2045] [2062,2081] [2022,2041] [2036,2055] 

BCC-CSM1.1(m) ~1.1°×~1.1°, L26 [2020,2039] [2063,2082] [2015,2034] [2034,2053] 

BNU-ESM ~2.8°×~2.8°, L26 [2013,2032] [2032,2051] [2012,2031] [2024,2043] 

CanESM2 ~2.8°×~2.8°, L35 [2014,2033] [2028,2047] [2009,2028] [2022,2041] 

CCSM4 1.25°×~0.9°, L26 [2025,2044] [2052,2071] [2015,2034] [2032,2051] 

CMCC-CM 0.75°×~0.75°, L31 [2024,2043] [2041,2060] [2028,2047] [2040,2059] 

CMCC-CMS ~1.9°×~1.9°, L95 [2022,2041] [2039,2058] [2017,2036] [2029,2048] 

CNRM-CM5 ~1.4°×~1.4°, L31 [2029,2048] [2051,2070] [2022,2041] [2036,2055] 

HadGEM2-CC ~1.9°×1.25°, L40 [2017,2036] [2033,2052] [2008,2027] [2022,2041] 

IPSL-CM5A-LR 3.75°×~1.9°, L39 [2019,2038] [2035,2054] [2015,2034] [2027,2046] 

IPSL-CM5A-MR 2.5°×~1.25°, L39 [2015,2034] [2036,2055] [2014,2033] [2027,2046] 

MIROC5 ~1.4°×~1.4°, L40 [2025,2044] [2053,2072] [2021,2040] [2037,2056] 

MIROC-ESM ~2.8°×~2.8°, L80 [2015,2034] [2029,2048] [2013,2032] [2023,2042] 

MIROC-ESM-CHEM ~2.8°×~2.8°, L80 [2014,2033] [2029,2048] [2010,2029] [2022,2041] 

MPI-ESM-LR ~1.9°×~1.9°, L47 [2024,2043] [2055,2074] [2019,2038] [2034,2053] 

MPI-ESM-MR ~1.9°×~1.9°, L95 [2027,2046] [2048,2067] [2022,2041] [2036,2055] 

MRI-CGCM3 ~1.1°×~1.1°, L48 [2034,2053] [2064,2083] [2026,2045] [2039,2058] 

NorESM1-M 2.5°×~1.9°, L26 [2028,2047] [2060,2079] [2022,2041] [2038,2057] 
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